Энциклопедия мобильной связи

Портал вычислительной техники. Накопители на магнитных лентах или диски? Будущее ленточных носителей и сферы их применения

12.02.2015

Один информационный вестник, не будем называть имени (все совершают ошибки), активно обсуждал увядание сектора хранителей на магнитной ленте в 2012 году. По их мнению, всё, что оставалось производителям магнитных носителей, это просто уйти из бизнеса. Они подчёркивали, что резервное копирование сместилось в сторону VLT, и что для магнитных накопителей это означает конец.

В статье была поставлена под вопрос конкурентоспособность магнитных носителей в сравнении с дисками - одним из аргументов против магнитных накопителей был более медленный доступ к ним по сравнению с ними. Наконец, в этой статье было сказано, что единственный производитель магнитных накопителей, скорости которых были сопоставимы со скоростями классических дисков, это SpectraLogic, поскольку новости относительно других производителей оказывались совсем уж безрадостными.

У всех бывают плохие дни. Оглядываясь на результаты прошлого 2014 года, можно выделить несколько моментов, почему приведённые в статье выводы были ошибочными:

. Резервное копирование . В этом авторы отчасти оказались правы. Десятилетиями магнитные ленты были основным носителем для сохранения информации, однако этому, как и многому другому, приходит конец. Резервное копирование быстрее делать на винчестер и дешевле - в смысле краткосрочного хранения - в облако. Целевой рынок - предприятия малого и среднего бизнеса, небольшие объёмы информации которых можно заливать прямиком в облачное хранилище без потери производительности. Однако более крупные предприятия производят большие объёмы данных, которые необходимо хранить в течение длительного периода времени. Именно для них становятся актуальными носители на магнитных лентах, предоставляющие большую плотность хранимых данных и более экономные в плане стоимости.

. Надёжность. Надёжность магнитных лент действительно имела плохую репутацию некоторое время, в основном из-за DLT поколений. Однако с развитием и стабилизацией LTO стандарта это больше неактуально. Магнитные накопители доказали свою надёжность, которая даже превосходит надёжность дисков, особенно дешёвых. National Energy Research Scientific Computing Center (NERSC) сообщил о том, что картриджи для магнитных лент примерно на 4 порядка надёжнее, чем их аналоги для SATA.

На это есть несколько причин - можно рассмотреть критерий качества передачи данных (BER) и феномен деградации хранимых данных. Параметр BER предсказывает процент порченых бит от общего числа записанных бит информации. Магнитные ленты показывают 10-кратное улучшение этого показателя в сравнение с лучшими винчестерами. Деградация данных - постепенное снижение качества среды хранения информации на магнитном носителе - также очень важный показатель качества носителя данных в терминах долгосрочного хранения. И ленты, и винчестеры по природе своей устройства магнитные, но вращающийся диск винчестера представляет больше опасности для хранимой информации (продолжительность жизни LTO - 15-30 лет).

. Продажи. После небольшого провала в продажах, в 2013 году продажи магнитных накопителей остановились, а в 2014 снова пошли в гору. LTO -достаточно чётко описывает состояние рынка магнитных лент. LTO-6 дисков было продано в общей сложности на 100,000 Пб ёмкости меньше, чем лент. LTO-4 также немного сбавили темпы, а вот объёмы продаж LTO-5 выросли. LTO-6 продаётся быстрее благодаря новому фрэймворку. Также одной из причин возросшей популярности стала цена за гигабайт. Производители дисков не упустили шанса упомянуть о снижении цены на свои винчестеры, но ленточные накопители всё равно остались дешевле: картридж для магнитной ленты на 1.5 Тб стоит порядка $40, что в сравнении со схожей ёмкостью - в два раза меньше цены для HDD.

. Производительность . Производители винчестеров любят избитое клише: «магнитные ленты медленнее дисков». По большому счёту это неверно: производительность зависит от скорости дисковой системы или автозагрузки/библиотеки и типа передаваемых данных. Диск, как правило, быстрее при работе со случайным доступом к данным, когда головка диска может перемещаться в разные секторы быстрее, чем головка магнитной ленты. Тем не менее, производительность магнитных ленточных накопителей, как правило, выше при последовательном доступе к данным. Именно поэтому их удобно использовать для бэкапов, архивирования и хранения больших объёмов данных.

Наиболее частые случаи использования магнитных лент

Сегодня магнитные накопители успешно используются в следующих случаях: архивирование, облака (да, вы не ослышались, в облачных хранилищах). Производители дисков отрицают это, но посудите сами: производителям, которые не предлагают покупателям магнитные накопители, выгодно, чтобы последние навсегда исчезли. Такие производители будут спорить, что они не продают ленточные магнитные накопители по той простой причине, что не верят в их возможности. Хотя, с точки зрения ёмкости лент, их экономичности и надёжности такие утверждения просто несправедливы.

Архивирование

Самый распространённый вариант использования - долгосрочное архивирование. Классический пример - долгосрочное хранение архивов данных. Активное архивирование также один из вариантов, когда лента принимает часть данных с диска, таким образом, разгружая его, и предоставляет данные для использования аналитическими программами или загрузки в другие системы.

За примерами далеко ходить не надо. National Geographic’s NG Global Media управляет огромными массивами медиа данных. Television MediaCore - её подразделение, предоставляющее медиа сервисы своим клиентам. Как правило, они генерируют порядка 5-10 Тб контента в день и архивируют примерно 90% от этого количества на ленточные магнитные библиотеки Spectra Logic. Архивы остаются постоянно доступными, в то время как значительный процент объёма данных находится в прямом доступе и повторно используется.

Суперкомпьютер Blue Waters центра суперкомпьютерных вычислений (NCSA) использует ленточную библиотеку Spectra 380B в качестве активного хранилища. Библиотека обеспечивает скорости чтения/записи порядка 2.2 Пб/ч и может хранить 380 Пб данных.

Национальный институт здоровья (NIH) использует магнитную библиотеку Oracle для активного архивирования в своих центрах обработки данных, а также для долгосрочного хранения. Огромные объёмы данных остаются доступны для прямого доступа и анализа медицинскими исследователями по всему миру.

Некоторые провайдеры услуг на базе дисков и облачных хранилищ пытаются противопоставить магнитные ленты и облака друг другу, заявляя что-то наподобие: «хранение данных в облаках быстрее и дешевле, чем на магнитных лентах». Это неверный аргумент в пользу облачных хранилищ по той простой причине, что магнитные носители используются в облаках. Центры данных облачных хранилищ часто владеют огромными библиотеками магнитных лент для долгосрочного и экономичного хранения информации. Исключением является разве что Glacier: Amazon клянётся, что не применяет магнитные ленты, в то же время скромно отмалчиваясь, а что же именно она использует. Однако, многие основные поставщики облачных сервисов, включая Google, пользуются преимуществами магнитных накопителей.

Примеры научных сообществ, сочетающих облака и магнитные носители, включают CERN, лабораторию Argonne National Laboratory и NASA, а канал Discovery, пожалуй, самый яркий пример в этой области.

Большие данные

Ленточные серверы являются наиболее экономичными хранилищами для неструктурированных данных. Даже производитель суперкомпьютеров Cray использует магнитные ленты для хранилищ в своём 4-отсековом архиве. Для анализа больших данных ключевым является активное архивирование и картриджи большой ёмкости для огромных наборов данных.

Промышленная линейка HP StoreEver ESL G3 хранит до 75 Пб данных в единой системе. Крупнейшая промышленная модель Quantum Scalar i6000 также расширяется до 75 Пб. В прошлом году Oracle представила магнитный диск StorageTek, способный хранить 8.5 Тб сырых данных со скоростями доступа до 252 Мб/с. В этом году IBM и Fujifilm анонсировали прототип картриджа, способного хранить 85.9 млрд. бит данных на квадратный дюйм, что эквивалентно 154 Тб несжатых данных. IBM также сотрудничает с Sony, анонсировавшей магнитный носитель с плотностью данных в 148 Гб на квадратный дюйм или 185 Тб в одном картридже.

. “Flape” . Не очень удачный термин, сочетающий два слова - флэш (flash) и магнитная лента (tape). Хоть IBM и не использует этот термин, у них есть наработка, объединяющая систему FlashSystems V840 с магнитной лентой. Флэш система имеет достаточную ёмкость и производительность для систем Tier 0 и Tier 1. Она интеллектуально переносит данные прямиком на второстепенный уровень, которым может являться диск или магнитный носитель. IBM предлагает использовать здесь магнитные накопители в целях экономии и надёжности долгосрочного хранения данных.

. Взлёт LTFS. LTFS - это по своей сути грандиозно. Вкратце, файловая система LTFS хранит данные на магнитном носителе вместе с метаданными, которые позволяют пользователям получать доступ к файлам на ленте без необходимости использования бэкап-приложений или специфических версий. Это решает насущную IT проблему необходимости поиска нужных файлов через бэкап-каталог с целью их восстановления с магнитной ленты. IBM разрабатывает магнитную систему, интегрирующую LTFS и GPFS, кластерную файловую систему IBM. Новая система облачит магнитные носители в форму винчестеров для серверов и задаст общее пространство имён диску и магнитной ленте для глобального управляемого хранилища.

. Технические преимущества. LTO-6 всё ещё держится. Каждое новое LTO поколение делает серьёзный скачок в повышении плотности. И LTO-7 уже на подходе, а LTO-9 и 10 - в планах на ближайшее будущее. Ленточные картриджи также постоянно совершенствуются. IBM, Oracle, Quantum, Spectra Logic и прочие производители делают существенные подвижки в плане повышения ёмкости, надёжности и долговечности, улучшая жизненный цикл управления данными и повышая скорости доступа к информации. Поставщики также улучшают характеристики энергопотребления и технологии охлаждения, делая библиотеки магнитных накопителей всё более экономичными.

