Энциклопедия мобильной связи

Круговая и эллиптическая поляризация. Поляризация электромагнитных волн

Cтраница 2


Круговой поляризации соответствует постоянная величина эдс независимо от угла поворота антенны.  

Оптическая схема для измерения КД. Излучение входит слева, отклоняется вниз зеркалами М и М, плоско поляризуется составной призмой Р и проходит через параллелепипед Френеля R, где подвергается двум внутренним отражениям, что приводит к сдвигу по фазе на четверть длины волны, т. е. к круговой поляризации. С помощью экрана А устраняется нежелательное излучение и пропускается нужное. Всю эту схему целиком помещают в кюветное отделение стандартных спектрофотометров, вторая схема (с противоположной ориентацией нужна для сравнения. Пробу помещают в точку b при измерении КД или в точку а при изучении пропускания плоскополяризованного излучения.  

Круговую поляризацию проводят в две ступени. Сначала поток излучения нужно сделать плоскополяризованным, а затем поляризованный поток пропустить через устройство, которое разлагает его на компоненты с правой и левой круговой поляризацией. Затем одну из компонент следует сдвинуть по фазе на одну четверть длины волны. Наиболее важное значение имеют три типа устройств для круговой поляризации: параллелепипед Френеля, электрооптический модулятор Покельса и фотоупругий модулятор.  

Круговую поляризацию, а отраженная волна - круговую поляризацию противоположного знака, что обусловлено изменением направления ее распространения на противоположное при прежнем направлении вращения вектора Е в пространстве.  


Круговую поляризацию можно получить, пропустив линейно поляризованный свет через пластинку в четверть волны так, чтобы плоскость поляризации падающего луча составляла угол 45 с главными направлениями в пластинке. Поэтому различают левую и правую эллиптическую (круговую) поляризацию.  

Волна круговой поляризации может быть определена как такое излучение, при котором вектор электрического поля постоянной амплитуды вращается вокруг направления распространения, делая один оборот за период частоты колебаний.  

Возбудитель круговой поляризации представляет собой отрезок прямоугольного волновода, на широкой стенке которого закреплен круглый волновод, связанный с ним тремя щелями связи.  


Направление круговой поляризации можно изменить на обратное, меняя на 90 поляризацию падающего света.  

Перевод круговой поляризации в линейную достигается введением при помощи какого-либо устройства дополнительной разности фаз б л / 2 двух волн, поляризованных во взаимно перпендикулярных направлениях. Обычно для этой цели используется пластинка в четверть длины волны (см. гл. Призма Френеля фактически также служит устройством, обеспечивающим введение дополнительной разности фаз двух волн, поляризованных во взаимно перпендикулярных направлениях. Такой способ обладает тем преимуществом, что достигаемый сдвиг по фазе мало зависит от длины волны падающего света.  

При круговой поляризации длина вектора не меняется. Наиболее распространенными видами поляризации являются вертикальная и горизонтальная.  

Волна круговой поляризации падает на антенну круговой поляризации.  

Антенна круговой поляризации может, конечно, применяться и для приема линейно поляризованных волн, так же как и линейно поляризованная антенна для приема волн круговой поляризации.  

Возбудитель круговой поляризации представляет собой отрезок прямоугольного волновода, на широкой стенке которого закреплен круглый волновод, связанный с ним тремя щелями связи. Расположение щелей рассчитано так, что обеспечивается возбуждение прямой и обратной волн круговой поляризации независимо от частоты во всем рабочем диапазоне частот прибора. На широкой стенке имеется зонд связи с переходом на коаксиальный разъем.  

Поляризация электромагнитных волн.

Для ЭМВ, распространяющихся в какой-либо среде, существует понятие поляризации. Поляризация ЭМВ - это упорядоченность в ориентации векторов напряженности электрического и магнитного полей в плоскости перпендикулярной вектору скорости распространения ЭМВ. Различают эллиптическую, круговую и линейную поляризации.

