Энциклопедия мобильной связи

Последние новинки в электронике и электротехнике. Обзор нанотехнологий

Электроника (электронные технологии) - наука о взаимодействии электронов с электромагнитными полями, основанная на электронной теории¹, и о методах создания электронных приборов и устройств, в которых это взаимодействие используется для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации . На основе электроники электронная промышленность разрабатывает и производит электронные приборы, ЭВМ и широкий спектр других изделий, используемых во всех областях науки, техники и современной человеческой деятельности.

История возникновения и развития электроники

Предыстория - изобретение телефона, фонографа, кинематографа

Ко второй половине прошлого столетия относятся попытки создания телефона. С развитием теории электричества, в частности теории электромагнетизма, была создана научная база для его изобретения. Еще в 1837 г. американец Ч. Пейдус установил, что магнитная полоса может издавать звук, если ее подвергнуть быстрому перемагничиванию. В 1849—1854 гг. вице-инспектор Парижского телеграфа Шарль Бурсёль теоретически сформулировал принцип устройства телефонного аппарата. Первым образцом телефонного аппарата был прибор, сконструированный немецким физиком Филиппом Рейсом в 1861 г. (рис. 1).

Рис. 1. Телефон Рейса (1861 г.).

Телефон Рейса состоял из двух частей: передающего и приемного аппарата, действие которых было взаимосвязано. В передающем аппарате при передаче роисходило периодическое размыкание и замыкание цепи тока, чему в приемном аппарате соответствовало дрожание металлического стержня, воспроизводившего звук. С помощью аппарата Рейса можно было хорошо передавать музыку , но передача речи была затруднена.

В 1876 г. американский техник А. Белл (1847—1922) родом из Шотландии создал первую удовлетворительную конструкцию телефона. В этом же году он получил патент на его изобретение (рис. 2).

Рис. 2. Телефон А. Белла (1876 г.).

Однако телефонные трубки Белла могли хорошо передавать речь лишь на сравнительно небольшом расстоянии и, кроме того, обладали целым рядом других недостатков, делавших невозможным их практическое применение. К этому времени идея создания телефона распространилась очень широко. В США, например, было в 70-х годах взято свыше 30 патентов на телефонные аппараты. Так же обстояло дело и в Европе.

Над усовершенствованием телефона работали многие изобретатели. Наиболее существенные усовершенствования в телефон в 1878 г. независимо друг от друга внесли англичанин Д. Юз (1831—1900) и американец Т. Эдисон . Они изобрели важнейшую часть телефонного аппарата — микрофон. Микрофон Юза — Эдисона являлся только передатчиком, который воспринимал звуковые колебания и усиливал индуктивный ток в катушке телефона Белла. С изобретением микрофона стало возможно разговаривать на больших расстояниях, а звук в телефоне получался чище. Затем Эдисон предложил использовать в телефоне индукционную катушку. С введением ее в телефонный аппарат в основном закончилось его конструирование. Дальнейшая работа целого ряда изобретателей в различных странах сводилась к улучшению существующих конструкций.

Телефон в отличие от других новейших технических изобретений весьма быстро вошел в обиход почти во всех странах. Первая городская телефонная станция была введена в эксплуатацию в США в 1878 г. в Ныо-Гаване. В 1879 г. телефонные сети имелись уже в 20 городах в США. Первая телефонная станция в Париже была открыта в 1879 г., в Берлине—в 1881 г.

Пионером телефонии в России был инженер П. М. Голубицкий (1845—1911), внесший много существенных усовершенствований в конструкцию телефона. В 1878 г. Голубицкий построил первую серию многополюсных телефонов. Он доказал также возможность действия телефонов на расстоянии до 350 км.

В 1881 г. в России было учреждено Русское акционерное общество «для устройства и эксплуатации телефонных сообщений в различных городах Российской империи». Первые телефонные линии в России были построены в 1881 г. одновременно в пяти городах — Петербурге, Москве, Варшаве, Риге и Одессе. Интереснейшим изобретением этого периода явился фонограф— аппарат для записи и воспроизведения звука. Этот прибор, изобретенный в 1877 г. Эдисоном, обладал способностью сохранять, а затем в любое время воспроизводить и повторять записанные на нем звуковые колебания, вызванные ранее голосом человека, музыкальными инструментами и т. п. (рис. 3).

Рис. 3. Фонограф Т. А. Эдисона, (1877 г.)

Устройство и принцип действия фонографа сводятся к следующему. Звуковые колебания в фонографе передавались очень тонкой стеклянной или слюдяной пластинке, а при помощи прикрепленной к ней пишущей иглы (резца с сапфировым наконечником) переносились на поверхность вращающегося валика, обернутого оловянной фольгою или покрытого особым восковым слоем. Пишущая игла была связана с мембраной, воспринимающей или излучающей звуковые колебания. Ось валика фонографа имела резьбу, и поэтому при каждом обороте валик смещался вдоль оси вращения на одну и ту же величину. В результате этого пишущая игла на восковом слое выдавливала винтовую канавку. При движении по этой канавке игла и связанная с ней мембрана совершали механические колебания, воспроизводя записанные звуки. На основе фонографа затем возникли граммофон и другие приборы, применяемые при механической звукозаписи.

В 90-х годах XIX в. появляется кинематограф, совместивший в себе ряд изобретений и открытий, которые позволили осуществить основные процессы, необходимые для воспроизводства сфотографированного движения. Ближайшими предшественниками кинематографа, позволившими осуществить процесс кинематографирования, явились «аппарат для анализа стробоскопических явлений» русского изобретателя Тимченко (1893 г.), совмещавший проекцию на экран с прерывистой сменой изображений, хронофотограф французского физиолога Ж. Демени, сочетавший хронофотографию на пленке и проекцию на экран (1894 г.), а также созданный американским изобретателем У. Латамом в 1895 г. «паноптикум», соединивший хронофотографию с проекцией на экран, и другие изобретения.

Аппарат, в котором сочетались все основные элементы кинематографа, был впервые изобретен во Франции Луи Ж. Люмьером (1864— 1948). В 1895 г. он совместно со своим братом Огюстом разработал конструкцию киноаппарата для съемки. Люмьер назвал свое изобретение кинематографом. Опытная демонстрация фильма, заснятого на кинопленке с помощью этого аппарата, состоялась в марте 1895 г., а в декабре этого же года в Париже начал функционировать первый кинотеатр. В 90-е годы кинематограф появляется и в других странах, причем почти в каждой европейской стране был свой изобретатель этого аппарата. В Германии пионерами кинематографии были М. Складановский (1895 г.) и О. Местер (1896 г.); в Англии — Р. Поул (1896 г.); в России — А. Самарский (1896 г.) и И. Акимов (1896 г.); в США — Ф. Дженкинсон (1897 г.) и Т. Армат (1897 г.).

Одним из величайших открытий в области техники явилось изобретение радио. Честь его изобретения принадлежит великому русскому ученому А. С. Попову (1859—1906). Еще в 1886 г. немецкий ученый Г. Герц (1857—1894) впервые экспериментально доказал факт излучения электромагнитных волн. Он установил, что электромагнитные волны подчиняются тем же основным законам, что и световые волны. В конце 90-х годов Н. Тесла в Европе и Америке прочел ряд докладов, сопровождавшихся демонстрированием экспериментов . Он возбуждал длинные волны с помощью генераторов высокой частоты, зажигал лампы и посылал сигналы на расстояние. Тесла уверенно предсказывал возможность применения этих волн для телефонии и даже для передачи электрической энергии. Попов еще в 1889 г., работая в области исследования электромагнитных колебаний, впервые высказал мысль о возможности использования электромагнитных волн для передачи сигналов на расстояние.

7 мая 1895 г. А С. Попов на заседании Русского физико-математического общества в Петербурге впервые продемонстрировал радиоприемник. В работе над повышением чувствительности приборов для обнаруживания электромагнитных колебаний Попов шел своим оригинальным путем. Он впервые применил антенну и, видя несовершенство вибраторов как источников электромагнитных волн, приспособил приемник для регистрации грозовых разрядов атмосферного электричества. Радиоприемник, изобретенный Поповым, был назван им грозоотметчиком (рис. 4).

Рис. 4. Радиоприемник А. С. Попова (1895 г.).