Экономия за счёт роста

Экономия на магнитных лентах это экономия за счёт роста. Чем больше масштаб предприятия, объём, необходимый для хранения данных, тем больше выгода от использования магнитных накопителей по сравнению с обычными дисками. Диски быстро становятся более дорогими, поскольку 80% информации на них записывается один раз и дальше просто хранится, как архив, а износ самого диска за счёт наличия внутри подвижных конструкций при этом продолжается - таким образом, компания теряет деньги на неразумное обслуживание архивов данных. А с ростом объёмов информации, которую необходимо хранить, преимущества магнитных носителей становятся всё более очевидными.

Вывод из всего сказанного очень прост - магнитные накопители не умирают, их продажи не уменьшаются и на пенсию они пока не собираются.

Бурный рост критически важных и ответственных приложений с одной стороны и увеличение объемов данных в сегодняшних условиях требуют особого, более внимательного отношения к системам хранения данных, так как информация имеет свою (и порой достаточно высокую) цену и любая потеря данных может обернуться ощутимыми финансовыми потерями. Вот почему подсистемы хранения данных приобретают все большее и большее значение.

Традиционно системы хранения можно разделить на следующие три класса.

  1. Быстрые системы с произвольным доступом. Это «жесткие диски» и RAID системы. Имеют небольшое время доступа и самую высокую удельную стоимость хранения.
  2. Относительно медленные системы с последовательным доступом. Это отдельно стоящие приводы магнитных лент, библиотеки магнитных лент и достаточно редко используемые RAIT системы. Обладают наибольшим временем доступа, наибольшей емкостью и наименьшей удельной стоимостью хранения данных. Используются также в системах иерархического хранения данных.
  3. Системы с произвольным доступом, которые по емкости, стоимости, скорости занимают промежуточное положение. Это системы, построенные на базе магнитооптики, DVD и CD (R, RW) технологий. В настоящее время используются для организации небольших архивов и промежуточного хранения, в системах иерархического хранения данных.

Существует еще один класс устройств - это твердотельные диски. Используются для организации буферов данных. Но из-за высокой стоимости их применение ограничено.

В данной статье пойдет речь технологиях и системах хранения данных на магнитных лентах. Традиционно магнитные ленты были и остаются наименее дорогим и достаточно надежным (сохранность записи более 30 лет) носителем для организации архивов и резервного копирования данных.

Чтобы проще было разобраться в разнообразии представленных на рынке устройств - сначала немного теории. Несмотря на то, что приводов магнитных лент и картриджей разной конструкции достаточно много, базовых технологий, используемых во всех устройствах, всего две. Это линейная запись (запись с неподвижной магнитной головкой) и наклонно-строчная запись . Оба метода пришли из аналоговой магнитной записи.

Итак, начнем с линейной магнитной записи, так как появилась она раньше. Аналоговые магнитофоны появились достаточно давно, а для записи данных эта технология использовалась уже в ЭВМ ЕС и СМ.

Суть состоит в том, что используется достаточно широкая лента с большим числом расположенных по всей длине ленты параллельных дорожек и многоканальная магнитная головка. Лента протягивается лентопротяжным механизмом мимо головки. При этом считывается часть (группа) дорожек. При достижении окончания ленты головка перепозиционируется на следующую группу дорожек, лентопротяжный механизм реверсирует движение ленты (лента движется обратно и записываются/считываются другие дорожки). Этот процесс повторяется, пока не будут считаны или записаны все дорожки. Такой метод записи называют серпантиновым.

Линейная система записи имеет свои характерные особенности. Чтобы обеспечить необходимую плотность записи лента должна двигаться мимо магнитной головки со скоростью порядка 160 дюймов/с (порядка 70 см/с). Чем быстрее достигается рабочая скорость движения ленты, тем меньше задержек при неизбежном старт-стопном движении ленты. Поэтому, чем более быстродействующий лентопротяжный механизм, тем больше механическая нагрузка на ленту и применение современных тонких лент AME в этом случае недопустимо.

Еще одна особенность - это обеспечение оптимального взаимного положения магнитной дорожки и рабочего зазора магнитной головки. Дело в том, что при движении ленты неизбежна некоторая девиация положения магнитной дорожки по высоте. Причина в неизбежном перемещении ленты в вертикальной плоскости при движении из-за некоторого люфта направляющих стоек или роликов и не абсолютная параллельность краев самой ленты. Это не критично при невысоких плотностях цифровой записи и для традиционной аналоговой записи, где ширина дорожки несколько больше ширины магнитного зазора и разница эта не меньше возможной девиации положения ленты по вертикали при движении по лентопротяжному тракту. Однако для удовлетворения современных потребностей требуется дальнейшее увеличение емкости картриджа. Так как нельзя просто намотать больше ленты (объем картриджа ограничен) и нельзя бесконечно уменьшать толщину ленты - остается только увеличение количества дорожек (плотность расположения) и использование более прогрессивных методов магнитной записи (RLL, PRML). Поэтому очевидно, что для увеличения количества дорожек на ленте требуется специальная система слежения и коррекция положения головки.

Основные изготовители устройств с линейной записью - это Quantum Corp. и Tandberg Data ASA. Оба имени достаточно известны, Quantum занимается производством жестких дисков и приводов магнитных лент DLT. Tandberg Data ASA выпускает устройства DLT, а также имеет фирменную технологию SLR на базе четвертьдюймовых лент (QIC). Технические характеристики приводов DLT и SLR перечислены в сводной таблице.

Особенности DLT

Используется лента шириной 0,5 дюйма и однокатушечный картридж (приемный барабан несъемный и находится в самом устройстве). Лента закреплена одним концом в подающем барабане в картридже, а на другом конце находится специальная петля, лидер, за которую ЛПМ (лентопротяжный механизм) вытаскивает ленту из картриджа и заправляет в приемный барабан. Таким образом, более полно используется объем картриджа (весь объем заполнен лентой), но сам привод магнитных лент получается несколько больших размеров. Технология DLT в настоящее время наиболее широко используется в системах среднего и более высокого уровня. На рынке представлены DLT4000, 7000, 8000. Поставки SuperDLT компанией Tandberg Data по дистрибьюторским каналам начались с апреля 2001.

Представленные на рынке устройства DLT4000, 7000, 8000 принципиальных отличий друг от друга не имеют, все отличия, скорее, количественные. Устройства же SuperDLT принадлежат уже к новому поколению, где используется другая, более совершенная лента, другие магнитные гоовки (CMR, кластер магниторезистивных головок), оптическая система позиционирования дорожек и др. Правда, в устройствах SDLT не удалось получить совместимость со старыми картриджами DLT. Объясняется это тем, что новые головки не могут работать со старыми плотностями записи и старыми плотностями расположения дорожек. Поэтому для обеспечения совместимости требуется установка дополнительного блока магнитных головок, что приведет к существенному изменению и усложнению конструкции лентопротяжного механизма.

Еще следует упомянуть о поставляемом Tandberg Data приводе DLT1. Это устройство по емкости соответствует DLT8000, но производительность в два раза меньше и совместимо оно по чтению только с DLT4000. Однако, это компенсируется чрезвычайно низкой ценой, соизмеримой с устройствами более низкого класса (DDS-4).

Особенности SLR

Приводы магнитных лент SLR производятся Tandberg Data ASA и имеют следующие особенности.

  1. Используется лета шириной четверть дюйма. Полностью закрытый картридж с массивным металлическим основанием имеет двухкатушечную конструкцию (приемный и подающий барабаны находятся в внутри картриджа). Оба барабана приводятся в движение специальным ремнем, размещенным внутри картриджа. Картридж имеет лишь небольшое окошко для контакта головки чтения/записи с лентой и ролик, который сообщается с приводным ремнем внутри картриджа и с тонвалом привода. Таким образом, лентопротяжный механизм имеет минимальное количество движущихся частей (головка и тонвал), а, следовательно надежность такой конструкции максимальна.
  2. Головка. Многоканальная головка закреплена не жестко, а подвешена при помощи магнитной катушки наподобие диффузора громкоговорителя. На ленте при изготовлении нанесены специальные синхро-дорожки, которые всегда считываются при движении ленты (как при чтении, так и при записи), а сервосистема на основе считанного синхросигнала постоянно корректирует положение магнитной головки по высоте. Кроме того, головка чтения-записи имеет дополнительный рабочий зазор, который позволяет считывать только что сделанную запись. Применительно к аналоговой записи это называют сквозным каналом записи - воспроизведения. Использование такой сервосистемы позволяет существенно увеличить количество дорожек на ленте, не прибегая ни к каким другим приемам. Приводы SLR имеют несколько меньшую стоимость, чем DLT и младшие модели могут быть использованы в системах начального уровня, там где традиционно господствуют устройства DDS.

Особенно в этом отношении интересно новое устройство SLR7 от Tandberg Data. Техические данные приведены в общей таблице, а стоимость этого устройства ниже, чем DDS4.

Следует остановиться еще на одном формате. Это открытый формат LTO (Linear Tape Open format), результат объединения усилий IBM, HP и Seagate, лицензии на который уже получены многими изготовителями как магнитных лент, так и устройств. Технология: серпантиновая запись на ленту шириной 0,5 дюйма. Предполагается два типа устройств.

