Энциклопедия мобильной связи

Создание стандартных технологий локальных сетей. Незаслуженно забытый ARCNET

Добрый день, Друзья! Рад Вас приветствовать на нашем блоге компьютерной грамотности. В предыдущей статье мы подняли большую и, судя по комментариям, очень важную для наших читателей тему – .

В этой статье я предлагаю перейти к рассмотрению первых этапов планирования сети. А если быть точным, то будем говорить о технологиях локальных сетей и выборе соответствующей архитектуры сети.

Сразу отметим, что разговор будет вестись только об основных технологиях локальных сетей, наиболее распространенных на сегодняшний день:

  • Ethernet (на базе витой пары);
  • Wi-Fi;
  • HomePlugAV.

Ethernet — самая популярная сетевая технология

  • 1. Ethernet – самая старая из наиболее распространенных технологий, используемых в локальных сетях. На сегодняшний день большинство сетевых адаптеров оснащаются интерфейсами, поддерживающие скорости 100 и 1000 Мбит/с (1 Гбит/с).

По соотношению цены и качества данная технология “впереди планеты всей”. Однако требуется проложить кабель по квартире в соответствии с планируемым размещением компьютеров. Есть еще одно “НО”: прокладывать сетевой кабель необходимо вдалеке от кабелей электропроводки, телевизионной и телефонной проводки. Дабы не вносить помехи в тракты передачи данных.

Для домашних потребностей, при условии, что нет проблем с прокладкой кабеля, этот вариант, мне кажется, наилучшим. Этой технологии будет вполне достаточно и для передачи данных, и для просмотра фильмов в режиме трансляции по сети.

  • 2. Wi-Fi-технология – в последние время очень сильно набирает обороты ввиду все большей доступности различных wi-fi технология мобильных устройств и гаджетов. В отличие от Ethernet, никаких кабелей не требуется. Отметим также, что кабельные сети больше подходят для стационарных компьютеров. А при подключении любого мобильно ПК к кабелю, он перестает быть мобильным.

Использование этой сетевой технологии требует несколько иного оборудования для создания сети, о чем мы будем говорить в следующей статье.

Если говорить о скоростях передачи данных Wi-Fi, то все зависит от поддерживаемой версии протокола беспроводной связи (разновидности стандарта 802.11):

11 Мбит/с (802.11b) – стандарт устаревшего оборудования;

54 Мбит/с (802.11g) – самый распространенный сегодня стандарт, который поддерживают большинство сетевых карт мобильных устройств;

600 Мбит/с (802.11n) – технология завтрашнего дня. Однако Wi-Fi-маршрутизаторы, поддерживающие этот стандарт, уже имеются в продаже.

  • 3. HomePlugAV – это перспективная технология будущего, как мне кажется, не требующая прокладки кабелей и homeplugav технологиябеспроводного соединения, а использующая для передачи данных домашнюю электропроводку. Средой передачи данных является электрическая сеть в квартире.

Очень удобно, только пока дорого. Приобретет свою популярность при развитии и более широком распространении интеллектуальной домашней сети “Умный дом”. О технологии HomePlugAV я подготовил .

Выбор архитектуры домашней сети

Рассмотрев основные технологии, логическим продолжением, как мне кажется, будет выбор архитектуры домашней сети. Кроме всего прочего, на выбор архитектуры окажет влияние предоставляемая технология доступа в Интернет и количество объединяемых в сеть устройств.

  • 1. Если у Вас кабельная сеть на базе Ethernet, то необходимо будет строить сеть по схеме “Звезда”. Это когда все компьютеры в сети, просто подключаются к одному коммутатору или роутеру, имеющему общее Интернет подключение.

Как правило, вид роутера (LAN или ADSL) зависит от того, по какой технологии заводится Интернет в квартиру. Если это та же самая витая пара, что используется в нашей домашней сети, то подойдет обычный LAN-роутер. Если же Интернет в квартиру заводится по телефонной линии, то просто заменяем роутер на ADSL-модем, который также предоставит нам возможность создания внутренней (квартирной) Ethernet-сети.

В следующих статьях мы рассмотрим, как подключить по такой технологии компьютеры в сеть, а также расскажем об особенностях соединения двух компьютеров по сети Ethernet.

  • 2. Если Вы выбрали беспроводную Wi-Fi сеть, то здесь возможно два варианта:

вариант “компьютер-компьютер” – соединение двух и более компьютеров, оснащенных беспроводными адаптерами, в единую сеть (наиболее уместен при создании небольшой сети без доступа в Интернет);
вариант “с точкой доступа” – наиболее распространен и используется для создания домашней сети с “входным” Интернетом соединением по технологии Ethernet или ADSL.
Построить такую сеть на практике быстрее и проще. Однако есть свои ограничения: следует учитывать, что некоторые бытовые электронные приборы (типа холодильников и микроволновок), а также другие точки доступа (например, у соседей) вносят помехи в каналы передачи, что снижает скорость обмена данными по беспроводной сети.