Характер поляризации определяется конструкцией и ориентацией передающей антенны. В случае линейной поляризации вектор Е, периодически изменяясь, в процессе распространения остается перпендикулярным самому себе. Антенна в виде вертикального вибратора излучает вертикальную линейно-поляризованную волну. Для приема без потерь вибратор приемной антенны должен быть ориентирован также вертикально

Для создания горизонтальной линейно-поляризованной волны передающие вибраторы антенны должны располагаться горизонтально. Однако для спутниковой связи радиоволны в процессе распространения пронизывают ионосферу, находящуюся в магнитном поле Земли. В результате происходит вращение плоскости поляризации линейно-поляризованной волны (эффект Фарадея).

Ионосфера оказывается средой с двойным лучепреломлением, и радиоволна, распространяющаяся через нее, расщепляется на две составляющие. Эти составляющие распространяются в ионосфере с различными фазовыми скоростями. Поэтому при прохождении некоторого расстояния между ними появляется фазовый сдвиг, который приводит к повороту плоскости поляризации. В результате рассогласования поляризации волны, пришедшей в точку приема, и поляризации приемной антенны происходит потеря энергии - возникают поляризационные замирания. Для предотвращения замираний необходимо использовать антенны с круговой поляризацией, при которой вектор Е вращается с частотой радиоволны, описывая при распространении винтовую линию. При этом величина вектора Е останется постоянной. На пути равном длине волны вектор Е поворачивается на 360 градусов.

Для создания антенны с круговой поляризацией необходимо иметь два передающих вибратора, смещенных в пространстве на 90 градусов один относительно другого. Они должны питаться токами равной амплитуды со сдвигом фазы на 90 градусов.

Радиоволны с круговой поляризацией излучают, например, турникетная антенна. Прием волн с круговой поляризацией возможен как на однотипные (турникетная, спиральная) антенны, так и на обычные вибраторы

В зависимости от направления вращения вектора Е круговая поляризация может быть:

  • · левовинтовая;
  • · правовинтовая.

Демонстрация поляризации волн: шнур от ротора перед щелью колеблется по кругу, а за щелью до точки закрепления - линейно

Поляриза́ция волн - характеристика поперечных волн , описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Виды поляризации

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды , всегда перпендикулярным к волновому вектору. Волновой вектор показывает направление распространения волны, а вектор амплитуды показывает, в какую сторону происходят колебания. В трёхмерном пространстве имеется ещё одна степень свободы - возможность вращения вектора амплитуды вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;
  • анизотропность среды распространения волн;
  • преломление и отражение на границе двух сред.

Теория явления

Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например, поляризованные вертикально и горизонтально. Возможны другие разложения, например, по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

Линейную поляризацию имеет обычно излучение антенн .

По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света, прошедшего через поляризаторы, подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например рак-богомол , способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией. Некоторые люди также обладают способностью различать поляризацию света, в частности, эти люди могут наблюдать невооруженным глазом эффекты, связанные с частичной поляризацией света дневного неба. Так описывает этот эффект Лев Николаевич Толстой в своей повести «Юность»: «и, вглядываясь в растворенную дверь балкона … , и в чистое небо, на котором, как смотришь пристально, вдруг показывается как будто пыльное желтоватое пятнышко и снова исчезает;»

История открытия поляризации электромагнитных волн

Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Расмус Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO 3), чаще всего имеющими форму правильного ромбоэдра , которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог.

Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Христиана Гюйгенса . Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, то есть их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).

В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны , то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.

Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.

{ E x = E 1 cos ⁡ (τ + δ 1) E y = E 2 cos ⁡ (τ + δ 2) E z = 0 {\displaystyle {\begin{cases}E_{x}=E_{1}\cos \left(\tau +\delta _{1}\right)\\E_{y}=E_{2}\cos \left(\tau +\delta _{2}\right)\\E_{z}=0\end{cases}}}

Здесь набег фазы τ = k z − ω t {\displaystyle \tau =kz-\omega t} .