Устройство грозоотметчика сводилось к следующему: в цепь батареи включалась трубка с металлическими опилками и реле. В обычных условиях сила тока в обмотке реле была слабой, и якорь реле не притягивался. Но во время грозы грозовые разряды вызывали появление электромагнитных волн. Это приводило к тому, что сопротивление опилок в трубке падало и реле срабатывало, подключая электрический звонок, который и подавал сигнал о поступлении электромагнитных волн. Грозоотметчик Попова позволял принимать радиоволны на расстоянии нескольких километров. Доклад А. С. Попова в мае 1895 г. был через несколько месяцев полностью опубликован в январском выпуске «Журнала Русского физико-химического общества» под названием «Прибор для обнаружения и регистрирования электрических колебаний». Затем этот доклад был напечатан в 1896 г. в журнале «Электричество» и в журнале «Метеорологический вестник». В результате многочисленных экспериментов 24 марта 1896 г. Попов осуществил первую в мире радиотелеграфную передачу. Его доклад в Физико-химическом обществе сопровождался работой грозоотметчика, который принимал телеграфные сигналы на расстоянии 250 м. В передаче были применены передающая и приемная антенны. В 1897 г. Попов устанавливает связь между кораблями «Африка» и «Европа» на расстоянии 5 км. А осенью 1899 г. при спасении наскочившего на камни броненосца «Генерал-адмирал Апраксин» А. С. Попов установил постоянную радиотелеграфную связь на расстоянии более 46 км. А. С. Попов не опубликовал подробного отчета о своих опытах. Русское военное ведомство предложило засекретить эти работы. Через год после первого доклада Попова и через два месяца после его второго доклада, в 1897 г., итальянец Г. Маркони взял патент в Англии на прибор для телеграфирования без проводов. Из описания видно, что радиоприемник Маркони весьма близко воспроизводил грозоотметчик А. С. Попова. В 1897 г. в Англии было образовано специальное акционерное общество по эксплуатации изобретения Маркони. Судьба Попова и Маркони сложилась по-разному. В то время как Маркони, получив финансовую поддержку, смог развернуть в большом масштабе работы по усовершенствованию радиоаппаратуры, А. С. Попову пришлось работать в очень тяжелых условиях. Средств на усовершенствование его гениального изобретения отпускалось мало, а результаты работ в печати почти не освещались. Радиотехника, основы которой были заложены работами А. С. Попова, стала особенно быстро развиваться после первой мировой войны, во время которой радиосвязь становится важнейшей формой связи в армии и флоте. Радио получило широкое применение затем и для гражданских целей. Эти отрасли техники в рассматриваемый период не имели большого значения, но, несмотря на свою незначительную роль, они явились вершиной технического прогресса конца XIX — начала XX в. и стали отправными точками технического прогресса в современную эпоху.

Электроника зародилась в начале 20 в. после создания основ электродинамики (1856—73), исследования свойств термоэлектронной эмиссии (1882—1901), фотоэлектронной эмиссии (1887—1905), рентгеновских лучей (1895—97), открытия электрона (Дж. Дж. Томсон, 1897), создания электронной теории (1892—1909). Развитие электроники началось с изобретения лампового диода (Дж. А. Флеминг, 1904), трёхэлектродной лампы — триода (Л. де Форест, 1906); использования триода для генерирования электрических колебаний (немецкий инженер А. Мейснер, 1913); разработки мощных генераторных ламп с водяным охлаждением (М. А. Бонч-Бруевич, 1919—25) для радиопередатчиков, используемых в системах дальней радиосвязи и радиовещания.

Вакуумные фотоэлементы (экспериментальный образец создал А. Г. Столетов, 1888; промышленные образцы — немецкие учёные Ю. Эльстер и Г. Хейтель, 1910); фотоэлектронные умножители — однокаскадные (П. В. Тимофеев, 1928) и многокаскадные (Л. А. Кубецкий, 1930) — позволили создать звуковое кино, послужили основой для разработки передающих телевизионных трубок: видикона (идея предложена в 1925 А. А. Чернышевым), иконоскопа (С. И. Катаев и независимо от него В. К. Зворыкин, 1931—32), супериконоскопа (П. В. Тимофеев, П. В. Шмаков, 1933), суперортикона (двухсторонняя мишень для такой трубки была предложена советским учёным Г. В. Брауде в 1939; впервые суперортикон описан американскими учёными А. Розе, П. Веймером и Х. Лоу в 1946) и др.

Создание многорезонаторного магнетрона (Н. Ф. Алексеев и Д. Е. Маляров, под руководством М. А. Бонч-Бруевича, 1936—37), отражательного клистрона (Н. Д. Девятков и другие и независимо от них советский инженер В. Ф. Коваленко, 1940) послужило основой для развития радиолокации в сантиметровом диапазоне волн; пролётные клистроны (идея предложена в 1932 Д. А. Рожанским, развита в 1935 советским физиком А. Н. Арсеньевой и немецким физиком О. Хайлем, реализована в 1938 американскими физиками Р. и 3. Варианами и др.) и лампы бегущей волны (американский учёный Р. Компфнер, 1943) обеспечили дальнейшее развитие систем радиорелейной связи, ускорителей элементарных частиц и способствовали созданию систем космической связи. Одновременно с разработкой вакуумных электронных приборов создавались и совершенствовались газоразрядные приборы (ионные приборы), например ртутные вентили, используемые главным образом для преобразования переменного тока в постоянный в мощных промышленных установках; тиратроны для формирования мощных импульсов электрического тока в устройствах импульсной техники; газоразрядные источники света.

Использование кристаллических полупроводников в качестве детекторов для радиоприёмных устройств (1900—05), создание купроксных и селеновых выпрямителей тока и фотоэлементов (1920—1926), изобретение кристадина (О. В. Лосев, 1922), изобретение транзистора (У. Шокли, У. Браттейн, Дж. Бардин, 1948) определили становление и развитие полупроводниковой электроники. Разработка планарной технологии полупроводниковых структур (конец 50 — начало 60-х гг.) и методов интеграции многих элементарных приборов (транзисторов, диодов, конденсаторов, резисторов) на одной монокристаллической полупроводниковой пластине привело к созданию нового направления в электроники — микроэлектроники (интегральной электроники). Основные разработки в области интегральной электроники направлены на создание интегральных схем — микроминиатюрных электронных устройств (усилителей, преобразователей, процессоров ЭВМ, электронных запоминающих устройств и т. п.), состоящих из сотен и тысяч электронных приборов, размещаемых на одном полупроводниковом кристалле площадью в несколько мм 2 . Микроэлектроника открыла новые возможности для решения таких проблем, как автоматизация управления технологическими процессами, переработка информации, совершенствование вычислительной техники и др., выдвигаемых развитием современного общественного производства . Создание квантовых генераторов (Н. Г. Басов, А. М. Прохоров и независимо от них Ч. Таунс, 1955) — приборов квантовой электроники — определило качественно новые возможности электроники, связанные с использованием источников мощного когерентного излучения оптического диапазона (лазеров) и построением сверхточных квантовых стандартов частоты.

Советские учёные внесли крупный вклад в развитие электроники. Фундаментальные исследования в области физики и технологии электронных приборов выполнили М. А. Бонч-Бруевич, Л. И. Мандельштам, Н. Д. Папалекси, С. А. Векшинский, А. А. Чернышев, М. М. Богословский и многие др.; по проблемам возбуждения и преобразования электрических колебаний, излучения, распространения и приёма радиоволн, их взаимодействия с носителями тока в вакууме, газах и твёрдых телах — Б. А. Введенский, В. Д. Калмыков, А. Л. Минц, А. А. Расплетин , М. В. Шулейкин и др.; в области физики полупроводников — ; люминесценции и по другим разделам физической оптики — С. И. Вавилов; квантовой теории рассеяния света излучения, фотоэффекта в металлах — И. Е. Тамм и многие др.

Электронные науки и технологии

Электроника опирается на многие разделы физики — электродинамику, классическую и квантовую механику , физику твёрдого тела, оптику, термодинамику, а также на химию , кристаллографию и другие науки. Используя результаты этих и ряда других областей знаний, электроника, с одной стороны, ставит перед другими науками новые задачи, чем стимулирует их дальнейшее развитие, с другой — создаёт новые электронные приборы и устройства и тем самым вооружает науки качественно новыми средствами и методами исследования.

Электроника - наука о методах создания электронных приборов и устройств, в которых это взаимодействие используется для преобразования электромагнитной энергии. Наиболее характерные виды преобразований электромагнитной энергии - генерирование, усиление и приём электромагнитных колебаний с частотой до 10 12 гц, а также инфракрасного, видимого, ультрафиолетового и рентгеновского излучений (10 12 - 10 20 гц). Преобразование до столь высоких частот возможно благодаря исключительно малой инерционности электрона — наименьшей из ныне известных заряженных частиц. В электронике исследуются взаимодействия электронов как с макрополями в рабочем пространстве электронного прибора, так и с микрополями внутри атома, молекулы или кристаллической решётки.

Прикладные задачи электроники: разработка электронных приборов и устройств, выполняющих различные функции в системах преобразования и передачи информации, в системах управления, в вычислительной технике, а также в энергетических устройствах; разработка научных основ технологии производства электронных приборов и технологии, использующей электронные и ионные процессы и приборы для различных областей науки и техники.