  • 3. Гибридная сеть – этот вариант подходит тем, у кого, например, входной Интернет обеспечивается ADSL-модемом, а внутренняя домашняя сеть имеет как мобильные компьютеры, вроде ноутбука, так и стационарные ПЭВМ. Я рассмотрел самый сложный вариант, объединяющий три разные технологии: ADSL, Wi-Fi и Ethernet.

Внимание! Меня очень часто спрашивают о вреде беспроводных сетей.

Как человек, немного разбирающийся в этой области, скажу, что вредным воздействием на человека в беспроводных сетях потенциально обладает Электромагнитное излучение (ЭМИ). Сила воздействия ЭМИ на человека зависит от следующих факторов: интенсивность излучения и частота излучения. Чем выше частота излучения, тем сильнее пагубное воздействие на организм человека. То же самое и с интенсивностью (или длительностью воздействия).

Вредно ли для нас Wi-Fi сеть, поддерживающая стандарты 802.11g или 802.11n, точно пока никто сказать не может.

  1. Размещайте беспроводные точки доступа и беспроводные телефонные базы в нежилых комнатах;
  2. Выключайте на ночь электронные устройства, которыми не пользуйтесь.

Итак, Друзья, мы рассмотрели как выбрать технологию локальной сети и на ее базе определиться с архитектурой сети. В следующих статьях мы будем говорить о настройке сети и ее отдельных компонентов.

Технологии построения локальных вычислительных сетей меняются довольно быстро, подстраиваясь под нужды потребителей. Теперь никто не желает ждать часами, пока скачивается любимый фильм или передается презентация с большим количеством фотографий. Современные сети позволяют увеличить качество соединения с компьютерами и другими устройствами так, что скорость загрузки большинства материалов потребителю кажется такой же, как с жесткого диска.

Базовые технологии локальных сетей

Базовые технологии построения локальных сетей, которые еще называют архитектурами, можно разделить на два поколения. Первое поколение обеспечивает низкую и среднюю скорость передачи данных, второе - высокую.

К первому поколению технологий относятся такие, которые функционируют на основе использования кабеля с медной жилой:

  • ARC net (скорость до 2,5 Мбит/с);
  • Ethernet (до 10 Мбит/с);
  • Token Ring (до 16 Мбит/с).

Второе поколение архитектур основано преимущественно на оптоволоконных линиях, и некоторые варианты строятся на основе кабеля с медной жилой высокого качества. К ним относятся:

  • FDDI (до 100 Мбит/с);
  • АТМ (до 155 Мбит/с);
  • Fast Ethernet (до 100 Мбит/с);
  • Gigabit Ethernet (до 1000 Мбит/с).

Технологии построения локальных сетей

Сетевая технология подразумевает использование минимального набора стандартных протоколов и необходимых для их поддержания программно-аппаратных средств. Есть множество различных протоколов, но самыми популярными являются те, которые развиваются на основании Ethernet, FDDI, Token-Ring, Arcnet.

Самой популярной является технология Ethernet и ее более современные варианты. Для ее построения используется тонкий и толстый коаксиальный кабель, а также витая пара, которая более проста при монтаже и обслуживании.

Технология настройки локальной вычислительной сети

Самой распространенной технологией в наши дни является архитектура Ethernet, ее высокоскоростные варианты Fast Ethernet и Gigabit Ethernet легко объединяются между собой и с ней в единую сеть, что упрощает задачи масштабирования. Скорость передачи данных в такой сети зависит от типа кабеля. Здесь применяются варианты от тонкого коаксиального кабеля до мультимодового оптоволоконного кабеля со скоростью светового сигнала до 1300 нм.

  • Сети вида Arcnet устарели и обеспечивают малую скорость (2,5 Мбит/с). Но на ряде предприятий их еще можно встретить, так как раньше они пользовались большим спросом. Это очень надежная сеть с низкой стоимостью адаптеров и гибкостью в настройке. Обычно имеет топологию в виде «шины» или «пассивной звезды».
  • Сеть Token-Ring кольцевого типа сама по себе тоже уходит в историю ЛВС, но знать о ней надо, потому что она стала основой и прообразом маркерной сети нового поколения стандарта FDDI.
  • Сети вида FDDI (Fiber Distributed Data Interface) с маркерным методом доступа используют оптоволоконный кабель. Это высокоскоростная архитектура, которая может поддерживать до 1000 абонентов. При этом максимальная протяженность кольца не может составлять более 20 километров, а расстояние между абонентами должно быть не более 2 км. Эти особенности делают ее применимой для оснащения средних и малых предприятий с небольшим количеством рабочих мест.

Разработчики технологий локальных сетей

Большинство технологий построения локальных сетей пришли в Россию из-за рубежа.