  1. Ориентированнные на минимальное время доступа и максимальную скорость Accelis с двухкатушечным катриджем. Причем для получения минимального времени доступа исходное положение ленты в катридже - не начало (как у других устройств) , а середина ленты.
  2. Ориентированные на максимальную емкость устройства Ultrium. Конструкция картриджа и привода напоминает DLT. Емкость картриджа для устройств первого поколения составляет 100 Гбайт, а для устройств третьего поколения через 2-3 года предполагается кмкость порядка 800 GB.

Поставки Ultrium первого поколения начались в 2001 году. Это устройство доступно в настоящее время по крайней мере от IBM и HP, автоматизированные библиотеки доступны от Exabute, HP и др. Картриджи Ultrium доступны также от HP и Exabyte.

Опыт пользования устройствами Ultrium пока еще не накоплен, отзывы пользователей в Европе пока еще противоречивы.

Другой метод магнитной записи - это наклонно-строчная магнитная запись. В середине 50-х годов фирмой Ampex был начат выпуск первых (естественно, аналоговых) видеомагитофонов с наклонно-сторочной записью. Суть метода состоит в том, что лента протягивается с небольшой скоростью (несколько сантиметров в секунду) мимо вращающегося в высокой скоростью цилиндра, на котором закреплены головки чтения-записи. За счет вращения блока головок получается высокая относительная скорость между лентой и головкой. Преимущества этого метода следующие. Так как абсолютная скорость движения ленты невелика, процессы старта и останова занимают меньше времени и оказывают меньшие механические нагрузки на ленту. Следовательно, можно использовать более тонкие ленты (например, новые более тонкие металлонапыленные ленты AME). Кроме того, при наклонно-строчной записи плотность расположения дорожек (измеряется в количестве дорожек на 1 дюйм) в несколько раз выше, чем при линейной записи. Это является результатом того, что длина одной магнитной дорожки сравнительно невелика, с одной стороны, и применения специального механизма подстройки положения вращающегося барабана с магнитными головками с другой стороны, а также использованием более совершенных носителей.

Конечно, помимо преимуществ у наклонно-строчной записи есть и недостатки. Это, прежде всего, ожидаемый более быстрый износ как ленты, так и головок. На самом деле, этого не происходит, так как при вращении барабана между рабочей поверхностью ленты и головкой создается некоторая воздушная прослойка, существенно снижающая трение ленты о головку чтения/записи. С другой стороны, современные магнитные ленты с металлонапылением имеют специальное углеродное покрытие, обладающее высокой прочностью и практически нулевым коэффициентом трения. Кроме того, на лентах AME есть еще поверхностный слой сухой смазки. Поэтому, к примеру, механизмы Mammoth, Mammoth-2 не уступают и даже несколько превосходят по долговечности механизмы DLT.

В настоящее время на рынке представлено 2 основных класса устройств, где реализована технология наклонно-строчной записи. Это устройства, использующие картриджи с лентой шириной 4 мм и устройства, работающие с лентой 8 мм. Есть еще класс устройств на базе механизма Betacam фирмы Sony (дальнейшее развитие формата Betamax, также предложенного фирмой Sony) и использующие кассеты типа Betacam. Это библиотеки для хранения видеоархивов, емкость которых измеряется десятками петабайт.

4-миллиметровые устройства

Это технология DAT предложенная в свое время фирмой Sony для цифровой записи звука. Приводы магнитных 4-мм лент подразделяются на поколения: DDS-1, DDS-2, DDS-4 и DDS-4. Основной поставщик 4-мм устройств - это фирма Sony.

8-миллиметровые устройства

Технология аналоговой наклонно-строчной, а впоследствии и цифровой записи на магнитную ленту шириной 8 мм была предложена в 80-х годах, опять же, фирмой Sony. Однако, впервые эта технология была адаптирована и оптимизирована для записи цифровых данных фирмой Exabyte. На рынке представлены 8-мм устройства Exabyte (Eliant, Mammoth, Mammoth-2), Ecrix (VXA) и Sony (AIT, AIT-2). Технические данные всех упомянутых устройств указаны в сводной таблице. Упомянутые 8-мм устройства имеют достаточно много общих черт, но есть и некоторые отличия. *

Лентопротяжный механизм. У Sony в основе лежит ЛПМ, аналогичный используемым в камкодерах, где линейное движение осуществляется при помощи узла тонвал-прижимной ролик. Это очень ответственный узел, в результате малейшего отклонение положения тонвала от нормы лента начинает смещаться вверх или вниз, что, как правило, приводит к механическому повреждению носителя. В ЛПМ, разработанном и используемом Exabyte такого узла нет и линейное движение ленты осуществляется только за счет приемного и подающего барабана и несколько упрощен тракт движения ленты. В результате увеличилась надежность механизма, уменьшился износ ленты и появилась возможность использовать более тонкие и «скользкие» улучшенные металонапыленные ленты AME.

  • Магнитные носители. За счет особенностей конструкции ЛПМ Exabyte используются более совершенные магнитные ленты, чем в других устройствах.
  • Производительность (скорость чтения-записи). Обусловлено конструкцией блока вращающихся головок. На сегодняшний день устройство Mammoth-2 превосходит все остальные сравниваемые накопители.
  • Фирменные особенности. Приводы Exabyte имеют патентованную систему автоматической чистки тракта движения ленты SmartClean, что делает ненужным применение чистящих картриджей, а у Sony кроме автоматической системы очистки головок (специальный чистящий картридж тоже не нужен) есть фирменная технология (MIC, Memory In Cassette) ускоренного чтения каталогов картриджей за счет размещения твердотельной памяти прямо в картридже. Считывание этой памяти происходит практически мгновенно. Благодаря этому значительно снижается время доступа к данным на картридже. Если по каким либо причинам эта память выходит из строя (статические заряды, к примеру), то считывание каталога происходит обычным образом.

Теперь, собственно сравнение существующих технологий. Само разнообразие представленных на рынке устройств говорит о том что идеального привода, подходящего для всех случаев в природе не существует. Для оценки различных технологий используются определенные критерии. Это линейная плотность записи, эффективность формата, плотность расположения дорожек.

Линейная плотность записи - количество информации, записываемой на единице длины магнитной дорожки, измеряется Кб/дюйм

Максимальную линейную плотность записи имеют устройства Super DLT, DDS и Travan. У DLT и Mammoth есть некоторый запас для развития.

* Поставки Super DLT первого поколения OEM и в дистрибьюторские каналы начались в начале 2001 года.

Эффективность формата. Это соотношение между общим числом бит, записанных на ленту и числом битов данных. Две эти величины не совпадают, так как на ленту помимо самих данных записываются корректирующие коды, биты четности и другая служебная информация. Измеряется в процентах. Оптимальной считается эффективность 75%.

DLT и Travan обладают оптимальной и практически предельной эффективностью формата, 8-мм и 4-мм устройства еще имеют некоторый запас для развития. Объясняется это тем, что наклонно-строчная запись более молодая и не до конца оптимизирована для записи цифровых данных, в то время как технология линейной записи прошла несколько более длинный путь развития и лучше оптимизирована для цифровых данных.

Плотность расположения дорожек была рассмотрена несколько ранее. Самая высокая и практически предельная для нынешних носителей и магнитных головок плотность расположения дорожек у устройств DDS. Для устройств с линейной записью есть некоторый запас для дальнейшего увеличения емкости.

Видно, что каждая технология имеет свои достоинства и недостатки. К достоинствам DLT технологии, безусловно, можно отнести огромный парк работающих устройств и библиотек, а также совместимость между разными моделями DLT. Это делает возможным свободный обмен носителями между многими пользователями. Но, с другой стороны, необходимость поддерживать совместимость с более ранними моделями сдерживает развитие формата DLT в сторону увеличения емкости и скорости.

Наклонно-строчная запись появилась позже, чем линейная. Поэтому с самого начала в основе были заложены более прогрессивные технологические решения. В результате те же объемы записываются на гораздо меньшей площади поверхности ленты. Преимущества устройств, построенных на базе наклонно-строчной записи в том, что сами устройства компактнее, картриджи меньше, используется более совершенная магнитная лента, позволяющая хранить больше данных более длительное время.

Привод магнитных лент Mammoth-2 является наиболее быстрым в своем классе (и дорогим) среди всех представленных на рынке устройств, да и емкость картриджа Mammoth-2 на сегодняшний день выше, чем у любого другого устройства в этом классе. Правда, по емкости устройство Mammoth-2 уступает SDLT и Ultrium, но эти два устройства принадлежат к следующему поколению и сравнивать их с Mammoth-2 было бы не совсем корректно.

Бесплатно ничего не бывает. Поэтому за все эти достоинства приходится платить совместимостью. Устройства нового поколения обычно не совместимы со старым. Например, при переходе с Eliant 820 на Mammoth старые картриджи записывать нельзя, это обусловлено тем, что в для Mammoth используется магнитная лента нового поколения AME c другими параметрами записи. Кроме того, обмен картриджами даже между похожими устройствами (к примеру, между Mammoth, AIT или VXA) тоже невозможен из за различия форматов. С SDLT и Ultrium ситуация точно такая же.