Электроника сыграла ведущую роль в научно-технической революции . Внедрение электронных приборов в различные сферы человеческой деятельности в значительной мере (зачастую решающей) способствовала успешной разработке сложнейших научно-технических проблем, повышению производительности физического и умственного труда , улучшению экономических показателей производства. На основе достижений электроники развивается , выпускающая электронную аппаратуру для различных видов связи, автоматики, телевидения, радиолокации, вычислительной техники, систем управления технологическими процессами, приборостроения, а также аппаратуру светотехники, инфракрасной техники, рентгенотехники и многих других.

Электроника включает в себя 3 области исследований :

Каждая область подразделяется на ряд разделов и ряд направлений. Раздел объединяет комплексы однородных физико-химических явлений и процессов, которые имеют фундаментальное значение для разработки многих классов электронных приборов данной области. Направление охватывает методы конструирования и расчётов электронных приборов, родственных по принципам действия или по выполняемым ими функциям, а также способы изготовления этих приборов. Электроника находится в стадии интенсивного развития, для неё характерно появление новых областей и создание новых направлений в уже существующих областях.

Технология электронных приборов . Конструирование и изготовление электронных приборов базируются на использовании сочетания разнообразных свойств материалов и физико-химических процессов. Поэтому необходимо глубоко понимать используемые процессы и их влияние на свойства приборов, уметь точно управлять этими процессами. Исключительная важность физико-химических исследований и разработка научных основ технологии в электронике обусловлены, во-первых, зависимостью свойств электронных приборок от наличия примесей в материалах и веществ, сорбированных на поверхностях рабочих элементов приборов, а также от состава газа и степени разряжения среды, окружающей эти элементы; во-вторых, — зависимостью надёжности и долговечности электронных приборов от степени стабильности применяемых исходных материалов и управляемости технологии. Достижения технологии нередко дают толчок развитию новых направлений в электронике. Общие для всех направлений электроники особенности технологии состоят в исключительно высоких (по сравнению с другими отраслями техники) требованиях, предъявляемых в электронной промышленности к свойствам используемых исходных материалов; степени защиты изделий от загрязнения в процессе производства; геометрической точности изготовления электронных приборов. С выполнением первого из этих требований связано создание многих материалов, обладающих сверхвысокими чистотой и совершенством структуры, с заранее заданными физико-химическими свойствами — специальных сплавов монокристаллов, керамики, стекол и др. Создание таких материалов и исследование их свойств составляют предмет специальной научно-технической дисциплины — электронного материаловедения . Одной из самых острых проблем технологии, связанных с выполнением второго требования, является борьба за уменьшение запылённости газовой среды, в которой проходят наиболее важные технологические процессы. В ряде случаев допустимая запылённость — не свыше трёх пылинок размером менее 1 мкм в 1 м 3 . О жёсткости требований к геометрической точности изготовления электронных приборов свидетельствуют, например, следующие цифры: в ряде случаев относительная погрешность размеров не должна превышать 0,001%; абсолютная точность размеров и взаимного расположения элементов интегральных схем достигает сотых долей мкм. Это требует создания новых, более совершенных методов обработки материалов, новых средств и методов контроля. Характерным для технологии в электронике является необходимость широкого использования новейших методов и средств: электроннолучевой, ультразвуковой и лазерной обработки и сварки, фотолитографии, электронной и рентгеновской литографии, электроискровой обработки, ионной имплантации, плазмохимии, молекулярной эпитаксии, электронной микроскопии, вакуумных установок, обеспечивающих давление остаточных газов до 10-13 мм рт. ст. Сложность многих технологических процессов требует исключения субъективного влияния человека на процесс, что обусловливает актуальность проблемы автоматизации производства электронных приборов с применением ЭВМ. Эти и другие специфические особенности технологии в электронике привели к необходимости создания нового направления в машиностроении — электронного машиностроения.

Перспективы развития электроники . Одна из основных проблем, стоящих перед электроникой, была связана с требованием увеличения количества обрабатываемой информации вычислительными и управляющими электронными системами с одновременным уменьшением их габаритов и потребляемой энергии. Эта проблема была решена путём создания полупроводниковых интегральных схем, обеспечивающих время переключения до 10 -11 сек; увеличения степени интеграции на одном кристалле более миллиона транзисторов размером менее 1 мкм; использования в интегральных схемах устройств оптической связи и оптоэлектронных преобразователей, сверхпроводников; разработки запоминающих устройств ёмкостью несколько гигагабит на одном кристалле; применения лазерной и электроннолучевой коммутации; расширения функциональных возможностей интегральных схем; перехода от двумерной (планарной) технологии интегральных схем к трёхмерной (объёмной) и использования сочетания различных свойств твёрдого тела в одном устройстве; разработки и реализации принципов и средств стереоскопического телевидения, обладающего большей информативностью по сравнению с обычным; создания электронных приборов, работающих в диапазоне миллиметровых и субмиллиметровых волн, для широкополосных (более эффективных) систем передачи информации, а также приборов для линий оптической связи; разработки мощных, с высоким кпд, приборов СВЧ и лазеров для энергетического воздействия на вещество и направленной передачи энергии (например, из космоса). Одна из тенденций развития электроники — проникновение её методов и средств в биологию (для изучения клеток и структуры живого организма и воздействия на него) и медицину (для диагностики, терапии, хирургии). По мере развития электроники и совершенствования технологии производства электронных приборов расширяются области использования достижения электроники во всех сферах жизни и деятельности людей, возрастает роль электроники в ускорении научно-технического прогресса.

Рекомендованная литература

Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.

Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960;

Кушманов И. В., Васильев Н. Н., Леонтъев А. Г., Электронные приборы, М., 1973.

Сейчас в мире правит электроника, которая окружает нас буквально повсюду. Наука не стоит на месте, ежегодно ученые представляют новые разработки в сфере электронных технологий. Многие из них плотно внедряются в нашу повседневную жизнь.

Ускорение компьютеров

Американские исследователи доказали, что вместо электрического тока можно использовать ультракороткие лазерные вспышки для перемещения отдельных электронов. Эта технология позволит создавать квантовые компьютеры. Также инновацию планируют использовать в сфере квантовой криптографии и для оптимизации химических реакций.

Электрон надо «подтолкнуть», накачать энергией с помощью импульсов от терагерцевого лазера до уровня отрыва от ядра и начала движения кристалла по атомным связям. Подобные лазерные установки настолько быстры, что удается ловить и удерживать электроны между двумя энергетическими состояниями.

Исследователи из разных стран давно стремились создать особые импланты для живых организмов. Принципиальное отличие заключается в том, что их не нужно было бы вынимать из тела хирургическим путем после того, как они полностью выполнили свою функцию.

Ученый Леон Беллан представил новую разработку – полимер, остающийся стабильным при температуре выше 32 градусов. Из него изготовляется основа, а внутрь вставляется серебряная нанопроволока. В результате, получается примитивная электрическая цепь. Пока полимер находится на теплой плите в кастрюле, через сеть течет ток. Как только плитка выключается, он превращается в слизь, а конструкция из проволоки рассыпается.

По такому принципу можно сделать, к примеру, медицинские приборы для контроля уровня сахара. Аппарат располагают под кожей и работает, пока врач снимает данные. После прикладывания льда, устройство разрушается. Это гораздо удобнее, чем забор анализов или ношение датчиков.

Синие светодиоды

Синий свет от светодиодов имеет выраженные антибактериальные свойства. Это официально доказано учеными из Сингапурского университета. Если сочетать его с охлаждением, то становятся ненужными консерванты, которые добавляют в продукты питания.

Разработчики уверены, что их открытие станет востребованным в сетях быстрого питания. Ведь потребители наслышаны о вреде искусственных добавок, и еда без них обязательно будет пользоваться спросом.

Наибольшего эффекта можно достичь, если сочетать синий свет с температурой +4-+15 градусов и кислой средой. В бактериальных клетках присутствуют светочувствительные соединения, которые поглощают свет в видимой области электромагнитного спектра. Соответственно, при таких условиях происходит массовая гибель бактерий.

«Электронная жидкость»

Экспериментальные исследования с нано структурами показали, что электроны могут «течь» как жидкость. Соответственно, можно создать сверхбыструю «текучую» электронику.

По законам физики, наибольшая скорость электронов происходит во время их встречи с другими частицами или атомами. Хорошим примером является среда полного вакуума, в котором траектория движения частиц похожа на полет снарядов. Но на сегодняшний день подобные условия никто не сумел смоделировать. По мнению физиков, такими средами могут выступать углеродные нанотрубки или графеновые листы. Однако, пока это только на уровне догадок.

У кардиостимуляторов есть один существенный минус – ограниченный срок эксплуатации. После семи лет нужно менять тритиевые батарейки, у которых выходит срок службы. А это означает, что необходимо повторное хирургическое вмешательство на сердце для замены источника питания.