  • Стандарт Arcnet был разработан компанией Datapoint под руководством инженера Джона Мерфи, публике его представили в 1977 году.
  • Стандарт Ethernet в 1975 году ввела американская компания Xerox, второе поколение сети разрабатывали фирмы DEC, Intel и Xerox, из-за чего его стали называть Ethernet DIX. На его основе был разработан протокол IEEE 802.3, ныне используемый, в том числе, для построения беспроводных сетей.
  • Стандарт Token-Ring был создан фирмой IBM узко для производимых ею компьютеров. Но так как на рынке есть множество устройств разных брендов, то широкого развития он не получил.
  • Стандарт FDDI появился в середине 1980-х годов и стал основой для построения сетей второго поколения, хотя базируется он на технологии Token-Ring, в рамках которой используется маркер информации для передачи ее от компьютера к компьютеру. Стандарт разработан институтом ANSI, он сразу поддерживал скорость передачи данных в 100 Мбит/с по двойному оптоволоконному кабелю.
Читайте другие наши статьи:

может производиться обмен данными. При разрыве соединения станция – инициатор разрыва отправляет другой стороне соответствующее уведомление.

Датаграммные протоколы предоставляют услуги по ненадежной доставке данных. Данные отсылаются без предупреждения и протокол не отвечает за их доставку.

Датаграммные протоколы работают достаточно быстро, т.к. не выполняет никаких действий при отправке данных.

Передача данных на физическом уровне

Различают два способа передачи информации: 1.Аналоговоя модуляция 2.Цифровое кодирование

Аналоговая модуляция – используется при передаче данных по телефонным линиям связи (узкополосные каналы связи). Сигнал имеет синусоидальную форму. Для кодирования информации используются три способа:

Амплитудная модуляция, т.е. изменение амплитуды сигнала несущей частоты

Частотная модуляция, т.е. изменение частоты сигнала

Фазовая модуляция, т.е. изменение фазы сигнала

Цифровое кодирование – способ представления информации в виде прямоугольных импульсов. Различают два способа цифрового кодирования:

Потенциальное кодирование – для представления нулей и единиц используются только значения потенциала сигнала, а его перепады игнорируются.

Импульсное кодирование – позволяет представлять данные перепадом потенциала определенного направления.

Литература:

Тема 4. Технологии локальных сетей

Вопросы для изучения:

Стандарты IEEE 802

Технология Ethernet

Технология Token Ring

Технология FDDI

Стандарты IEEE 802

В 1980г. В институте IEEE был организован комитет 802 целью которого была разработка стандартов локальных сетей. Эти стандарты описывают функционирование локальных сетей на физическом и канальном уровнях. Канальный уровень делится на два подуровня: уровень логического управления каналом(Logical Link Layer, LLC) и уровень управления доступом к среде передачи данных (Media Access Control, MAC).

Уровень MAC выполняет синхронизацию доступа к совместной среде передачи данных и определяет в какой момент времени станция может начинать передавать имеющиеся данные.

После того как получен доступ к среде, выполняется передача данных в соответствии со стандартами, которые определены на уровне LLC. Уровень LLC отвечает за связь с сетевым уровнем, а также выполняет передачу данных с заданной степенью надежности.

На уровне LLC используются три процедуры передачи данных:

1. LLC1 – передача данных с установлением соединения и подтверждением

2. LLC2 – передача данных без установления соединения и подтверждения

3. LLC3 – передача данных без установления соединения, но с подтверждением приема данных.

Протоколы LLC и MAC взаимно независимы – каждый протокол уровня MAC может применяться с любым протоколом уровня LLC и наоборот.

Стандарт 802.1 описывает общие понятия локальных сетей, определяет связь трех уровней стандартов 802 с семиуровневой моделью, а также стандарты построения сложных сетей на основе базовых топологий(internetworking). К этим стандартам относят стандарты, описывающие функционирование моста/коммутатора, стандарты объединения разнородных сетей при помощи транслирующего моста, стандарты построения виртуальных сетей(VLAN) на основе коммутаторов.

Технология Ethernet

Термин Ethernet относится к семейству протоколов локальных сетей, которые описываются стандартом IEEE 802.3 и используют метод доступа к среде CSMA/CD.

В настоящий момент существует три основные разновидности технологии, которые функционируют на базе оптоволоконных кабелей или неэкранированной витой пары:

1. 10 Mbps - 10Base-T Ethernet

2. 100 Mbps - Fast Ethernet

3. 1000 Mbps - Gigabit Ethernet

10 – мегабитный Ethernet включает три стандарта физического уровня:

1. 10Base – 5 («Толстый» коаксиал) – использует в качестве передающей среды коаксиальный кабель диаметром 0.5 дюйма, волновое сопротивление 50 Ом. Максимальная длина сегмента без повторителей – 500м. На один сегмент может подключаться не более 100 трансиверов. При построении сети используется правило «3-4- 5»(3 «нагруженных» сегмента, 4 повторителя, не более 5 сегментов). Повторитель подключается при помощи трансивера, т.о. в сети может быть не более 297 узлов. Для того чтобы предотвратить появление отраженных сигналов, используются терминаторы сопротивлением 50 Ом.

2. 10 Base – 2 («Тонкий» коаксиал) – использует в качестве передающей среды коаксиальный кабель диаметром 0.25 дюйма, волновое сопротивление 50 Ом. Максимальная длина сегмента без повторителей – 185м. На один сегмент может подключаться не более 30 узлов. При построении сети используется правило «3-4-5»(3 «нагруженных» сегмента, 4 повторителя, не более 5 сегментов). Для того чтобы предотвратить появление отраженных сигналов, используются терминаторы сопротивлением 50 Ом.