Если говорить о более дешевых стандартизованных приводах DDS, то перенос картриджей даже одного класса (DDS -2, -3, -4) тоже не всегда возможен. Если говорить о долговременности хранения, то на первом месте будут устройства, работающие с наиболее совершенными на сегодняшний день лентами AME. Если прибавить к этому скорость и емкость, то безусловно чемпионом будет привод магнитных лент Mammoth-2. Превосходство Mammoth-2 над всеми остальными устройствами подтверждено многочисленными тестами, проводящимися разными независимыми экспертами. По своим техническим данным приводы магнитных лент уступают только SuperDLT и LTO Ultrium, но Mammoth-2 поставляется по дистрибьюторским каналам с начала 2000 года (в США поставки начались несколько раньше), а продажи SuperDLT по дистрибьюторским каналам начались более чем а год позже.

С точки зрения цен - дешевле всего приводы DDS и новые устройства SLR 7 от Tandberg Data. Они используются, в основном, в небольших рабочих станциях и серверах начального уровня.

Подводя итог, можно сказать следующее. Технология DDS (4мм) хороша там, где не требуется высоких скоростей, и не предполагается интенсивное (длительное непрерывное) использование устройства. Привод DDS очень компактен, занимает мало места и без проблем встраивается в любой компьютер. С точки зрения цены стоимость приводов DDS минимальна. Технология DLT и SLR рассчитана на тяжелые условия работы (длительное, практически круглосуточное использование). Устройства SLR имеют высокую скорость и емкость, высокую надежность, а невысокая стоимость позволяет использование в традиционно занимаемых DDS рыночных нишах. Учитывая гораздо лучшую (чем у DDS) переносимость носителей младшие устройства SLR могут быть использованы вместо DDS, а старшие - могут стать разумной альтернативой технологиям Mammoth и DLT, так как практически не уступают по техническим данным, а цена на них несколько ниже.

Технология DLT обладает высокой емкостью, скоростью, используется в системах среднего уровня как в автоматизированных библиотеках, так и в виде автономных устройств. Если уже есть парк катриджей и важна переносимость носителей - DLT будет лучшим выбором.

Устройства DLT1 совместимы по чтению только с DLT4000, но цена соизмерима со старшими DDS, а емкость - соответствует DLT8000.

SDLT, поставки которых начались с апреля 2001 года, в нынешнем своем виде не обладают совместимостью с DLT7000, 8000 и др., что практически ставит их в один ряд с LTO Ultrium. Преимущества SDLT перед Ultium незначительные: несколько больше емкость и чуть-чуть меньше цена.

По спецификациям скорость LTO Ultrium несколько больше, но опыта работы этих устройств в реальных условиях пока недостаточно, чтобы сделать вывод о их преимуществах или недостатках.

8-мм устройства (AIT, а особенно Mammoth) обладают наивысшей скоростью и емкостью (исключая Super DLT и Ultrium, реального опыта работы которых пока еще слишком мало). Если важна скорость, нет «наследственного» парка картриджей и непринципиальна переносимость носителей (с AIT на Mammoth, например) - оптимальным решением будет AIT -2 или Mammoth-2. Эти два устройства не сильно различаются по характеристикам, а стоимость AIT несколько меньше.

Сравнительные тесты работы устройств Mammoth-2, AIT-2, DLT в реальных условиях с разными прикладными программами под разными операционными системами проводились не раз и неизменно лучшие результаты показывал привод Mammoth-2.

Технологии AIT-2 и Mammoth-2 обеспечивает несколько меньшую, чем DLT или LTO удельную стоимость хранения данных. Кроме того, Mammoth-2 от Exabyte - единственный на рынке привод магнитных лент, который может иметь интерфейс Fibre Channel (оптический или «медный», в зависимости от установленного модуля GBIC). Это особенно важно при построении сетей хранения данных (SAN), где используется, в основном, интерфейс FC. В данном случае привод Mammoth-2 подключается к коммутатору или концентратору FC напрямую, без использования не прибавляющих надежности и производительности «мостов» FC - SCSI. Поставки этих приводов уже начались.

И в заключении - сводная таблица технических характеристик различных приводов магнитных лент.

Модель Емкоcть Cкорость Буфер Мб Надежность MTBF
нормаль- ная со сжатием нормаль- ная со сжатием
Наклонно-строчная запись
SONY
DDS-2 (4mm) 4 GB 8 GB 0.78 MB/s 1.56 MB/s 1MB 200000 h
DDS-3 (4mm) 12 GB 24 GB 1.2 MB/s 2.4 MB/s 2 MB 200000 h
DDS-4 (4mm) 20 GB 40 GB 2.4 MB/s 4.8 MB/s 8 MB 250000 h
AIT-1 (8mm) 35 GB 70 GB 3 MB/s 6 MB/s 4 MB 300000 h
AIT-2 (8mm) 50 GB 100 GB 6 MB/s 12 MB/s 10 MB 300000 h
AIT 130 (AIT-2) 50 GB 130GB 6 MB/s 15.6 MB/s 10 MB 300000 h
Ecrix
VXA-1 (8mm) 33 GB 66 GB 3 MB/s 6 MB/s 4 MB 300000 h
Exabyte
Eliant 820 (8mm) 7 GB 14 GB 1 MB/s 2 MB/s 1 MB 200000 h
Mammoth (8mm) 20 GB 40 GB 3 MB/s 6 MB/s 4 MB 250000 h
Mammoth LT (8mm) 14 GB 28 GB 2 MB/s 4 MB/s 4 MB 250000 h
Mammoth-2 (8mm) 60 GB 150 GB 12 MB/s 30 MB/s 32 MB 300000 h
Линейная запись
Quantum/ Tandberg
DLT4000 20 GB 40 GB 1.5 MB/s 3 MB/s 2 MB 200000 h
DLT7000 35 GB 70 GB 5 MB/s 10 MB/s 8 MB 200000 h
DLT8000 40 GB 80 GB 6 MB/s 12 MB/s 8 MB 250000 h
Super DLT 110 GB 220 GB 11 MB/s 22 MB/s Нет даных 250000 h
IBM
LTO Ultrium 100 GB 200 GB 15 MB/s 30 MB/s Нет данных Нет данных
HP
Ultrium 215 100 GB 200 GB 7.5 MB/s 15 MB/s Нет данных Нет данных
Ultrium 230 100 GB 200 GB 15 MB/s 30 MB/s Нет данных Нет данных
Tandberg
DLT1 40GB 80 GB 3 MB/s 6 MB/s нет данных 200000 h
SLR40 (QIC) 20 GB 40 GB 3 MB/s 6 MB/s 8 MB 300000 h
SLR50 (QIC) 25 GB 50 GB 2 MB/s 4 MB/s 2 MB 300000 h
SLR60 (QIC) 30 GB 60 GB 4 MB/s 8 MB/s 8 MB 300000 h
SLR100 (QIC) 50 GB 100 GB 5 MB/s 10 MB/s 8 MB 300000 h
Fujitsu (8»)
M2488 (18/36 track) 1.2 GB 2.4 GB 3 MB/s 2 MB 50000 h
M8100 (128 tracks) 10 GB 13 MB/s 16 MB 100000 h

Накопители на магнитной ленте


Вряд ли сейчас можно встретить накопители на магнитной ленте (стримеры), использующиеся в компьютерах в качестве накопителя данных. Однако это вовсе не означает, что стримеры вымерли и считаются устаревшими устройствами. Более того, в области производства стримеров виден не меньший прогресс, чем в области других накопителей. Просто их назначение несколько другое - стримеры применяются не для хранения, а для архивирования больших объемов информации. Картридж стримера нельзя использовать как обычный сменый диск, архивацией (и только архивацией или восстановлением) занимаются специальные программы-архиваторы. То, что ленточные накопители совсем даже не устарели (некоторые по наивным воспоминаниям о шкафах с бобинами с лентой далекого прошлого склонны так полагать) свидетельствует также тот факт, что эти программы, как правило, и рассчитаны исключительно на стримеры. Примером могут послужить та же программа Microsoft Backup, входящая в поставку Windows и Windows NT. Без соответствующего программного обеспечения вам не удастся использоват свой стример. Размер устройств может быть в зависимости от их типа (см. ниже) либо 3.5", либо 5", причем они могут быть как внутренними, так и внешними. Так как стримеры в основном рассчитаны на крупные рабочие станции или сервероподобные компьютеры, то они практически всегда выпускаются со SCSI-интерфейсом. Раньше, впрочем, были устройства, подключающиеся через интерфейс floppy-дисковода, но они давно перешли в разряд антикварного искусства, так как из-за пауз в процессе архивации на таких приводах можно было выпить не только одну чашку кофе, но и гораздо больше. Основным преимуществом стримеров перед библиотеками дисковых накопителей является их самая низкая стоимость на единицу информации среди всех устройств хранения данных, а также очень хорошая надежность. А для крупных предприятий, как правило, больше ничего и не требуется, тем более что емкость одного картриджа в настоящее время составляет до нескольких сотен Gb, да и скорость работы очень даже приличная, чем далеко не всегда могут похвастаться сменные диски или их системы.

Всегда при архивировании для повышения скорости процесса и его удешевления исползуется компрессия данных. Она может быт либо программной, либо аппаратной. В последнее время практически всегда используется аппаратная, так как соответствующее аппаратное обеспечение стоит довольно недорого, а разгрузка процессора вовсе немаловажна. Хотя, в принципе, большинство программ-архиваторов могут работать и в программном режиме, и от возможностей сжатия стримера можно при желании отказаться, но в этом нет особого сиысла, так как алгоритмы компрессии накоителя тоже работают довольно неплохо. Когда говорят о скоростных или емкостных показателей стримеров, то следует различать реальные параметры устройства и параметры с учетом компрессии. Последние в характеристиках производителей превосходят реальные в два раза, так как в большинстве случаев (архивирование массивов информации, содержащих главным образом текстовые документы, базы данных, некоторое количество не сильно сжатых графических файлов типа JPEG, Web-страницы и т. п.) сжатие составляет 1:2. Все устройства для повышения производительности имеют встроенный кэш, размер которого в зависимости от емкости устройства и его цены может быть от 1-2 до нескольких десятков Mb. Далее мы рассмотрим основные технологии записи на магнитные ленты. Все параметры будут даваться без учета сжатия. Данные, правда, могут оказаться несколько устаревшими (где-то 2000-й год), но, как мне кажется, серьезных отличий между настоящим положением вещей не будет.