Уже несколько стран ведут разработки по созданию батареек с более длительным сроком службы. В России этим занимаются ученые в химико-технологическом университете. Активное участие в данном проекте принимает и компания «Адвансед нуклайд технолоджис». Основа нового элемента питания – радионуклид Ni 63. Его период полураспада больше ста лет. Изобретение можно будет использовать без замены в течение 20 лет, что облегчит жизнь многим кардиологическим больным.

Все знают, что у кошек и собак уникальное обоняние, которое способно распознавать летучие химические вещества, выделяемые человеком во время болезни.

Ученые в Кембриджском университете решили создать так называемый «цифровой нос». Это спектрометр на кристаллическом микрочипе размером с мелкую монетку. Он оснащен датчиками, настроенными и откалиброванными для распознавания запахов. При подозрении на опасность, прибор подаст сигнал. В дальнейшем, вся информация будет выводиться на дисплеи смартфонов.

Кроме медицинской отрасли, «электронный нос» представляет интерес для пищевой промышленности. Ряд крупных компаний (Нестле, Кока кола) хотят использовать изобретение для определения свежести продуктов.

Новые транзисторы

В американском университете разработали новую конструкцию транзисторов. С их помощью электронные устройства смогут работать месяцами или годам. При этом затраты энергии будут минимальными, а возможно будут функционировать и вовсе без батарей. Их планируется применять в интернете вещей и в устройствах, которые не нужно подключать к сети и подзаряжать.

Тонкий нанопровод

В Великобритании была создана тончайшая одномерная нанопроволока, изготовленная из теллура. Ее толщина составляет всего один атом. Чтобы структура изделия была более прочной, разработчики ввели в нее карбоновые нанотрубки. Таким образом, атомы теллура оказываются в одной цепочке.

Одноатомные нанопровода имеют широкие перспективы в минитюаризации микросхем. А значит, современную электронику можно будет значительно уменьшить в размерах.

В Калифорнийском университете было принято решение о создании эффективных компьютерных процессоров с использованием электронных вакуумных ламп.

Для производства первых ламповых компьютеров брали громоздкие электронные лампы. Затем появились транзисторы, что произвело настоящую революцию в сфере радиоэлектроники. Но они тоже имеют существенный недостаток – невозможность бесконечного уменьшения размеров транзисторов. Чтобы происходило дальнейшее развитие, нужно было привнести инновацию в виде электронных вакуумных ламп. Дело в том, что при прохождении через полупроводник ток начинает замедляться и терять свою эффективность. Вакуумные элементы не имеют такой проблемы, потому что через них ток проходит свободно. Такие транзисторы в десять раз эффективнее полупроводниковых аналогов. Разработки на этом не закончены, они активно продолжаются в направлении уменьшения размеров ламп.

Ведущие производители электронной техники решили создать гибкие источники питания. Компания Панасоник разработала литий-ионные аккумуляторы толщиной 0,55 мм, предназначенные для носимых устройств (планшетов, телефонов, фотоаппаратов).

У них особая многослойная структура и особая конструкция размещения электрода. В качестве анода выступает медь, а в качестве катода – алюминий. Они могут быть различной формы, чаще всего цилиндрической. Благодаря своим механическим качествам, их можно сгибать и закручивать без потери мощности. Есть несколько моделей, прочность отдельных из них составляет тысячу поворотов и изгибов.

Гибкие электрические цепи на скорости 5G

Всевозможные «умные браслеты» стали очень популярными за последнее время. Они постоянно модернизируются и оснащаются новыми функциями. Очень скоро грядут дальнейшие глобальные перемены. В Америке уже разработана самая гибкая в мире электрическая цепь. Она отличается необычным дизайном – двумя переплетающимися в цепочку линиями, образующими S-образные изгибы. Благодаря подобной форме, линии могут растягиваться без потери производительности. Кроме того, они хорошо защищены от внешних воздействий. Передача электромагнитных волн происходит в определенном диапазоне частот – до 40 ГГц.

В Технологическом институте штата Джорджия инженеры разработали ректенны. Они имеют уникальную способность – захват света и преобразование его в постоянный ток. Для этого используются вертикальные углеродные нанотрубки в верхней части кремниевой подложки.

Сложные процессы приводят к формированию заряда, преобразующего переменный ток в постоянный. Пока эффективность устройство крайне мала, но ученые уверены, что в ближайшем будущем получится выйти на более высокие показатели.

Микрочип на основе человеческого мозга

Уникальная разработка американских биоинженеров – микрочип NeuroCore. Он действует быстрее, чем персональный компьютер в тысячи раз. В основе действия инновации лежит принцип работы мозга человека.

Биоинженерами была создана печатная плата, состоящая из 16 микрочипов. Она имитирует работу одного миллиона нейронов и образует миллиарды синаптических связей. Затраты энергии при этом минимальны.

В дальнейшем разработчики планируют уменьшить цену платы и создать компилятор для программного обеспечения.

Сейчас полным ходом идут разработки по созданию магнитных устройств для хранения данных. Это носитель информации следующего поколения, который может привести к созданию атомарно маленьких вычислительных машин.

Цель, стоявшая перед исследователями – организация определенного движения атомов. К примеру, в какой-то момент нужно, чтобы они прекратили вращаться. Это удалось воплотить благодаря сочетанию платины, гольмия и отрицательной температуры. Квантовая система дестабилизируется и сохраняется момент атома.

Электрическое моноколесо

Инновация представляет собой электрический мотор. Корпус его выполнен из ударостойкого пластика. Вес моноколеса составляет в среднем 10-20 кг, а высота – пол метра.

Оно оснащено системой гироскопов и управляющей электроникой для поддержания транспортного средства в вертикальном положении. От человека требуется только овладеть навыком сохранять на нем баланс. Колесо может менять скорость, регулировать положение тела в пространстве, подавать сигналы в случае возникновения опасности на дороге. Им легко управлять, оно маневренное и безопасное.

К моноколесу прилагается зарядное устройство. Аккумулятор заряжается подключением к розетке на пару часов.

В Стэнфордском университете впервые разработали аккумулятор с алюминиевым анодом. Он долговечный, недорогой и способен быстро заряжаться. Так же была представлена аккумуляторная батарея на алюминиевой основе с высокой стабильностью. В ней использованы катод из графитовой пены и металлический анод из алюминия. Такие батареи очень гибкие, что позволит использовать их для создания гибких гаджетов.

Дополнительные преимущества:

  • низкая стоимость;
  • безопасность;
  • ультрабыстрая зарядка;
  • огромный ресурс батареи.

Это перспективный материал, имеющий хорошие эксплуатационные свойства.

Основные из них:

  • стойкость к воздействию щелочей, кислот и низких температур;
  • высокое электрическое сопротивление.

Они изготовляются из обработанных радиационным облучением полиолефелинов. Также при производстве могут использоваться фторсодержащие эластомеры, силиконы, поливинилхлорид.

Виды термоусаживаемых материалов:

  • кабельные муфты;
  • термоусадки;
  • кабельные капы;
  • перчатки;
  • негорючие трубки.

Данные материалы применяются в энергетике, приборостроении, авиастроении, электротехнике и многих других промышленных сферах.

Развитием и совершенствованием электронных технологий занимаются практически все ведущие страны. Государство и частные инвесторы заинтересованы в появлении все новых инноваций в этой области, поэтому они активно поддерживают развитие перспективных проектов.

Лазерные чипы, гибкие печатные схемы, мемристоры и другие чудеса техники уже совсем рядом! Представьте себе мир, в котором электронные устройства заряжают себя сами, музыкальные плееры, способные проиграть всю вашу аудиоколлекцию, самовосстанавливающиеся батареи и чипы, изменяющие свои возможности «на лету». Судя по тому, над чем сегодня работают американские исследовательские лаборатории, все это не только возможно, но и перспективно.

«Следующие пять лет станут действительно впечатляющим периодом в развитии электроники, — говорит Дэвид Сейлер (David Seiler), глава подразделения полупроводниковой электроники коммерческого отдела Национального института Стандартов и Технологий (National Institute of Standards and Technology, NIST) в Гейтерсберге, штат Мерилэнд. - Множество вещей, которые сегодня кажутся далекой фантастикой, получат повсеместное распространение».

Итак, вы готовы начать путешествие в будущее электроники? Многие из идей, о которых мы расскажем сегодня, могут выглядеть фантастически, некоторые покажутся лишенными здравого смысла, но все их объединяет то, что они уже были опробованы в лабораториях и имеют все шансы превратиться в коммерческие продукты в ближайшие 5 лет.

Основная тема этой статьи - новые разработки в области микропроцессорной техники - от процессоров, передающих данные с помощью лазеров, заменяющих провода, до схем, выполненных на основе новых материалов, которые придут на смену традиционному кремнию. Эти технологии могут стать строительным материалом для множества новых инновационных продуктов, некоторые из которых мы даже не можем себе представить сегодня.