3. 10 Base – Т (Неэкранированная витая пара) – в качестве передающей среды используются две неэкранированные витые пары, узлы подключаются к концентратору и

образуют топологию «звезда». Расстояние от повторителя до станции не более 100 метров для категории кабеля не ниже 3. Концентраторы могут соединяться между собой, увеличивая протяженность логического сегмента сети(домена коллизий). При построении сети используется правило 4-х хабов(между любыми двумя узлами сети должно быть не более 4-х повторителей), количество узлов в сети не должно превышать 1024.

100 – мегабитный Ethernet(Fast Ethernet) включает следующие спецификации:

1. 100Base – TX. Среда передачи данных - неэкранированная витая пара категории не ниже 5. Поддерживается функция автоопределения скорости. Возможна работа в полнодуплексном режиме.

2. 100Base – FX Использует многомодовое оптоволокно.

3. 100Base – T4 Использует 4 витые пары для передачи данных по кабелю 3 категории. Не поддерживает полнодуплексной передачи данных.

В сетях 100-мегабитного Ethernet используются повторители двух классов (I иII ). Повторители классаI могут соединять каналы, отвечающие разным требованиям, например, 100Base-TX и 100Base-T4 или 100Base-FX. В пределах одного логического сегмента может быть применен только один повторитель классаI . Такие повторители часто имеют встроенные возможности управления с использованием протокола SNMP.

Повторители класса II не выполняют преобразования сигналов, и могут объединять только однотипные сегменты. Логический сегмент может содержать не более двух повторителей классаII.

При построении сети необходимо учитывать следующие ограничения:

Все сегменты на витой паре не должны превышать 100 м. Оптоволоконные сегменты не должны превышать 412 м.Расстояние между концентраторами класса II не должно превышать 5м.

1000 – мегабитный (Gigabit) Ethernet описан следующими стандартами:

IEEE 802.3z(1000Base-TX, 1000Base-LX, 1000Base-SX)

IEEE 802.3ab(1000Base-T)

1000Base-TX: передающая среда – экранированный медный кабель длиной до 25м. 1000Base-LX : передающая среда – одномодовое оптоволокно, длина до 5000м. 1000Base-CX : передающая среда – многомодовое оптоволокно, длина до 550м. 1000Base-T : передающая среда – UTP CAT5/CAT5e, длина сегмента до 100м.

При проектировании сетей Ethernet должно всегда выполняться требование корректного определения коллизий. Для этого время передачи кадра минимальной длины должно превышать или быть равным размеру интервала времени, за который кадр дважды пройдет расстояние между двумя самыми удаленными узлами сети.

Технология Token Ring

Была разработана фирмой IBM в 1984 году. Топология сети Token Ring представляет собой кольцо, где все станции соединениы отрезками кабеля.Способ доступа к сети – маркерный. Право передавать данные получает та станция, которая завладела маркером – кадром специального формата. Период времени в течение которого станция может вести передачу определяется временем удержания маркера.

Данные передаются с двумя скоростями – 4 и 16 Мбит/с. Работа на разных скоростях в одном кольце не допускается. Для контроля состояния сети одна из станций при инициализации кольца выбирается на роль активного монитора.

В сети Token Ring со скоростью передачи 4 Мбит станция передает кадр данных, который по кругу передается всеми станциями, пока его не получит станция – адресат. Станция – получатель копирует кадр в свой буфер, устанавливает признак того, что кадр был успешно принят, и передает его по кольцу дальше. Станция – отправитель кадра изымает кадр из сети, и, если время удержания маркера не истекло, то передает следующий кадр данных. В один момент времени в сети присутствует либо маркер либо кадр данных.

В сети Token Ring со скоростью передачи 16 Мбит используется алгоритм раннего высвобождения маркера. Его суть заключается в том, что станция, передавшая кадр своих данных, передает следом кадр маркера, не дожидаясь возвращения кадра данных по кольцу. В этом случае по кольцу одновременно циркулируют кадры данных и маркера, но данные может передавать только станция, захватившая маркер.

Для разных типов сообщений, кадрам могут присваиваться различные приоритеты

– от 0 до 7. Кадр маркера имеет два поля в которых записываются текущее и резервируемое значения приоритета. Станция может захватить маркер только в том случае, если значение приоритета для ее данных выше или равно значению приоритета маркера. В противном случае она может записать значение приоритета своих данных в резервное поле приоритета маркера, зарезервировав его для себя во время следующего прохода(если это поле еще не зарезервировано для данных с более высоким уровнем приоритета). Станция, которая сумела захватить маркер, после завершения передачи своих данных переписывает биты поля резервного приоритета в поле приоритета маркера и обнуляет поле резервного приоритета. Механизм приоритетов используется только по требованию приложений.

На физическом уровне узлы в сети Token Ring подключаются при помощи устройств многостанционного доступа(MSAU – Multistation Access Unit), которые объединяются кусками кабеля и образуют кольцо. Все станции в кольце работают на одной скорости.Максимальная длина кольца равна 4000м.