8 mm Mamonth

Одно из самых известных устройств на рынке UNIX-систем и предприятий среднего уровня. К сожалению, иногда обладает плохой репутацией в силу низкой надежности лент и устройств ранних поколений, но устройства нового поколения Mamonth не обладают данными недостатками. Основным производителем таких накопителей является компания Exabyte (http://www.exabyte.com/). Емкость носителей составляет до 120 Gb, а скорость записи до 18 Mb/s (без учета сжатия). Как и следует из названия технологии, используется 8-миллиметровая лента (длиной более 100 метров). Практически все стримеры совместимы с предыдущими поколениями накопителей, сделанных по соответствующей технологии.

Технология DLT

Стандарт DLT был разработан и в течение длительного времени предлагался компанией Digital для использования в среде больших вычислительных систем. В начале 90-х годов компания Quantum выкупила права на данную технологию и начала поставки на рынок рабочих станций и PC-серверов. В устройствах типа DLT используется многоканальный метод работы с лентами: одновременно читают или пишут несколько головок устройства, за счет чего достигается высокая скорость работы с лентами. Информация о данных хранится в самом начале ленты и считывается в память после установки картриджа. Изменение этой информации происходит в памяти устройства до тех пор, пока картридж не будет выгружен и буферы не окажутся записанными на ленту. Такой способ работы требует больше времени на операции загрузки и выгрузки ленты из устройства по сравнению с другими технологиями, но позволяет очень эффективно использовать DLT при работе с большим количеством отдельных файлов. Информация о данных на носителе сохраняется при потере или сбое питания и будет записана на ленту при его востановлении. Формат записи на ленту позволяет очень быстро позиционироваться по архивам.

Три фактора определяют большую емкость ленты DLT. Во-первых, DLT использует полудюймовую ленту в противовес 4-миллиметровым и 8-миллиметровым. Во-вторых, картридж почти вдвое больше 4- и 8-миллиметровых. И, наконец, лента практически полностью заполняет картридж. В отличие от 4-миллиметровых и 8-миллиметровых лент, которые имеют две катушки (причем одну пустую), картридж DLT имеет только одну (причем полную). Накопитель DLT предоставляет собой вторую катушку, она подхватывает конец ленты аналогично тому, как это делает катушечный магнитофон.

Специфицировано, что лента DLT поддерживает до 500000 проходов, однако утверждается, что выдерживает и миллион. Exabyte, например, для своих лент специфицировала только 150000 проходов, однако не стоит забывать, что для заполнения DLT-ленты требуется около 50 проходов, тогда как для 8-миллиметровой всего один. Но тем не менее даже с учетом данного обстоятельства это будет означать чуть менее 20000 проходов. Минимальное время хранения носителей составляет 10 лет при комнатных условиях. Время жизни устройств - около 30000 часов работы. Высокая скорость работы с лентой, надежность хранения данных делают DLT во многих случаях лучшим выбором.

Существует несколько разновидностей стандарта: DLT2000, DLT4000, DLT7000, DLT8000, DLT10000. Они в основном отличаются только емкостью и скоростью работы. Эти параметры могут быть равны соответственно 20-40 Gb или больше и 1.5-6 Mb/s или больше. Носители, используемые для накопителей DLT4000 (20 Gb) можно использовать и с накопителями DLT7000 (35 Gb). Для этого необходимо инициализировать носители с блоком в 7 Kb (в противном случае емкость носителей будет только 20 Gb). Следует также упомянуть о SuperDLT. Аннонсированная весной 1998 года компанией Quantum, технология SuperDLT представляет собой качественный скачок в развитии DLT. Емкость одной кассеты на начальном может составлять до 1 TB в будущем, а скорость чтения/записи устройства равна от 10 Mb/s (до 100 Mb/s в будущем). Главная изюминка SuperDLT - технология Laser Guided Magnetic Recording (LGMR). Таким образом, в SuperDLT данные пишутся на одной стороне магнитной ленты, а информация для сервопривода о положении головок чтения/записи на обратной. Благодаря использованию лазера удается очень точно позиционировать головки и соответственно очень близко распологать треки на ленте, что повышает емкость носителя.


Технология DDS

Технология DDS (Digital Data Storage) является компьютерной трансформацией бытовой технологии цифровой записи звука DAT (Digital Audio Tape). В силу этого DDS часто называют DAT, хотя это и не правильно, так как при желании, в принципе, можно подключить к компьютеру DAT-магнитофон и использовать его в качестве стримера. Запись ведется на ленты шириной 2.81 mm с использование технологии Helican-Scan

.

Накопители DDS используют принцип RAW (Read After Write) - автоматическую проверку чтением любого записанного на носитель блока. Это снижает скорость работы накопителей во время записи информации, но зато делает ненужной выполнение этой проверки оператором после записи. На сегодняшний день существует несколько развитий технологии DDS: DDS-1, DDS-2, DDS-3, DDS-4. Носители различных типов отличаются покрытием ленты. В случае попытки использования, например, носителя типа DDS-2 в устройстве DDS-1 магнитофон автоматически выполнит операцию извлечения ленты, не распознав ее тип. Однако совместимость сверху вниз полностью сохраняется. Объем носителей для разных типов устройств может равняться от 4 до 20 Gb (до 40 Gb при успешной компрессии) и больше, скорость записи/чтения соотвественно от 400 Kb/s до 3 Mb/s или более. Как видно, максимальная емкость носителей, созданых, по этой технологии, довольно не велика, но зато при такой же емкостиони стоят дешевле, чем другие стримеры и, возможно, являются оптимальным выбором для небольших фирм или домашних поьзователей. Хотя последние, впрочем, больше предпочитают сменные диски из-за удобства их использования. Время жизни головок 40000 часов, но ресурс кассеты весьма ограничен - не рекомендуется использовать ленту более 99 раз.


QIC, SLR, MLR

Устройство типа QIC обеспечивает скорость записи на ленту 300 Kb/s и вместимость 2.5 Gb данных на ленте длиной 366 метров. Размер устройства - 5.25". Регламентируется 200000 часов работы без отказов cохранена совместимость с форматом QIC-150 как при чтении, так и при записи и с QIC-24 по чтению. Стример содержит буфер размером в 256 килобайт и одну головку чтения/записи. Накопители QIC присутствали на рынке довольно долго время и завоевали популярность на рынке персональных компьютеров и рабочих станций начального уровня прежде всего в силу невысокой стоимости как устройств, так и носителей, но сейчас производство и продажа накопителей QIC уже прекращенны. В настоящий момент на смену QIC пришли накопителя типов SLR и MLR, представляющие собой дальнейшее развитие технологии.

Технология SLR (Single-Channel Linear Recording) представляет собой дальнейшее развитие технологии QIC. Она уже позволяет вести запись на ленту с скоростью 380 Kb/s (760 KB/sec при использовании компрессии), вместимость повысилась до 4 Gb на ленте длиной 366 метров. Время загрузки кассеты равно 30 секундам, среднее время поиска составляет 45 секунд, наработка на отказ - 300000 часов. В целом технология похожа на предыдущую. Сохранена совместимость с форматом QIC по чтению.

Используя технологию SLR, компания Tandberg разработала технологию многоканальной записи на магнитные ленты MLR (Multi-Channel Linear Recording). При расположении нескольких параллельных треков на одной ленте необходимо тщательно отслеживать горизонтальный сдвиг ленты во время ее движения (для того, чтобы треки не наложились друг на друга). Для этого в технологии MLR используются записанные на кассете специальные дорожки и дополнительная головка чтения, следящая за ними. В случае обнаружения сдвига ленты в сторону специальный сервомотор корректирует положение головки. Кроме того, при расположении нескольких треков на ленте приходиться снижать силу магнитного поля каждого из треков и использовать магнитно-резестивные головки чтения/записи (такие же как и в современных жестких дисках), особо чувствительные к магнитным сигналам. Скорость записи на ленту около 2 Mb/s, вместимость - 25 Gb некомпрессованных данных на ленте длиной 462 метра. Время жизни носителей более 10 лет, регламентируется 300000 часов работы устройства без отказов. Сохранена совместимость с форматом SLR.

Стримеры, созданные по технологии MLR, отличаются большей надежностью, чем устройства DDS, так как приводы MLR (и SRL, кстати, тоже) имеют только две подвижные части (для сравнения: helican-scan предусматривает сложный механизм с 16 движущимися частями). Кроме того, во время работы с носителями лента остается внутри упаковки и ее касается только головка чтения/записи (как в обычных аудиомагнитофонах на компакт-кассетах). Компания Tandberg выпустила несколько поколений устройств MLR и планирует продолжить модернизации и дальше. Поколения технологии MLR отличаются количеством поддерживаемых параллельных треков на носителе. Соответственно от этого зависит и емкость носителей.