Чипы без проводов: лазерное соединение

При ближайшем рассмотрении можно увидеть, что типичный микропроцессор содержит миллионы тонких проводов, которые тянутся во все направления, соединяя активные элементы. Заглянув под поверхность вы найдете еще раз в пять больше проводов. Юрген Мишель (Jurgen Michel), ученый из Центра микрофотоники при Массачусетском технологическом институте в Кембридже (MIT"s Microphotonics Center in Cambridge), намерен заменить все эти провода импульсами германиевых лазеров, передающих данные с помощью инфракрасного излучения.

«По мере увеличения числа ядер и компонентов в процессорах соединительные провода переполняются данными и становятся слабым каналом связи. Использование фотонов вместо электронов позволяет улучшить ситуацию», — объясняет Мишель.

Перемещая данные со скоростью света, германиевые лазеры способны передавать биты и байты информации в 100 раз быстрее, чем путем перемещения электронов по проводам. Это особенно важно для связи между ядрами процессора и его памятью. Так же, как оптоволоконные линии улучшили эффективность телефонных звонков, использование лазеров в микропроцессорах может поднять обработку данных на небывалые высоты.

Самое приятное, что система Массачусетского технологического института не требует применения внутри процессоров огромного количества тоненьких кабелей. Вместо этого чип содержит множество скрытых туннелей и полостей, по которым перемещаются световые импульсы, а крошечные зеркала и сенсоры передают и интерпретируют данные.

Сочетание традиционной кремниевой электроники с оптическими компонентами, известное как кремниевая фотоника, может сделать компьютеры более экологичными - дружественными для окружающей среды. И все потому, что лазеры потребляют меньше энергии, чем провода, и излучают меньше тепла в окружающее пространство.

«Оптоэлектроника - это настоящий святой Грааль, — говорит Сейлер. - Она позволяет расширить возможности электроники и предоставляет при этом отличный способ снизить энергопотребление, поскольку не содержит проводов, которые являются настоящими теплорадиаторами для окружающего пространства».

В феврале 2010 года Мишель и его коллеги, Лайонел Кимерлинг (Lionel Kimerling) и Джифенг Лиу (Jifeng Liu), успешно создали и протестировали действующую схему, использующую для передачи данных встроенный германиевый лазер. В новом чипе была достигнута скорость передачи данных свыше 1 ТБ/с, что на два порядка быстрее, чем позволяют лучшие современные чипы с проводными соединениями.

Новый чип был создан с использованием современных технологий производства полупроводников с некоторыми дополнениями, поэтому Мишель считает, что переход к использованию чипов на основе лазерных соединений состоится уже в ближайшие пять лет. Если дальнейшие тесты пройдут успешно, MIT лицензирует технологию производства. Широкое распространение нового типа чипов ожидается к 2015 году.

Более того, к 2015 году ожидается появление компьютеров с 64-ядерными процессорами, ядра которых будут работать независимо и одновременно.

«Соединять их при помощи проводов - тупиковый путь, — говорит Мишель. - Использование германиевого лазера имеет грандиозный потенциал и большое преимущество».

Новейшие схемы: мемристоры

Ваш MP3-плеер переполнен любимыми музыкальными композициями и вы чувствуете себя сродни убийце, удаляя тот или иной трек? В таком случае мемристоры могут прийти как раз вовремя.

Это первые фундаментально новые электронные компоненты после создания в 50-х годах прошлого века кремниевых транзисторов. Мемристоры являются более скоростной, долговечной и потенциально более дешевой альтернативой флэш-памяти. А еще они в два раза более емкие - настоящее раздолье для любителей музыки.

«Если сегодня мы решим пересмотреть технологию производства компьютеров, мы просто обязаны использовать мемристорную память, считает Р. Стенли Уильямс (R. Stanley Williams), ведущий исследователь и глава группы квантовых исследований (Quantum Science Research, QSR) HP Labs в Пало-Альто, Калифорния. - Это фундаментальная структура для будущей электроники».

Мемристор - другими словами, резистор с памятью, — впервые упомянул профессор Калифорнийского университета Леон Чу (Leon Chua) еще в 1971 году. Но мемристорные прототипы HP Labs не демонстрировались публично вплоть до 2008 года.

Для создания мемристоров HP использует чередующиеся слои диоксида титана и платины. Под электронным микроскопом они выглядят как серии длинных параллельных выступов. Ниже под прямым углом расположен такой же слой, образуя «кубики» с размерами ячеек 2 х 3 нм.

Ключевой момент состоит в том, что любые два соседних провода можно соединить с электрическим переключателем под поверхностью, создавая ячейку памяти. Изменяя напряжение, прилагаемое к «кубикам», ученые могут открывать и закрывать крошечные электронные переключатели, сохраняя данные, как в традиционных чипах флэш-памяти.

Новый тип памяти получил название ReRAM (Resistive Random Access Memory). Такие чипы не только позволяют сохранить в два раза больше данных, чем флэш, но и работают в 1 000 раз быстрее, а также выдерживают до 1 000 000 циклов перезаписи, по сравнению со 100 000 циклов перезаписи у стандартной флэш-памяти. Кроме того, ReRAM читает и записывает данные на сравнимых скоростях, тогда как флэш-памяти требуется намного больше времени для записи данных, чем для их чтения.

HP и южнокорейская компания Hynix заключили договор о сотрудничестве с целью наладить массовое производство чипов ReRAM, которые смогут найти применения во многих портативных устройствах, таких как мультимедийные плееры. А ведь это означает терабайты музыкальных треков, видео и электронных книг! Первые продукты с новыми чипами памяти ожидают на рынке в 2013 году.

ReRAM также придет на смену динамической оперативной памяти в компьютерах. Поскольку ReRAM энергонезависима, она не будет терять информацию при выключении системы и не будет расходовать электроэнергию, в отличие от DRAM. По мнению Уильямса, грядет эра мгновенной обработки данных. Сегодня пользователи чаще не выключают компьютеры, а отправляют их в спящий режим. Но все равно для «пробуждения» компьютерной технике требуется от нескольких секунд до минуты, и лишь после этого доступ к данным будет восстановлен. Устройства, использующие ReRAM, возвращаются в рабочее состояние мгновенно.

Более того, по словам Уильямса, есть возможность размещать массивы мемристоров внутри чипа один над другим. Это путь к созданию 3D-памяти, которая позволит более рационально использовать пространство внутри чипа, вмещать гораздо больше памяти в одинаковый физический объем.

«Не существует фундаментальных ограничений на количество слоев, которые мы можем произвести, — объясняет Уильямс. - В ближайшие 10 лет мы можем создать чипы с объемом памяти в петабайт». Это миллион гигабайтов памяти, его достаточно для хранения видео высокой четкости, которого хватило бы на год просмотра. При этом размеры самого чипа не превышают размеров человеческого ногтя.

«Память - это только одна из возможностей применения мемристоров, но далеко не единственная. У этой технологии гигантский потенциал», — считает Сейлер.

В ближайшие 20 лет дизайн компьютеров может быть пересмотрен. В 2010 году исследователи из HP обнаружили, что мемристоры можно использовать для логических вычислений, а не только для хранения данных. Это означает, что, теоретически, обе эти функции можно реализовать на одном чипе.

И опять слово Уильямсу: «Один мемристор способен заменить множество схем, что в свою очередь позволит упростить архитектуру, дизайн и работу компьютеров». Например, один мемристор способен заменить шесть транзисторов, используемых для создания статичных ячеек RAM в кэш-памяти процессора.

По мнению Уильямса, мемристорная технология позволит даже создать искусственные нейронные синапсы, способные имитировать работу мозга. Сегодня это лишь отдаленные перспективы, но главное - в принципе возможные.

«Мемристоры имеют все шансы переписать правила электроники», — говорит Супратик Гуха (Supratik Guha), директор департамента физических наук IBM. Однако, по его мнению, технология требует дальнейшего совершенствования. «Они могут иметь потенциал в качестве элементов памяти, — добавляет он. - Но, как и любая другая технология, здесь следует двигать ползком, прежде чем идти и идти, прежде чем бежать».

Другими словами, мемристорные технологии не появятся неожиданно. Пройдет еще много времени, прежде чем мемристоры станут столь же широко распространенными, как DRAM или флэш-память.

Изменяемые чипы: программируемые слои

От самых скоростных процессоров к самым миниатюрным модулям памяти. Почти все чипы, используемые в современной электронике, имеют одну общую черту: их активные элементы находятся в верхних 1-2% слоя кремния, из которого он сделан.

В ближайшие несколько лет ситуация изменится, так как производители будут стараться втиснуть в вертикальные слои как можно больше компонент. Некоторые производители, такие как Intel, используют технологии склеивания отдельных чипов, а ученые из Университета Рочестера создают многослойные 3D-структуры внутри чипов. Оба подхода являются очень сложными и дорогими.