Технология FDDI

Fiber Distributed Data Interface – Оптоволоконный интерфейс распределенных данных, разработан институтом ANSI с 1986 по1988г. Является первой технологией локальных сетей, в которой используется оптоволокно. Для повышения безотказности FDDI строится на базе двух оптоволоконных колец, которые образуют основной и резервный пути прохождения данных. Для обеспечения надежности узлы подключают к обоим кольцам. В нормальном режиме работы данные проходят только по первичному кольцу. Если произошел отказ и часть первичного кольца не может передавать данные, то выполняется операция свертывания кольца – то есть объединение первичного кольца с вторичным и образование единого кольца.

В сетях FDDI используется маркерный метод доступа к среде передачи данных, который работает на основе алгоритма с ранним освобождением маркера. Технология FDDI поддерживает передачу двух видов трафика – синхронного(звук, видео) и асинхронного(данные). Тип данных определяется станцией. Маркер всегда может быть захвачен на определенный итервал времени для передачи синхронных кадров и лишь в случае отсутствия перегрузок кольца – для передачи асинхронного кадра.

Максимальное число станций с двойным подключением в кольце составляет 500, максимальная длина кольца – 100км. Максимальное расстояние между двумя соседними узлами равно 2км.

ВВЕДЕНИЕ………………………………………………………………..3

1 СЕТИ ETHERNET И FAST ETHERNET………………………………5

2 СЕТЬ TOKEN-RING…………………………………………………….9

3 СЕTЬ ARCNET………………………………………………………….14

4 СЕТЬ FDDI………………………………………………………………18

5 СЕТЬ 100VG-AnyLAN………………………………………………….23

6 СВЕРХСКОРОСТНЫЕ СЕТИ………………………………………….25

7 БЕСПРОВОДНЫЕ СЕТИ……………………………………………….31

ЗАКЛЮЧЕНИЕ…………………………………………………………….36

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………39


ВВЕДЕНИЕ

За время, прошедшее с момента появления первых локальных сетей, было разработано несколько сот самых разных сетевых технологий, однако заметное распространение получили немногие. Это связано, прежде всего, с высоким уровнем стандартизации принципов организации сетей и с поддержкой их известными компаниями. Тем не менее, не всегда стандартные сети обладают рекордными характеристиками, обеспечивают наиболее оптимальные режимы обмена. Но большие объемы выпуска их аппаратуры и, следовательно, ее невысокая стоимость дают им огромные преимущества. Немаловажно и то, что производители программных средств также в первую очередь ориентируются на самые распространенные сети. Поэтому пользователь, выбирающий стандартные сети, имеет полную гарантию совместимости аппаратуры и программ.

Целью данной курсовой работы является рассмотрение существующих технологий локальных сетей их характеристик и преимуществ или недостатков друг перед другом.

Я выбрал тему технологий локальных сетей, из-за того, что на мой взгляд, эта тема сейчас особенно актуальна, когда во всем мире ценится мобильность, скорость и удобство, с наименьшей тратой времени, насколько это возможно.

В настоящее время уменьшение количества типов используемых сетей стало тенденцией. Дело в том, что увеличение скорости передачи в локальных сетях до 100 и даже до 1000 Мбит/с требует применения самых передовых технологий, проведения дорогих научных исследований. Естественно, это могут позволить себе только крупнейшие фирмы, которые поддерживают свои стандартные сети и их более совершенные разновидности. К тому же большое количество потребителей уже установило у себя какие-то сети и не желает сразу и полностью заменять сетевое оборудование. В ближайшем будущем вряд ли стоит ожидать того, что будут приняты принципиально новые стандарты.

На рынке предлагаются стандартные локальные сети всех возможных топологий, так что выбор у пользователей имеется. Стандартные сети обеспечивают широкий диапазон допустимых размеров сети, количества абонентов и, что не менее важно, цен на аппаратуру. Но сделать выбор все равно непросто. Ведь в отличие от программных средств, заменить которые нетрудно, аппаратура обычно служит многие годы, ее замена ведет не только к значительным затратам, к необходимости перекладки кабелей, но и к пересмотру системы компьютерных средств организации. В связи с этим ошибки в выборе аппаратуры обычно обходятся гораздо дороже ошибок при выборе программных средств.

1 СЕТИ ETHERNET И FAST ETHERNET

Наибольшее распространение среди стандартных сетей получила сеть Ethernet. Впервые она появилась в 1972 году (разработчиком выступила известная фирма Xerox). Сеть оказалась довольно удачной, и вследствие этого ее в 1980 году поддержали такие крупнейшие компании, как DEC и Intel). Их стараниями в 1985 году сеть Ethernet стала международным стандартом, ее приняли крупнейшие международные организации по стандартам: комитет 802 IEEE (Institute of Electrical and Electronic Engineers) и ECMA (European Computer Manufacturers Association).