Sony AIT

Формат AIT был разработ и в настоящее время активно продвигается на рынок компанией Sony. AIT базируется на технологии Helican-Scan и использует носители с лентой шириной 8 mm подобно накопителям фирмы Exabyte. Подобно другим современным форматам записи, AIT-накопитель использует систему трекинга (ATF) для более плотной записи дорожек. Скорость записи данных на ленту составляет 3 Mb/s (до 6 Mb/s если данные хорошо поддаются компрессии) при вместимости 25 Gb данных. Время жизни головок чтения/записи равно 50000 часов.

Особенности AIT

Cпециально спроектированный механизм охлаждения накопителя, выдувающий воздух от механизмов протяжки ленты и головок чтения-записи

  • Единственное в индустрии устройство, использующее перезаписываемый чип на носителе. Чип используется для хранения информации о содержимом ленты

  • Active Head Cleaner - встоенный механизм для очистки головок накопителя, активизируемый устройством при появлении большого количества ошибок при работе с лентой. Таким образом, чистящая лента требуется не через заданное количество проходов, а именно тогда, когда она необходима


  • В скорем времени Sony разработала усовершенствование стандарта - AIT-2. Скорость записи данных на ленту равна теперь 6 Mb/s, а вместимость - 50 Gb.

    Ленточные библиотеки

Помимо обычных устройств, существуют также библиотеки носителей. В зависимости от предполагаемой области применения емкость таких библиотек колеблется от нескольких сотен Gb до 5-10 Tb и выше, а скорость передачи данных может достигать десятков Mb/s (как у хороших жестких дисков). Соответственно и число носителей в библиотеке бывает различно (до нескольких сотен). Как правило, такие устройства оснащаются различными дополнительными функциями, которые могут понадобиться при работе с крупным сервером.

Накопители на магнитной ленте применяются в системах резервного копирования. Резервное копирование данных необходимо, если емкость используемого накопителя на жестких дисках невелика и при этом на нем хранится много программ; результаты работы представлены большими массивами данных; отсутствует свободное место на жестком диске.

В качестве устройств записи данных на магнитную ленту (стримеров) сначала использовались катушечные накопители, аналогичные бытовым катушечным магнитофонам. В 1972 г. фирма ЗМ разработала первую кассету размером 15x10x1,6 см, предназначенную для хранения данных. Внутри кассеты находились две катушки, на которые лентопротяжным механизмом наматывалась лента в процессе чтения/записи. В 1983 г. был выпущен первый стандартный QIC (Quarter-Inch-Catridge - накопитель на магнитной ленте), емкость которого составляла 60 Мбайт. Запись данных производилась на девяти дорожках, а магнитная лента имела длину около 90 м. В дальнейшем был разработан стандарт на мини-кассеты (формат МС). Габариты мини-кассеты, согласно этому стандарту, 8,25 х 6,35 х 1,5 см. Основу магнитного слоя лент QIC составляет оксид железа.

Наибольшее распространение получили накопители на магнитной ленте QIC-40 и QIC-80 формата МС, емкость которых составляет соответственно 40 и 80 Мбайт. Запись информации на кассету QIC-40 производится на 20 дорожек, плотность записи данных - 10000 бит/дюйм.

Преимущества этих накопителей: удельная стоимость хранения данных на ленте (в пересчете на 1 Мбайт) значительно ниже, чем при использовании накопителей на гибких магнитных дисках, и, кроме того, ленточные накопители просты в использовании и надежны.

К недостаткам накопителей на кассетах QIC-40 и QIC-80 относится их низкое быстродействие, так как они подключаются к интерфейсу, предназначенному для накопителей на гибких дисках. Запись данных при этом производится со скоростью 250 - 500 Кбит/с, форматирование кассеты перед записью данных также требует много времени (например, для форматирования кассеты емкостью 60 Мбайт стандарта QIC-40 необходимо около полутора часов).

Дальнейшее развитие накопителей на магнитной ленте пошло по пути увеличения емкости кассет и повышения плотности записи данных. Были разработаны стандарты систем резервного копирования с емкостью кассет от 86 Мбайт до 13 Гбайт. В таких устройствах плотность записи данных на ленту составляет свыше 60 000 бит/дюйм. Запись производится на 144 дорожки. Совместимость кассет различных типов является чрезвычайно важным фактором, который необходимо учитывать при выборе устройства резервирования информации на магнитной ленте, так как ленты не всегда совместимы по своим магнитным свойствам.


Наряду с распространенными в настоящее время устройствами резервного копирования форматов QIC становятся популярны и другие устройства копирования на магнитной ленте, в частности, в компьютерных сетях, манипулирующих большими объемами данных.

Существуют следующие стандарты записи данных на магнитные ленты.

Фирмой Sony освоен выпуск устройств, в которых используются магнитные ленты шириной 4 мм для цифровой звукозаписи DAT (Digital Audio Tape) и ленты шириной 8 мм для видеозаписи. Кроме того, разработан стандарт для хранения данных в цифровом виде DDS (Digital Data Storage). При записи данных на магнитную ленту применяется наклонно-строчная технология, в результате которой используется практически вся поверхность ленты (в отличие от других методов, в которых дорожки оказываются разделенными промежутками).

В середине 1990-х гг. появилась новая технология, позволяющая обеспечить более высокую емкость, скорость передачи данных и надежность резервного копирования - технология DLT (Digital Linear Tape), которая считается одной из самых популярных. Накопители DLT могут хранить 20 - 40 Гбайт данных и обеспечивают скорость передачи данных 1,5 - 3,0 Мбайт/с. В накопителях стандарта DLT во время чтения/записи магнитная лента, разделенная на параллельные горизонтальные дорожки, проходит через неподвижную магниторезистивную головку со скоростью 2,5 - 3,7 м/с, за счет чего повышается надежность работы головки и обеспечивается малый износ магнитного слоя ленты. Расчетный срок службы ленты - 500 000 перемоток. Накопители DLT рассчитаны на использование в сетевых серверах в качестве автоматизированных систем резервирования данных на магнитных лентах.

Стандарт кассет TRAVAN разработала фирма ЗМ. Накопители TRAVAN размещаются в отсеке для дисковода 3,5". Они могут работать как с оригинальными мини-кассетами стандарта TRAVAN, так и с кассетами стандарта QIC. Кассета (или картридж) TRAVAN содержит 225-метровую магнитную ленту шириной 8 мм. Сегодня имеются четыре типа кассет и накопителей TRAVAN (TR-1, -2, -3, -4). Емкости мини-кассет TRAVAN (в соответствии с типом 1, 2, 3 или 4) составляют 400, 800, 1000 и 4000 Мбайт соответственно. Все накопители TRAVAN обеспечивают аппаратное сжатие данных с коэффициентом 2:1, что увеличивает емкость кассет вдвое, т. е. накопитель TR-4 способен хранить до 8 Гбайт информации. Накопители TR-1, -2, -3 обычно подключаются к системе через контроллер накопителя на гибких дисках или параллельный порт, a TR-4 использует интерфейс SCSI-2.

Для современного уровня развития компьютерных технологий характерен неуклонный рост объема данных, хранящихся на серверах. Технологии резервного копирования выходят на передний план, так как затраты на восстановление утерянных данных слишком велики.

Много новых возможностей ожидается от развития технических средств. Наиболее перспективными считаются формат DAT DDS-3 - для небольших организаций с суммарным объемом данных до 10 Гбайт и стандарт DLT - для накопителей на магнитных лентах больших объемов. Стандарт DLT развивается в настоящее время по двум направлениям: создание DLT 4000 (интерфейс SCSI-2 Fast) - для объема данных 20 Гбайт и DLT 7000 (интерфейс SCSI-2 Fast/Wide) - для объема данных 35 Гбайт. Скорость передачи данных для DLT 7000 5-10 Мбайт/с. Американская компания ADIC заявила о выпуске в ближайшем будущем накопителей для резервного копирования данных на магнитных лентах объемом от 11 до 55 Тбайт. Гарантийный срок хранения информации 30 лет.

Для обеспечения гарантированного хранения особо важных данных в оригинальных накопителях применяется новая магнитная головка и технология записи MLR-RWR (Multi-channel Linear Recording-Read While Write), заключающаяся в том, что одновременно с записью информации по нескольким каналам производится ее считывание и сравнение с исходной, а в случае необходимости - коррекция.

Любая современная компания считает интеллектуальную собственность своим капиталом. Для бизнеса в любой отрасли существенен быстрый и надежный доступ к критическим данным. Результаты исследований ученых Техасского университета показали, что более 90% компаний, переживших полную (или катастрофическую) потерю данных, так и не смогли оправиться от потрясения и вернуться на рынок.

Не только в крупных корпорациях, но и на предприятиях малого бизнеса хорошо понимают необходимость резервного копирования и восстановления информации. В системах масштаба предприятия и сетях крупных департаментов, в небольших компаниях и у индивидуальных пользователей одинаковым успехом пользуются потоковые накопители, или стримеры. В основе их конструкции лежит лентопротяжный механизм, работающий в инерционном режиме. Накопители на магнитной ленте применяются вместе с компьютерами еще с начала 50-х годов - именно тогда они стали приходить на смену "бумажным" носителям информации - перфолентам и перфокартам. Немаловажный фактор, обеспечивающий столь продолжительный интерес к накопителям на магнитной ленте, - низкая стоимость хранения информации.

Основная проблема при использовании накопителей на магнитной ленте сегодня заключается в том, что множество таких устройств использует несовместимые друг с другом форматы записи данных на магнитной ленте. Это часто затрудняет не только выбор конкретного накопителя, но и обмен данными при его эксплуатации. Предпринято немало усилий для решения этой проблемы, но в целом можно констатировать, что кардинальных перемен пока не произошло (хотя некий прогресс в этом направлении есть).