Вот если бы можно было заставить чипы перестраивать свою схему «по требованию», чтобы иметь несколько слоев активных элементов. Эта идея была воплощена в технологии Spacetime от Tabula и нашла применение в архитектуре чипов ABAX.

Вместо того, чтобы намертво впечатывать в кремний несколько слоев постоянных компонент, ABAX использует перепрограммируемые схемы, которые могут изменять функции в зависимости от требований пользователя. Сегодняшние чипы производителя содержат 8 разных слоев, свойства которых можно изменить в мгновение ока.

«Это выглядит примерно как супермаркет с восемью этажами, — объясняет Стив Тиг (Steve Tieg), глава по технологиям компании Tabula. - Чтобы перемещаться между этажами вы пользуетесь эскалатором». Но вместо того, чтобы создавать восемь отдельных физических этажей с собственной структурой и ассортиментом товаров, Tabula продемонстрировала способ создать единый слой (или этаж), который можно переконфигурировать в зависимости от задач.

«Это можно сравнить с тем, как если бы пока покупатель находится на эскалаторе, кто-то перестраивал бы этаж, чтобы создать нужный уровень с нужными продуктами, — добавляет Тиг. - Обстановка за пределами эскалатора выглядит так, будто покупатель находится на восьмом этаже, но на самом деле этаж один, просто изменившийся в соответствии с его потребностями».

Перепрограммирование чипа в рабочее состояние занимает всего 80 пикосекунд, в 1000 раз быстрее цикла вычислений обычного чипа. Таким образом, слои меняются практически «на лету», пока чип находится в ожидании следующей цепочки команд.

Таким образом, чипы ABAX позволяют сделать больше с меньшими затратами. Сделанные с использованием традиционной технологии производства полупроводников, чипы Tabula ABAX обходятся производителю примерно в ту же сумму, что и производство обычных чипов. Данный дизайн по-прежнему использует только верхние слои чипа, но один слой выполняет функции восьми различных чипов. По словам Тига, технология позволяет увеличить плотность схем в два раза, а память и пропускную способность видео - в 3.5 раза.

Сегодня Tabula сконцентрировала усилия на производстве чипов для специальных целей. Такие чипы - настоящие «рабочие лошадки» нашего времени. Они находят применение, например, в беспроводных маршрутизаторах или оборудовании для вышек сотовой связи.

В дальнейших планах Tabula - наладить производство чипов для популярных электронных устройств - цифровых камер, игровых консолей, а быть может даже и для полноценных компьютеров. Текущий 8-слойный дизайн чипов уже запущен в массовое производство, и сейчас Tabula работает над созданием 12-слойной версии с перспективой увеличения количества слоев до 20.

«Не существует ограничения на количество слоев, которые мы могли бы интегрировать», — отметил Тиг.

От сажи к схемам: графены

На протяжении последних 45 лет количество транзисторов в кремниевых процессорах компьютеров удваивалось каждые два года, доказав, что закон Мура работает так же надежно, как и закон тяготения. По мере того, как активные элементы чипов становились все меньше и дешевле для производства, в конечные устройства их можно было «втиснуть» во все возрастающих количествах, что в свою очередь увеличивало сложность, возможности и… энергопотребление электроники.

Но на самом деле такой путь оказался тупиковым. Ученые пытались поместить в кремниевый чип еще больше транзисторов, но примерно с размеров в 14 нм начались трудности с дальнейшей миниатюризацией элементов. 14 нм - это размер двух молекул гемоглобина в нашей крови или около одной тысячной размера гранулы тальковой пудры.

Вещество под названием графен вдохнуло новую жизнь в закон Мура, доказанный кремниевыми технологиями. Графен представляет собой слой атомов углерода, выстроенных в виде шестиугольных ячеек. Толщина такого слоя - 1 атом. Под электронным микроскопом графен очень похож на соты.

«Он не только странно выглядит, но и обладает необычными свойствами, — говорит Вольт де Гир (Walt de Heer) заведующий нанолабораторией Технологического института Джорджии. - Графен - уникальный материал будущего. Он скоростной, потребляющий мало энергии и из него можно делать самые миниатюрные элементы. Его возможности превосходят кремний, он делает то, что не под силу кремнию. Именно за ним будущее электроники».

Исследователи в области полупроводников экспериментировали с графеном еще с 70-х годов прошлого века. Но до недавнего времени им не удавалось создать ультратонкие слои графеновых шестиугольников. Ученые из Манчестерского университета Андре Гейм (Andre Geim) и Константин Новоселов успешно создали первые графеновые слои в 2004 году (за это и другие достижения в исследовании графенов в 2010 году они были удостоены Нобелевской премии). После этого графеновые технологии начали быстро развиваться.

В начале 2011 года группа де Гира создала графеновые провода - первый большой шаг на пути к созданию микрочипов. Толщины провода около 10 нм удалось добиться путем эпитаксии - наращивания чистого графена на кремниевой основе. (Эпитаксия - процесс наращивания тонкого слоя кристалла на подложке из другого кристалла (субстрате), так что наращиваемый слой повторяет структуру субстрата).

В конце концов, ученым удалось получить электронные структуры, имеющие толщину 1 нм и намного более скоростные, чем кремний. По прогнозам ученых, использование графенов позволит создать процессоры с частотой, измеряемой в терагерцах - это в 20 раз быстрее, чем быстродействие современным кремниевых процессоров.

В следующем году ученые Технологического института Джорджии надеются завершить создание прототипа чипа со встроенным графеном и протестировать возможности использования уникальных свойств этого материала для создания микросхем.

Ученые из IBM создали экспериментальные транзисторы и интегральные схемы на основе графенов, используя стандартные технологии производства полупроводников. По их словам - это можно считать первым шагом на пути к использованию графенов в промышленных масштабах.

«Эта область имеет огромный потенциал, — говорит директор департамента физических наук IBM Супратик Гуха. - Графены найдут применение в военной промышленности и в беспроводных технологиях, кроме того, их можно будет интегрировать с кремнием. Сегодня нужно хорошо потрудиться, чтобы продемонстрировать возможности создания схем усилителей с интегрированными в них высококачественными активными элементами из графена».

По прогнозам, первые продукты, использующие графены, появятся в 2013 году. Поэтому ожидать появления в ближайшее время супер-скоростных ноутбуков с графеновыми процессорами пока преждевременно. Если такая техника и появится, она будет слишком дорогой и сможет найти применение лишь в тех областях, где цена не имеет значения по сравнению с высокими скоростями и низким энергопотреблением.

Также и привычные нам интегральные схемы когда-то были «дорогим удовольствием» и применялись лишь в военной промышленности и для других особых целей. История в этой области такова, что многие вещи являются в мир дорогими и недоступными, а затем становятся дешевыми и общераспространенными. Графены имеют огромный потенциал, предполагается, что они могут стать общедоступными уже в ближайшие 10 лет.

Печатные схемы: бюджетные чипы

Стандартная технология производства полупроводников включает целый ряд сложных этапов, которые проводятся в абсолютно чистом помещении, где нет разрушительной для электроники пыли и загрязняющих веществ. Компания Xerox применяет более простой и дешевый способ производства электроники путем печати схем на пластиковой основе. Технологический процесс подразумевает использование оборудования, которое может стоить тысячи долларов, но не миллиарды, необходимые для развертывания традиционного завода для производства процессоров.

«Обычные электронные элементы - быстрые, маленькие и дорогие, — говорит Дженифер Эрнст (Jennifer Ernst), бывший директор по развитию бизнеса лаборатории Xerox PARC в Пало-Альто, Калифорния. - Печатая их непосредственно на пластик, PARC делает электронные элементы медленными, большими и дешевыми».

Технологический процесс печатания схем, разработанный PARC, требует немногим больших усилий, чем, например, распечатка обычной картинки. Все, что для этого нужно - специальные материалы, вроде серебряных чернил, а сама схема наносится на гибкие полиэтиленовые пластины, а не на хрупкий кремний. В принципе, конечный продукт даже сложно назвать чипом.

Адаптация различных технологий печати, включая впрыскивание чернил, штамповку и трафаретную печать, PARC производит усилители, батареи и переключатели намного менее дорогие, чем произведенные традиционным способом. А недавно компании удалось наладить производство 20-разрядной памяти и контроллеров, которые появятся в продаже уже в следующем году.

Другой интересный проект на основе печатных схем - детектор взрывов, который PARC разработала для Управления перспективного планирования оборонных научно-исследовательских работ США (U.S. Defense Advanced Research Projects Agency, DARPA). Гибкие печатные схемы встраиваются в военные каски, где новые сенсоры измеряют давление, мощность звука, ускорение и освещенность в условиях боевых действий.