Стандарт получил название IEEE 802.3 (по-английски читается как "eight oh two dot three"). Он определяет множественный доступ к моноканалу типа шина с обнаружением конфликтов и контролем передачи. Этому стандарту удовлетворяли и некоторые другие сети, так как уровень его детализации невысок. В результате сети стандарта IEEE 802.3 нередко были несовместимы между собой как по конструктивным, так и по электрическим характеристикам. Однако в последнее время стандарт IEEE 802.3 считается стандартом именно сети Ethernet.

Основные характеристики первоначального стандарта IEEE 802.3:

  • топология – шина;
  • среда передачи – коаксиальный кабель;
  • скорость передачи – 10 Мбит/с;
  • максимальная длина сети – 5 км;
  • максимальное количество абонентов – до 1024;
  • длина сегмента сети – до 500 м;
  • количество абонентов на одном сегменте – до 100;
  • метод доступа – CSMA/CD;
  • передача узкополосная, то есть без модуляции (моноканал).

Строго говоря, между стандартами IEEE 802.3 и Ethernet существуют незначительные отличия, но о них обычно предпочитают не вспоминать.

Сеть Ethernet сейчас наиболее популярна в мире (более 90% рынка), предположительно таковой она и останется в ближайшие годы. Этому в немалой степени способствовало то, что с самого начала характеристики, параметры, протоколы сети были открыты, в результате чего огромное число производителей во всем мире стали выпускать аппаратуру Ethernet, полностью совместимую между собой.

В классической сети Ethernet применялся 50-омный коаксиальный кабель двух видов (толстый и тонкий). Однако в последнее время (с начала 90-х годов) наибольшее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары. Определен также стандарт для применения в сети оптоволоконного кабеля. Для учета этих изменений в изначальный стандарт IEEE 802.3 были сделаны соответствующие добавления. В 1995 году появился дополнительный стандарт на более быструю версию Ethernet, работающую на скорости 100 Мбит/с (так называемый Fast Ethernet, стандарт IEEE 802.3u), использующую в качестве среды передачи витую пару или оптоволоконный кабель. В 1997 году появилась и версия на скорость 1000 Мбит/с (Gigabit Ethernet, стандарт IEEE 802.3z).

Помимо стандартной топологии шина все шире применяются топологии типа пассивная звезда и пассивное дерево.


Классическая топология сети Ethernet

Максимальная длина кабеля сети в целом (максимальный путь сигнала) теоретически может достигать 6,5 километров, но практически не превышает 3,5 километров.

В сети Fast Ethernet не предусмотрена физическая топология шина, используется только пассивная звезда или пассивное дерево. К тому же в Fast Ethernet гораздо более жесткие требования к предельной длине сети. Ведь при увеличении в 10 раз скорости передачи и сохранении формата пакета его минимальная длина становится в десять раз короче. Таким образом в 10 раз уменьшается допустимая величина двойного времени прохождения сигнала по сети (5,12 мкс против 51,2 мкс в Ethernet).

Для передачи информации в сети Ethernet применяется стандартный манчестерский код.

Доступ к сети Ethernet осуществляется по случайному методу CSMA/CD, обеспечивающему равноправие абонентов. В сети используются пакеты переменной длины со структурой.

Для сети Ethernet, работающей на скорости 10 Мбит/с, стандарт определяет четыре основных типа сегментов сети, ориентированных на различные среды передачи информации:

  • 10BASE5 (толстый коаксиальный кабель);
  • 10BASE2 (тонкий коаксиальный кабель);
  • 10BASE-T (витая пара);
  • 10BASE-FL (оптоволоконный кабель).

Наименование сегмента включает в себя три элемента: цифра "10" означает скорость передачи 10 Мбит/с, слово BASE – передачу в основной полосе частот (то есть без модуляции высокочастотного сигнала), а последний элемент – допустимую длину сегмента: "5" – 500 метров, "2" – 200 метров (точнее, 185 метров) или тип линии связи: "Т" – витая пара (от английского "twisted-pair"), "F" – оптоволоконный кабель (от английского "fiber optic").

Точно так же для сети Ethernet, работающей на скорости 100 Мбит/с (Fast Ethernet) стандарт определяет три типа сегментов, отличающихся типами среды передачи:

  • 100BASE-T4 (счетверенная витая пара);
  • 100BASE-TX (сдвоенная витая пара);
  • 100BASE-FX (оптоволоконный кабель).

Здесь цифра "100" означает скорость передачи 100 Мбит/с, буква "Т" – витую пару, буква "F" – оптоволоконный кабель. Типы 100BASE-TX и 100BASE-FX иногда объединяют под именем 100BASE-X, а 100BASE-T4 и 100BASE-TX – под именем 100BASE-T.

Развитие технологии Ethernet идет по пути все большего отхода от первоначального стандарта. Применение новых сред передачи и коммутаторов позволяет существенно увеличить размер сети. Отказ от манчестерского кода (в сети Fast Ethernet и Gigabit Ethernet) обеспечивает увеличение скорости передачи данных и снижение требований к кабелю. Отказ от метода управления CSMA/CD (при полнодуплексном режиме обмена) дает возможность резко повысить эффективность работы и снять ограничения с длины сети. Тем не менее, все новые разновидности сети также называются сетью Ethernet.