Наиболее широко сегодня применяются такие технологии, как Travan, DLT (Digital Linear Type), DAT-DDS (Digital Audio Tape-Digital Data Storage), LTO (Linear Tape Open), Mammoth и AIT (Advanced Intelligent Tape). Для обоснованного выбора системы резервного копирования надо ясно представлять себе достоинства и недостатки разных устройств, которые во многом определяются емкостью системы, ее быстродействием, надежностью и ценой.

Основные стимулы к повышению производительности ленточных устройств среднего и старшего класса - это широкое использование Интернета и распространение корпоративных интрасетей, увеличение числа серверов (нужных, чтобы обеспечить рост этих сетей), а также ужесточение требований к хранению информации и ее восстановлению в случае аварий. Спрос на системы резервного копирования и хранения данных особенно подстегивается все более активным использованием таких приложений, как мультимедиа, видео по запросу, звуковое информационное наполнение, обработка изображений и т.п.

Прежде чем обсудить конкретные технологии, заметим, что применяются два метода записи на магнитную ленту: наклонный и линейный серпантинный. В системах наклонной записи несколько считывающих/записывающих головок размещают на вращающемся барабане, установленном под углом к вертикальной оси (аналогичная схема применяется в бытовой видеоаппаратуре). Движение ленты при записи/чтении возможно только в одном направлении. В системах линейной серпантинной записи считывающая/записывающая головка при движении ленты неподвижна. Данные на ленте записываются в виде множества параллельных дорожек (серпантина). Головка размещается на специальной подставке; по достижении конца ленты она сдвигается на другую дорожку. Движение ленты при записи/чтении идет в обоих направлениях. На самом деле таких головок обычно устанавливается несколько, чтобы они обслуживали сразу несколько дорожек (они образуют несколько каналов записи/чтения).

Технология Travan

Технология Travan, разработанная корпорацией 3М, а ныне перешедшая к ее подразделению, компании Imation (http://www.imation.com), стала новой ступенью развития устройств, базирующихся на стандартах QIC (Quarter Inch Committee). В 1983 г. появились первые приводы, базирующиеся на стандарте QIC-02. Картриджи этих устройств могли хранить 60 Мбайт информации на 300 футах (примерно 90 м) ленты. Стандарты QIC определяют интерфейс между компьютером и стримером, формат ленты, необходимое количество головок, методы кодирования, коды и алгоритмы коррекции данных, а также SCSI-команды для накопителей, использующих этот интерфейс. Наибольшее распространение получили накопители, соответствующие стандартам QIC-40 и QIC-80. Они подключались к компьютеру через уже существующий контроллер флоппи-дисков. Форматы записи допускали как CRC-, так и ECC-кодирование, что позволяло одновременно проводить контроль и исправление ошибок при очень высокой достоверности записи данных (один ошибочный бит из ста триллионов). Стандартом для четвертьдюймовых лент стали картриджи DC6000 и DC2000.

Внутри первых картриджей Travan находилась магнитная лента длиной 228 м и шириной 0,315 дюйма (0,8 см), изготовленная из ферроксидного материала с коэрцитивной силой 550 эрстед, который обеспечивал плотность намагничивания до 14 700 переходов на дюйм. Емкость картриджа TR-1 составляла около 400 Мбайт - это более чем вдвое превышало емкость самого распространенного серийного мини-картриджа QIC-80. TR-1 обладал обратной совместимостью с QIC-80-MC. Вслед за TR-1 были выпущены картриджи TR-2 емкостью 800 Мбайт и TR-3 емкостью 1,6 Гбайт - модификации стандартных форматов QIC-3010 и QIC-3020, имеющих емкости 340 и 670 Мбайт. В 1995 г. 3М запустила в серийное производство мини-картридж TR-4 с максимальной емкостью 4 Гбайт (совместимый с QIC-3095-MC). Первые модели стримеров Travan не потребовали никаких конструкционных изменений носителей информации: в их устройстве применялась уже существовавшая электроника привода и технология изготовления головок.

Компания Imation выпускает два семейства картриджей: Travan - для накопителей настольных компьютеров и Travan NS - для стримеров серверов. Последнее семейство включает три модели: Travan NS 8, Travan NS 20 и Travan NS 36, обеспечивающие хранение 8, 20 и 36 Гбайт сжатых данных соответственно. Среди ведущих производителей Travan-накопителей можно отметить корпорации Seagate Technology (http://www.seagate.com) и Hewlett-Packard (http://www.hp.com). В частности, хорошо известны такие семейства, как Hornet и TapeStore Travan (NS) от Seagate.

Стоит отметить, что новую жизнь в QIC-накопители вдохнула корпорация Tandberg Data (http://www.tandberg.com). Она усовершенствовала многоканальную технологию линейной записи MLR (Multichannel Linear Recording) и начала выпускать накопители SLR (Scalable Linear Recording), отличающиеся более высокой плотностью записи и быстродействием. Например, подобный стример - SLR60 может хранить на ленте 30 Гбайт несжатых данных и передавать их со скоростью 4 Мбайт/с. Одно из основных преимуществ SLR-накопителей Tandberg - высокая надежность: среднее время безотказной работы составляет 300 тыс. часов при 100%-ной загрузке.

Технология DAT-DDS

По данным Dataquest, несомненный лидер в производстве устройств с технологией DAT-DDS - корпорация Hewlett-Packard. Кроме нее в консорциум производителей устройств DAT-DDS (http://www.dds-tape.com) входят такие известные компании, как Sony, Seagate Technology, Tecmar, MKE/Panasonic и Aiwa.

Основой для разработки технологии DDS послужила методика записи высококачественного звука DAT (Digital Audio Tape), поэтому подчеркнем, что DAT и DDS - вовсе не одно и то же. Для DAT-картриджей с лентой шириной 4 мм (точнее 3,81 мм) чаще всего используется формат DDS (Digital Data Storage), разработанный фирмами Sony (http://www.sony.co.jp) и Hewlett-Packard в 1987 г. Он основан на технологии Helical Scan, которая известна как наклонно-строчная запись. Обязательный в данном случае атрибут лентопротяжного механизма - блок вращающихся головок (БВГ), выполненный в виде цилиндра (барабана). В зависимости от используемого формата записи лента обертывается вокруг БВГ под некоторым углом, причем ось самого цилиндра БВГ также наклонена под небольшим углом к ленте.

Битам данных присваиваются числовые значения, после чего эти цифры транслируются в поток электронных импульсов, которые и помещаются на ленте. Эта технология во многом напоминает запись музыки на компакт-диск. Формат DDS, вообще говоря, использует лентопротяжный механизм DAT с четырьмя головками на БВГ: две головки записи и две--чтения после записи. Дорожки записываются парами (так называемыми фреймами), причем записи на дорожках частично перекрываются. Каждый фрейм содержит 8 Кбайт информации. Головки на БВГ расположены под различными азимутальными углами относительно ленты, поэтому каждая головка легко различает свою дорожку. С той же целью задействована система автоматического поиска дорожки ATF (Automatic Track Finding).

Лента обернута вокруг цилиндра БВГ под углом 90°, что уменьшает ее износ. Барабан вращается со скоростью примерно 2000 об./мин, а лента движется довольно медленно - 8,15 мм/с. Емкость картриджей зависит от версии формата DDS (см. табл. 1). Размеры всех картриджей одинаковы и составляют 5,3х7,4х1,0 см. С введением версии DDS/DC (DDS/Data Compression) форматы допускают сжатие данных.

Таблица 1. Характеристики форматов DDS

Формат DDS-1 DDS/DC DDS-2 DDS-3 DDS-4
Год выпуска 1989 1991 1993 1995 1998-99
Исходная емкость, Гбайт 1,3 2 4 12 20
Емкость при сжатии, Гбайт 2,6 4 8 24 40
Длина ленты, м 60 90 120 125 155
Скорость передачи данных, Мбайт/с 0,18 0,18 0,36-0,72 0,72-1,5 3-6

В накопителях DDS-4 технологические улучшения коснулись не только блока вращающихся головок записи-чтения, но и носителя. Надо особо отметить, что во всех стримерах, применяющих технологию Helical Scan, есть возможности верификации данных типа "чтение после записи" и коррекции ошибок непосредственно во время записи.

Дальнейшего развития технология DAT-DDS уже, видимо, не получит. Все ведущие производители, включая Hewlett-Packard, Sony и Seagate Technology, заявили о том, что разработка продуктов категории DDS-5 не планируется.

Технология DLT

Вместе с машиной MicroVAX II от DEC в 1995 г. была анонсирована система резервного копирования, сменным носителем в которой служил небольшой картридж, имевший, в отличие от известных уже картриджей QIC, только одну катушку с лентой. Роль приемной катушки исполнял механизм самого привода. Это позволило сэкономить место в картридже и значительно увеличить длину ленты. Устройство получило название ТК50; на одном его носителе могло храниться 94 Мбайт информации. Но только накопитель TF85, разработанный в 1989 г. инженерами Digital Equipment, можно было назвать первой DLT-системой. Данное устройство, впоследствии названное DLT260, обеспечивало запись 2,6 Гбайт на ленте длиной 1200 футов (360 м) в картридже CompactTape III (ныне известен как DLTtape III).

Основной особенностью нового привода был запатентованный 6-роликовый ведущий механизм с блоком головок HGA (Head Guide Assembly). Он обеспечивал мягкий и плавный ход ленты с минимальным трением. Путь ленты был значительно меньше, чем на приводах с 8-миллиметровой лентой, и это снижало ее износ и повреждения. Благодаря HGA плотность записи на полудюймовой ленте была увеличена с 48 дорожек до 122.