Проведя неделю на передовой, солдат возвращается и сдает каску в специальную лабораторию, где полученные данные тщательно анализируются, и врачи делают вывод о возможности наличия травм головного мозга. Такие датчики хорошо выполняют свою работу, а стоят менее $1 по сравнению с $7, в которые обходится один традиционный сенсор.

Конечно же, печатные схемы и близко не способны конкурировать с кремнием, когда речь идет о быстродействии или возможности «упаковать» в малый объем миллиарды транзисторов. Но существует много областей применения, где стоимость гораздо важнее быстродействия. А в начале 2012 года печатные схемы начнут применять в игрушках и электронных играх, требующих простейшей обработки данных - например, синтезаторах речи, а также для управления подушками безопасности в автомобилях.

А уже к 2015 году печатные схемы можно будет найти и в других электронных продуктах - гибких ридерах электронных книг, которые можно будет сворачивать в трубочку наподобие бумажных журналов или для производства одежды из специальных тканей с солнечными элементами, с помощью которой можно будет подзаряжать мобильный телефон или музыкальный плеер.

По прогнозам аналитической фирмы IDTechEx, объемы продаж гибких печатных схем возрастут с $1 млрд в 2010 до $45 млрд в 2016 году. Они найдут применение в широком спектре устройств.

Печатная электроника для дешевых электронных систем. Состояние технологии и развитие оборудования.

Аннотация. В последние годы печать стала сильно интересна как метод получения дешевых и массовых электронных систем. Печать допускает использование целиком аддитивных процессов, тем самым снижая сложность процесса и расход материала. В сочетании с использованием недорогих подложек, таких как пластик, металлические фольги и так далее, это прогнозирует что печатная электроника позволит реализовать широкий спектр легкоразвертываемых электронных систем, в том числе дисплеев, сенсоров и RFID (Radio Frequency IDentification - радиочастотная идентификация) меток. Мы рассматриваем нашу работу по развитию технологии и оборудования для печатной электроники. Благодаря комбинированию синтетически полученных неорганических наночастиц и органических материалов, мы реализовали ряд «чернил» для печатной электроники, и используем их для демонстрации печати пассивных компонентов, многослойных соединений, диодов, транзисторов, блоков памяти (накопителей), батарей и различных газоанализаторов и биосенсоров. Используя возможности печати можно дешево обеспечить интеграцию различных функциональных возможностей и материалов на одной подложке, поэтому возможно реализовать печатные системы, которые используют преимущества печати, обходя недостатки таковой.

Введение. В последние годы наблюдается значительный уровень заинтересованности в использовании печати как технологии для реализации недорогой и массовой электроники. Печать, как ожидается, позволит реализовывать электронику на гибких, относительно бюджетных подложках, таких как пластик и металичская фольга. Анализ затрат и возможностей производства основанной на печатни микроэлектроники предполагает, что печать может потенциально дать возможность реализовать электронные системы на пластике, цена которых значительно ниже по сравнению с обычными базирующимися на литографии на единицу площади. С другой стороны, затраты на функционирование ожидаются более высокими, базируясь на худшем разрешении печатной электроники. Как следствие, различные потенциальные применения для печатной электроники предлагаются: встроенные дисплеи , различные типы сенсоров и RFID . Для реализации этих систем требуется, конечно, развивать необходимые «чернила», которыми можно печатать индуктивности, емкости, батареи, трассы (соединители), резисторы, транзисторы, диоды, блоки памяти, чувствительные элементы и дисплеи. Кроме того так же требуется разработка соответствующих технологий печати, включающих технологии выполнения необходимых тонких слоёв однородными, контроля границ и совмещения слоёв. Таким образом, в этой работе мы анализируем современное состояние и перспективы для печатной электроники. Во-первых, изучается жизнеспособность печати как технологии для реализации печатной электроники. Далее, мы рассмотрим классы печатных материалов, которые мы разработали для печатной электроники. И наконец, мы рассмотрим состояние дел в устройствах печатной электроники и оценим потребности для реализации жизнеспособных устройств для печатной электроники.

Печатные технологии для электроники

Интерес к печати, как к средству реализации электронных систем, традиционно в первую очередь исходит из того факта, что печать как ожидается, будет недорогой технологией для реализации электронных систем. Чтобы проверить это утверждение, стоит сравнить технологии производства на основе печати с традиционными технологиями производства микроэлектроники высокого класса. Во-первых, печать требует, по сравнению с литографией, меньшие капитальные вложения. Что интересно, это неверно для ширины проводников > 1 мкм, т.к. сильно уменьшает стоимость литографических инструментов доступных в этих режимах; кроме того, для достижения высокого аптайма, низкая дефективность инструментов печати потребует разработки нового оборудования для печатной электроники, добавляя к капиталу расходы на это. Таким образом, не очевидно, что печать позволит снизить изначальные расходы на оборудование. Во-вторых, печать обещает снижение общей сложности процесса, так как она может позволить использование целиком и полностью аддитивных процессов, вместо необходимых для использования литографии ещё и субтрактивных процессов. Это огромное преимущество, т.к. это уменьшает общее количество операций, затраты на материалы, и общую стоимость оборудования, поэтому сокращает капитальные вложения и увеличивает пропускную способность всего потока. В-третьих, печать может потенциально использовать дешевую обработку подложки и автоматизацию производства, т.к. она позволяет использовать недорогие технологии рулонной подачи «roll-to-roll» или полистную подачи базового материала «sheet-feed». Хотя это, скорее всего, верно в долгосрочной перспективе, разработка инструментов высокой точности для совмещения до сих пор находится не закончена, но результаты в конечном счёте остаются неясными. Учитывая материальные затраты, затраты на подложки, оценки капитальных затрат и оценки производительности, можно сделать вывод об экономической жизнеспособности печатной электроники. Этот анализ показывает, что печать должна быть дешевле на единицу площади, чем обычная электроника; фактическая стоимость зависит от используемых конкретных технологический решений, но ценовые преимущества в >10Х раз вполне реальны. С другой стороны, стоимость одного транзистора в печатной электронике на несколько порядков выше, чем стоимость одного кремниевого транзистора, в связи с худшей шириной дорожки (лучшая достижимая ширина дорожки в высокоскоростной печати на сегодня меньше чем 10 мкм). Как следствие, экономическая эффективность может быть суммирована очень просто – печатная электроника экономически выгодна в приложениях, которые ограничены по площади, между тем она экономически не выгодна в приложениях, которые функционально ограничены по плотности.

Различные методы печати доступны для использования в производстве электроники. Поэтому целесообразно суммировать преимущества и недостатки каждого из широких классов методов печати. Методы печати, которые здесь рассматриваются – это трафаретная печать (шелкография), струйная печать, штамповка(тиснение)/наноимпринтинг (метод вдавливания шаблона с наноразмерными элементами в слой материала) и глубокая печать (интаглио). Другие методы печати существуют, но как правило не применяются при изготовлении печатной электроники.

Шелкография является, пожалуй, самой зрелой технологией для изготовления печатной электроники. Трафаретная печать применяет для производства печатных плат на протяжении десятилетий. В трафаретной печати вязкие чернила «вжимаются» через трафарет с помощью штапеля. Изображение на трафарете, как правило, формируется с помощью светочувствительного покрытия. Трафаретная печать широко используется в электронике, т.к. она используется для шаблона трас проводников (как правило, используют серебряные пасты), сопротивлений (используются углеродные пленки), конденсаторов (используют полиимидные диэлектрики) и т.д., при производстве печатных плат. Разрешающая способность коммерческого высокоскоростного оборудования для трафаретной печати обычно хуже >50 мкм, хотя в исследованиях шелкография была применена для реализации печати в диапазоне менее 1000сП (сантипуаз)) для предотвращения чрезмерного размазывания и излишек связующего. Это проблематично для некоторых материалов в печатной электронике. Высокая вязкость краски обычно реализуется добавлением полимерных связующих в чернила. И хотя это не серьезная проблема для полиграфии, это может стать серьезной проблемой для печатной электроники, поскольку такие связующие могут уничтожить функциональность полупроводников, вносить чрезмерные утечки и потери в диэлектриках или ухудшать проводимость проводников. В результате, использования трафаретной печати, как правило, ограничивается изделиями, где связующие могут быть добавлены без критичных потерь в производительности. Например, связующие с серебряной пастой, обычно используют в трафаретной печати. В то время как проводимость снижается по отношению к чистому слою серебра, она всё ещё приемлема для заданных изделий (например, тонкий слой мембранных переключателей, автомобильных клавиатур и т.д.). Трафаретная печать была применена в некоторых ограниченных приложениях для печатной электроники, таких как печать проводников и т.д.