2 СЕТЬ TOKEN-RING

Сеть Token-Ring (маркерное кольцо) была предложена компанией IBM в 1985 году (первый вариант появился в 1980 году). Она предназначалась для объединения в сеть всех типов компьютеров, выпускаемых IBM. Уже тот факт, что ее поддерживает компания IBM, крупнейший производитель компьютерной техники, говорит о том, что ей необходимо уделить особое внимание. Но не менее важно и то, что Token-Ring является в настоящее время международным стандартом IEEE 802.5 (хотя между Token-Ring и IEEE 802.5 есть незначительные отличия). Это ставит данную сеть на один уровень по статусу с Ethernet.

Разрабатывалась Token-Ring как надежная альтернатива Ethernet. И хотя сейчас Ethernet вытесняет все остальные сети, Token-Ring нельзя считать безнадежно устаревшей. Более 10 миллионов компьютеров по всему миру объединены этой сетью.

Компания IBM сделала все для максимально широкого распространения своей сети: была выпущена подробная документация вплоть до принципиальных схем адаптеров. В результате многие компании, например, 3СOM, Novell, Western Digital, Proteon и другие приступили к производству адаптеров. Кстати, специально для этой сети, а также для другой сети IBM PC Network была разработана концепция NetBIOS. Если в созданной ранее сети PC Network программы NetBIOS хранились во встроенной в адаптер постоянной памяти, то в сети Token-Ring уже применялась эмулирующая NetBIOS программа. Это позволило более гибко реагировать на особенности аппаратуры и поддерживать совместимость с программами более высокого уровня.

В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня - Ethernet - рассчитан на топологию " общая шина ", когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring - на топологию " звезда ". При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени. Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХХ века, наряду с положительными имели и отрицательные последствия, главные из которых - ограничения по производительности и надежности.

Поскольку в ЛКС с простейшей топологией ( общая шина , кольцо, звезда ) имеется только один путь передачи информации - моноканал, производительность сети ограничивается пропускной способностью этого пути, а надежность сети - надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специ-альных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС ( шина , кольцо) превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.

Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring . Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети - с помощью других протоколов.

В развитии локальных сетей, кроме отмеченных, наметились и другие тенденции:

  • отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;
  • появление нового режима работы в ЛКС при использовании коммутаторов - полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т. к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах. Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802 .Х охватывают только два нижних уровня модели ВОС - физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.

В локальных сетях канальный уровень разделен на два подуровня:

  • логической передачи данных ( LLC - Logical Link Control );
  • управления доступом к среде (МАС - Media Access Control ).

Протоколы подуровней МАС и LLC взаимно независимы , т.е. каждый протокол подуровня МАС может работать с любым протоколом подуровня LLC , и наоборот.

Подуровень МАС обеспечивает совместное использование общей передающей среды, а подуровень LLC организует передачу кадров с различным уровнем качества транспортных услуг. В современных ЛКС используются несколько протоколов подуровня МАС , реализующих различные алгоритмы доступа к разделяемой среде и определяющих специфику технологий Ethernet, Fast Ethernet, Gigabit Ethernet , Token Ring, FDDI , 100VG-AnyLAN .

Протокол LLC . Для ЛКС этот протокол обеспечивает необходимое качество транспортной службы. Он занимает положение между сетевыми протоколами и протоколами подуровня МАС . По протоколу LLC кадры передаются либо дейтаграммным способом, либо с помощью процедур с установлением соединения между взаимодействующими станциями сети и восстановлением кадров путем их повторной передачи при наличии в них искажений.

Технология Ethernet (стандарт 802.3) . Это самый распространенный стандарт локальных сетей. По этому протоколу в настоящее время работают большинство ЛКС. Имеется несколько вариантов и модификаций технологии Ethernet , составляющих целое семейство технологий. Из них наиболее известными являются 10-мегабитный вариант стандарта IEEE 802 .3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet . Все эти варианты и модификации отличаются типом физической среды передачи данных .

Все виды стандартов Ethernet используют один и тот же метод доступа к передающей среде - метод случайного доступа CSMA /CD . Он применяется исключительно в сетях с общей логической шиной, которая работает в режиме коллективного доступа и служит для передачи данных между любыми двумя узлами сети. Такой метод доступа носит вероятностный характер: вероятность получения среды передачи в свое распоряжение зависит от загруженности сети. При значительной загрузке сети интенсивность коллизий возрастает и ее полезная пропускная способ-ность резко падает.

Полезная пропускная способность сети - это скорость передачи пользовательских данных, переносимых полем данных кадров. Она всегда меньше номинальной битовой скорости протокола Ethernet за счет служебной информации кадра, межкадровых интервалов и ожидания доступа к среде. Коэффициент использования сети в случае отсутствия коллизий и ожидания доступа имеет максимальное значение 0,96.

Технологией Ethernet поддерживаются 4 разных типа кадров, имеющих общий формат адресов. Распознавание типа кадров осуществляется автоматически.