В 1991 г. Digital выпустила привод TF86 (впоследствии названный DLT600), который на картридже DLTtape III мог хранить уже 6 Гбайт данных. Два года спустя появился накопитель, известный сегодня как DLT2000. Емкость кассеты возросла до 10 Гбайт, а скорость передачи данных достигла 1,25 Мбайт/с. Устройство было оснащено 2 Мбайт кэш-памяти.

Отметим, что магниторезистивная головка считывания представляет собой резистор, сопротивление которого меняется в зависимости от напряжения магнитного поля, причем амплитуда сигнала практически не зависит от скорости изменения поля. Это позволяет намного надежнее считывать информацию с ленты и в результате значительно повысить предельную плотность записи. Основной недостаток индуктивных головок - сильная зависимость амплитуды сигнала от скорости перемещения магнитного покрытия и высокий уровень шумов, затрудняющий обнаружение слабых сигналов. В метод же PRML (максимальное правдоподобие при неполном отклике) для считывания информации применяется ряд положений теории распознавания образов. При традиционном декодировании, когда отслеживается амплитуда, частота или фаза считываемого сигнала, эти параметры должны были значительно меняться, чтобы обеспечить надежность. В частности, при записи подряд двух или более совпадающих разрядов их приходилось специальным образом кодировать, что снижало плотность записи. В методе PRML для декодирования применяются шаблоны, с которыми сравнивается считанный сигнал. Это позволяет повысить плотность записи данных на 30-40%.

Благодаря тому, что магнитное кодирование данных происходит на одной стороне ленты, а лазерное кодирование служебной информации - на другой (для позиционирования ленты и контроля скорости), для управления перемещением ленты не требуется отдельной магнитной головки. Головки объединяются в группы (кластеры), резко увеличивая возможную емкость ленты.

Особый фактор - встроенное микропрограммное обеспечение. Оно управляет такими важными функциями и параметрами, как коммуникации по шине SCSI, обнаружение и коррекция ошибок, сжатие данных, скорость ленты, форматирование данных. Кроме того, микропрограммное обеспечение реализует функции протокола SCSI (включая сообщения, команды и параметры).

На одном картридже для модели Super DLTtape 220N хранится 110 Гбайт данных в неуплотненном виде (220 Гбайт при сжатии), а скорость передачи данных достигает 11 Мбайт/с (22 Мбайт/с при сжатии). Плотность записи обеспечивается на уровне 896 треков на дюйм. Максимальная скорость по шине SCSI в пакетном режиме - 80 Мбайт/с. Среднее время наработки на отказ при 100%-ной нагрузке составляет 250 тыс. ч. Использование технологии Super DLT обеспечивает обратную совместимость с накопителями DLT 8000, DLT 7000 и DLT 4000 и картриджами типа DLTtape IV.

Технологию DLT активно поддерживают такие компании, как Breece Hill Technologies, Compaq, Dell, Exabyte, Hewlett-Packard, IBM, StorageTek, Tandberg Data, и другие.

Технология LTO

В ноябре 1997 г. три крупнейших компании, производящих накопители на магнитной ленте, - IBM (http://www.ibm.com), Hewlett-Packard и Seagate Technology объявили о соглашении, результатом которого стало создание новой технологии для стримеров, используемых в больших компьютерных системах. Новая технология, получившая название LTO (Linear Tape Open), объединила преимущества линейных многоканальных двунаправленных форматов записи и улучшенные сервосистему, способ сжатия данных, размещение дорожек, метод коррекции ошибок, производительность и надежность. Ее основные особенности - многоканальная серпантинная запись и высокая плотность записи (до 100 Мбит/кв. дюйм).

На базе LTO-технологии созданы два формата: Ultrium (интенсивная запись) и Accelis (интенсивное чтение). В настоящее время на рынке доступны только устройства, поддерживающие первый формат. При использовании LTO-технологии полная ширина ленты делится на несколько более узких областей. Количество таких областей зависит от типа формата: для Ultrium выделяется четыре области, а для Accelis - две. Блок головок охватывает только одну из имеющихся областей и заполняет их последовательно. На верхней и нижней границах каждой области данных записывается сервоинформация. Форматы Ultrium и Accelis используют одинаковые магниторезистивные головки, сервосистемы и конструкцию отдельных механических и электронных блоков. Однако в Ultrium для большей емкости применяется более широкая лента.

Формат Ultrium использует однокатушечный картридж размером 105х102х21 мм. Это меньше, чем у любого из существующих в индустрии однокатушечных картриджей. На ленте предусмотрено место для 384 дорожек данных, которые распределены на четыре области по 96 дорожек. Скорость передачи данных не превышает 10 -- 20 Мбайт/с.

Таблица 2. Поколения форматов Ultrium

Высокая целостность данных при записи в обоих форматах достигается благодаря двухуровневой коррекции ошибок. Алгоритм контроля и коррекции ошибок обеспечивает надежное восстановление информации даже при потере данных одной из восьми дорожек. Кроме того, существует возможность чтения во время записи - RWW (Read While Write), что позволяет выполнять верификацию данных в реальном масштабе времени. Динамическая перезапись сбойных блоков обеспечивает качественное копирование информации даже при выходе из строя одной или нескольких головок. Сдвоенная сервосистема гарантирует (за счет избыточности) нормальное функционирование накопителя даже в случаях выхода из строя одной из систем или повреждения части сервоинформации, записанной на магнитной ленте.

В картриджи Ultrium и Accelis встраивается специальный модуль LTO-CM (LTO Catridge Memory), который содержит 4 Кбайт энергонезависимой памяти.

Технологии Mammoth и AIT

Первые стримеры с шириной ленты 8 мм были выполнены на базе лентопротяжных механизмов аналоговых видеомагнитофонов VCR (Video Cassette Recorder), подобных выпущенному в свое время Sony. Кроме трех головок - серво-, записи и чтения после записи - имеется отдельная головка для стирания всей информации с ленты. Барабан вращается со скоростью около 1800 об./мин, а лента движется со скоростью примерно 10 мм/с. Каждая дорожка записывается индивидуально и содержит 8 Кбайт информации. Лента обертывается вокруг БВГ больше чем наполовину. Емкость 2-часового картриджа в формате NTSC может составлять до 10 Гбайт. В среднем же одна 8-миллиметровая кассета вмещает от 5 до 7 Гбайт цифровой информации в зависимости от алгоритма сжатия и модели механизма. Первая кассета типа D8 была разработана в 1987 г. фирмой Sony.

Одной из проблем подобных устройств была не очень высокая надежность, поэтому интерес к этому формату после определенного всплеска быстро сошел на нет. Учтя эти проблемы, компания Exabyte (http://www.exabyte.com) в 1996 г. на базе данного формата разработала спецификацию Mammoth, которая поддерживала кассеты емкостью 20 Гбайт и скорость передачи данных до 3 Мбайт/с.

В конце 1999 года Exabyte выпустила накопитель Mammoth-2. На одну ленту он записывает 60 Гбайт несжатых данных и передает их со скоростью 12 Мбайт/с. При использовании средств сжатия данных емкость ленты увеличивается до 150 Гбайт, а производительность накопителя - до 30 Мбайт/с. Среднее время безотказной работы составляет не менее 300 тыс. ч. Срок службы магнитных головок этого накопителя при 100%-ной загрузке достигает 50 тыс. ч. В настоящее время компания Exabyte занята разработкой технологии Mammoth-3, реализация которой позволит хранить на одном носителе 120 Гбайт несжатых данных и обеспечит производительность 18 Мбайт/с.

Корпорация Sony, сотрудничая с Exabyte, разработала собственную технологию AIT. Она также построена на использовании 8-миллиметровых лент, однако, в отличие, например, от DAT, в ней используются барабаны большего диаметра с меньшей скоростью вращения. В картриджах AIT находится высокотехнологичная лента AME (Advanced Metal Evaporated), обеспечивающая повышенную плотность и скорость записи. Хотя ширина носителя в AIT также составляет 8 мм, накопители этого стандарта полностью несовместимы с классическими 8-миллиметровыми устройствами.

Характерная черта картриджей AIT - наличие в них встроенной памяти (Memory-In-Cassette). В MIC хранятся сведения о месторасположении на ленте пользовательских файлов, а также другая, в том числе системная, информация. Это позволяет сократить среднее время доступа к файлу.

Первая версия AIT-1 позволяла хранить на одной кассете 25 Гбайт несжатой информации при скорости обмена 3 Мбайт/с. В дальнейшем для AIT-1 стали выпускаться кассеты с большей длиной ленты, что позволило хранить 35 Гбайт несжатой информации. Современный метод сжатия данных ALDC (Adaptive Lossless Data Compression) позволяет достигнуть коэффициента сжатия 2,6:1. Объем памяти MIC в AIT-1 составляет 16 Кбайт.

Поколение накопителей AIT-2 позволяет хранить на одной кассете 50 Гбайт несжатой информации и обеспечивает производительность 6 Мбайт/с. Объем памяти MIC увеличен до 64 Кбайт. Третье поколение технологии, AIT-3 представлено сегодня накопителем Sony SDX-700C с емкостью носителя 100 Мбайт. Стоит отметить, что в отличие от классических накопителей AIT-устройства не требуют регулярной чистки благодаря встроенной системе AHC (Active Head Cleaner), которая постоянно контролирует их состояние и при необходимости автоматически включает механизм очистки.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!