Наиболее широко используемая технология для печати активных электрических схем на сегодня – это струйная печать. Струйная печать позволяет использовать чернила низкой вязкости (1-20сП); это чрезвычайно важно, т.к. позволяет разрабатывать чернила, которые содержат только активное вещество и растворитель, без связующего. В сочетании с цифровым вводом данных, который позволяет на лету изменять проект, струйная печать доминирует в исследованиях печатных транзисторов и т.д. С другой стороны, производство жизнеспособной струйной печати пока не определено. Во-первых, струйная печать, будучи drop-by-drop (капля за каплей) техникой, это головка со строго пиксельным испусканием, в котором явление сушки объединена в комплекс с каплями, может производить разнообразные варианты печатаемого рисунка. Этот вопрос будет обсуждаться ниже. Во-вторых, струйная печать, как правило, медленна, и высокая пропускная способность достигается только с помощью большого числа головок, работающих параллельно. Это, в свою очередь, представляет проблему для производительности, связанную с выходом из строя отдельных головок при печати рисунка. В-третьих, имеется «конус неопределённости», зависящий от угла выброса капли из сопла; это обычно 10 мкм, результат ±3σ разброса в размещении при падении с высоты. Это, в свою очередь, вносит линию шероховатости края и лимиты на размещение в проектные правила масштабирования.

Явления сушки, связанные со струйной печатью, особенно важны, т.к. гладкие, тонкие слои с низкой шероховатостью края очень важны для реализации печатных устройств. Неотъемлемой частью сушки капель является так называемый «coffee ring» эффект. В этом эффекте, сушки капель, наблюдается сильная миграция материала от центра капли к краям капли из-за сильных конвективных сил, связанных с испарением растворителя из капли. В зависимости от относительного испарения и конвективных потоков, капля сохнет, и это дает возможность образоваться кольцевой форме финального слоя в результате, как показано на рисунке 1. Это, очевидно, серьезная проблема для печатной электроники, т.к. большое изменение толщины, присущее наличию в переходных отверстиях, и острые кромки, вносят свой вклад в неприемлемость формы слоя. Влияние сушки на линии формирования отчетливо видны на рисунке 2, который показывает изменения в морфологии (наука о форме и строении) линии в зависимости от расстояния между каплями в печатаемой линии. Все остальные параметры держаться одинаково. Очевидно, просто изменение одного параметра оказывает большое влияние на морфологии напечатанной линии, опять же из-за сильных конвективных сил, связанных с сушкой капли.

Происхождение изменений в напечатанной линии легко понять, рассматривая конвективные силы связанные с сушкой (рисунок 3). Когда капля добавляется в конец уже сформированной линии, конвективные силы вызывают перенос жидкости капли по направлению к соединительной точке с линией. Если интервал между каплями слишком велик, то это соединение слишком мало, чтобы поддержать перенос, и в результате капли высыхают до сплошной линии как показано на рисунке 2.1. Если расстояние чуть ближе, то тот же материалы вытягивается в линию, но ограниченное соединение мешает переносу, в результате высыхания/гелеобразования капли вместо гладкой боковины образуется зубчатая линия (рисунок 2.2). Если интервал между каплями снижать дальше, то могут быть сформированы на самом деле гладкие непрерывные края линии (рисунок 2.3). Однако, если уменьшать интервал между каплями ещё дальше, то точка соединения линии и капли становится слишком большой и чрезмерное количество материала из капли переносится в линию. Линия не может выдержать перенесенное количество и, следовательно, переполняясь, становится выпуклой. Увеличение сечения выпуклости позволяет дальнейший перенос жидкости, и таким образом, перешеек отступает снова, только увеличиваясь, когда сопротивление для переноса жидкости падает. Это приводит к формированию периодических выпуклостей на линии (рисунок 2.4). Теперь понятно, почему морфологией линии сложно управлять, и технологический процесс по этой же причине сложный, но интересный. Решение задачи, которое обычно принята многими авторами включает в себя «быструю сушку» линии, такую чтобы капли сохли очень быстро при касании подложки. Этой формы линии состоят из перекрывающих друг друга индивидуально высушенных капель (рисунок 2.5.). К сожалению, такие линии страдают от плохой однородности толщины пленки и ограниченности в масштабируемости размеров элементов.

Пиксельная природа струйной печати, низкая производительность и проблемы при производстве вызвали интерес к альтернативным технологиям печати.

Направление подготовки 654100 "Электроника и микроэлектроника"
Специальность 200500 "Электронное машиностроение"

Основные направления научных исследований:

  • физические процессы в высоком вакууме, термовакуумные процессы;
  • физические процессы взаимодействия потоков заряженных частиц с твердым телом; нанесение тонкопленочных покрытий;
  • новые микротехнологии обработки в машиностроении, приборостроении, в производстве художественных изделий;
  • прогрессивные конструкции машин, механизмов и устройств, работающих в условиях вакуума;
  • прецизионные приводы с манометрической точностью позиционирования.

Базовые учебные курсы:

  • физические основы электронной техники;
  • вакуумная техника;
  • электронные и ионные технологии;
  • проектирование машин-автоматов и систем машин;
  • системы автоматического управления;
  • информационное обеспечение исследований и разработок в электронике.

Кафедра основана в 1974 году деканом факультета МТ Ю. А. Хруничевым.
Преподавательский состав: 3 профессора, доктора технических наук, 9 доцентов, кандидатов технических наук.

Кафедрой подготовлено более 1500 специалистов, в том числе 10 докторов технических наук, более 40 кандидатов технических наук. Среди выпускников 16 лауреатов Государственных премий.
Зав. кафедрой - доктор технических наук, профессор Леонид Иванович Волчкевич
Телефон кафедры: 267-02-13 Факультет Машиностроительные технологии

Ни одно научно-техническое направление не развивается сейчас столь быстро и плодотворно, как электроника. Прогресс этот стремителен и зачастую непредсказуем. Кто, например, еще сравнительно недавно ожидал, что "за спиной" традиционной вакуумной электроники (осветительные и приемно-усилительные лампы, кинескопы, приборы ночного видения) быстро созреет и выйдет на первый план твердотельная электроника (полупроводниковые диоды и транзисторы, разнообразные интегральные схемы)! Кто мог вообразить, что электронные приборы с тысячами составных элементов будут компоноваться не в объеме, а послойно на плоскости, с общей толщиной в тысячные доли миллиметра! Что радиоприемники из масштабов "ящика" сожмутся до коробочки, которую можно бесхлопотно носить на шейной цепочке! Революция электронных приборов позволила совершить впечатляющую революцию электронных систем, появление современных телевизоров, персональных компьютеров, микропроцессорного управления.

Об этом знает сегодня каждый школьник. Но немногим известно, что этим преобразованиям электронные приборы и системы обязаны появлению третьего направления в электронике - технологической электроники.

Электронные технологии - это совокупность методов и средств воздействия на конструкционные материалы, основанных на использовании энергии потоков электронов, ионов, фотонов, поляризованных молекул и т.п.; электронно-технологическое оборудование - конструктивная материализация этих методов и средств; электронное машиностроение -научно-техническое направление, объединяющее технологию, конструирование и эффективное применение.

Процессы микрообработки, когда высокоэнергетические потоки действуют в микронных зонах и часто в кратчайшие отрезки времени, не могут управляться иначе, чем самой электроникой, по программам, доступным лишь современной информатике. Поэтому электронные технологии органически связаны с информационными, а электронно-технологическое оборудование - с микропроцессорными системами управления, современными арсеналами компьютеризации. Мир современной электроники огромен и разнообразен.

Сегодня мы - свидетели и участники еще одной революции в нашем деле. Электронные технологии и системы автоматического управления стремительно вырываются из сферы электронной промышленности, находя все новые применения, раскрывая невиданные возможности, революционизируя такие отрасли, как машиностроение, приборостроение, строительство. Например, широко применяется вакуумное нанесение тон?копленочных покрытий. Затемнение стекол зданий, автомобилей, очков; светофильтры оптических приборов - все это электронные технологии. Высокохудожественные изображения на стекле или металле, с поразительной проработкой подробностей - тоже электронные технологии..

Кафедра оснащена всем необходимым для учебно-лабораторного процесса и научных исследований. Совместно с фирмой "Электронсервис" создан научно-технический центр "Электронные технологии", оборудованный новейшей техникой.

На кафедре сложилась система творческой самостоятельной работы, призванная развить и раскрыть еще на студенческой скамье склонности и способности каждой личности к конкретным видам инженерной, научной или коммерческой деятельности. Уже в конце третьего курса каждый студент выбирает себе научного руководителя, который определяет студенту конкретное актуальное научно-техническое направление. По этому направлению в рамках учебного процесса (инженерный практикум, курсовые проекты, расчетно-графические работы) студент выполняет комплекс исследований и разработок и, в конце концов, защищает дипломный проект. Именно в процессе творческих поисков совместно с руководителем раскрываются индивидуальные качества, способности к теоретической или экспериментальной работе, проектным или пусконаладочным работам, программированию, научно-организационной работе.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!