Для всех стандартов Ethernet имеют место следующие характеристики и ограничения:

  • номинальная пропускная способность - 10 Мбит/с;
  • максимальное число РС в сети - 1024;
  • максимальное расстояние между узлами в сети - 2500 м;
  • максимальное число коаксиальных сегментов сети - 5;
  • максимальная длина сегмента - от 100 м (для 10Base -T) до 2000 м (для 10Base -F);
  • максимальное число повторителей между любыми станциями сети - 4.

Технология Token Ring (стандарт 802.5) . Здесь используется разделяемая среда передачи данных , которая состоит из отрезков кабеля, соединяющих все РС сети в кольцо. К кольцу (общему разделяемому ресурсу) применяется детерминированный доступ , основанный на передаче станциям права на использование кольца в определенном порядке. Это право предается с помощью маркера. Маркерный метод доступа гарантирует каждой РС получение доступа к кольцу в течение времени оборота маркера. Используется приоритетная система владения маркером - от 0 (низший приоритет) до 7 (высший). Приоритет для текущего кадра определяется самой станцией, которая может захватить кольцо, если в нем нет более приоритетных кадров.

В сетях Token Ring в качестве физической среды передачи данных применяется экранированная и неэкранированная витая пара и волоконно-оптический кабель . Сети работают с двумя битовыми скоростями - 4 и 16 Мбит/с, причем в одном кольце все РС должны работать с одной скоростью. Максимальная длина кольца - 4 км, а максимальное количество РС в кольце - 260. Ограничения на максимальную длину кольца связаны со временем оборота маркера по кольцу. Если в кольце 260 станций и время удержания маркера каждой станцией равно 10 мс, то маркер после совершения полного оборота вернется в активный монитор через 2,6 с. При передаче длинного сообщения, разбиваемого, например, на 50 кадров, это сообщение будет принято получателем в лучшем случае (когда активной является только РС-отправитель) через 260 с, что для пользователей не всегда приемлемо.

Максимальный размер кадра в стандарте 802.5 не определен. Обычно он принимается равным 4 Кбайтам для сетей 4 Мбит/с и 16 Кбайтам для сетей 16 Мбит/с.

В сетях 16 Мбит/с используется также и более эффективный алгоритм доступа к кольцу. Это алгоритм раннего освобождения маркера (ETR ): станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита своего кадра, не дожидаясь возвращения по кольцу этого кадра и занятого маркера. В этом случае по кольцу будут передаваться одновременно кадры нескольких станций, что существенно повышает эффективность использования пропускной способности кольца. Конечно, и в этом случае в каждый данный момент ге-нерировать кадр в кольцо может только та РС, которая в этот момент владеет маркером доступа, а остальные станции будут лишь ретранслировать чужие кадры.

Технология Token Ring (технология этих сетей была разработана еще в 1984 г. фирмой IBM ) существенно сложнее технологии Ethernet . В ней заложены возможности отказоустойчивости: за счет обратной связи кольца одна из станций ( активный монитор ) непрерывно контролирует наличие маркера, время оборота маркера и кадров данных, обнаруженные ошибки в сети устраняются автоматически, например, потерянный маркер может быть восстановлен. В случае выхода из строя активного монитора выбирается новый активный монитор и процедура инициализации кольца повторяется.

Стандарт Token Ring изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU , т.е. устройствами многостанционного доступа. Концентратор может быть пассивным (соединяет порты внутренними связями так, чтобы РС, подключенные к этим портам, образовали кольцо, а также обеспечивает обход какого-либо порта, если подключенный к этому порту компьютер выключается) или активным (выполняет функции регенерации сигналов и поэтому иногда называется повторителем).

Для сетей Token Ring характерна звездно-кольцевая топология : РС подключаются к концентраторам по топологии звезды, а сами концентраторы через специальные порты Ring In (RI) и Ring Out (RO) объединяются для образования магистрального физического кольца . Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующие кадры адресату (каждый кадр снабжается полем с маршрутом прохождения колец).

Недавно технология Token Ring стараниями компании IBM получила новое развитие: предложен новый вариант этой технологии ( HSTR ), поддерживающий битовые скорости в 100 и 155 Мбит/с. При этом сохранены основные особенности технологии Token Ring 16 Мбит/с.

Технология FDDI . Это первая технология ЛКС, в которой для передачи данных используется волоконно-оптический кабель . Она появилась в 1988 г. и ее официальное название - оптоволоконный интерфейс распределенных данных ( Fiber Distributed Data Interface, FDDI ). В настоящее время в качестве физической среды, кроме волоконно-оптического кабеля, применяется неэкранированная витая пара .

Технология FDDI предназначена для использования на магистральных соединениях между сетями, для подключения к сети высокопроизводительных серверов, в корпоративных и городских сетях. Поэтому в ней обеспечена высокая скорость передачи данных (100 Мбит/с), отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все это сказалось на стоимости подключения к сети: для подключения клиентских компьютеров эта технология оказалась слишком дорогой.

Существует значительная преемственность между технологиями Token Ring и FDDI . Основные идеи технологии Token Ring восприняты и получили совершенствование и развитие в технологии



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!