Преобразовав и сложив первые два уравнения, можно получить уравнение движения вектора E → {\displaystyle {\vec {E}}} :

(E x E 1) 2 + (E y E 2) 2 − 2 E x E 1 E y E 2 cos ⁡ (δ) = sin 2 ⁡ δ {\displaystyle \left({\frac {E_{x}}{E_{1}}}\right)^{2}+\left({\frac {E_{y}}{E_{2}}}\right)^{2}-2{\frac {E_{x}}{E_{1}}}{\frac {E_{y}}{E_{2}}}\cos(\delta)=\sin ^{2}{\delta }} , где разность фаз δ = δ 1 − δ 2 {\displaystyle \delta =\delta _{1}-\delta _{2}} .

Наряду с S 1 {\displaystyle S_{1}} , S 2 {\displaystyle S_{2}} , S 3 {\displaystyle S_{3}} используют также нормированные параметры Стокса s 1 = S 1 / S 0 {\displaystyle s_{1}=S_{1}/S_{0}} , s 2 = S 2 / S 0 {\displaystyle s_{2}=S_{2}/S_{0}} , s 3 = S 3 / S 0 {\displaystyle s_{3}=S_{3}/S_{0}} . Для поляризованного света s 1 2 + s 2 2 + s 3 2 = 1 {\displaystyle s_{1}^{2}+s_{2}^{2}+s_{3}^{2}=1} .

s - и p -поляризации волн

В оптике и электродинамике s -поляризованная волна (сравните нем. senkrecht - перпендикулярный) имеет вектор электрического поля E, перпендикулярный плоскости падения. s σ -поляризованной, сагиттально поляризованной, волной E-типа , TE-волной (Transverse Electric ) . p -поляризованная волна (сравните лат. parallel - параллельный) имеет вектор электрического поля E, параллельный плоскости падения. p -поляризованную волну также называют π -поляризованной, поляризованной в плоскости падения, волной H-типа , TM-волной (Transverse Magnetic ) .

Термины TM-волна и TE-волна в работах ряда авторов меняются местами. Дело в том, что классически плоская граница предполагает однородность структуры в двух направлениях. В этом случае определяют плоскость падения и перпендикулярность напряженностей по отношению к ней. Разделение электромагнитного поля на два несвязанных решения возможно в более общем случае структуры, однородной в одном направлении. В этом случае удобно определять перпендикулярность напряжённостей по отношению к направлению однородности . Распространение последнего определения на частный классический случай приводит к тому, что напряженность, перпендикулярная к направлению однородности, оказывается в плоскости падения. Отмечается, что в случае металлической поверхности существенны только волны с электрической напряженностью, перпендикулярной к границе металла . Такие волны также удобнее называть TE-волнами. Термины TM и TE связаны также с обозначением поперечных мод в лазерном резонаторе или волноводе.

В сейсмологии p -волна (от англ. primary - первичный) - продольная волна, приходящая от эпицентра землетрясения первой. s -волна (от англ. secondary - вторичный) - поперечная волна (shear wave), имеющая меньшую скорость распространения, чем продольная, и поэтому приходящая от эпицентра позднее.

Cтраница 1


Эллиптическая поляризация (1.146) представляет собой наиболее общий вид поляризации излучения в свободном пространстве.  


Эллиптическую поляризацию электромагнитной волны принято характеризовать коэффициентом эллиптичности поляризации, который определяется отношением длин большой и малой осей эллипса и выражается в децибелах.  

Поэтому эллиптическая поляризация будет правополяризован-ной. Наоборот, для тупых углов (я / 2 С 6 я) составляющие Env и Eav имеют противоположные знаки, и эллиптическая поляризация становится левополяризованной.  

Описание эллиптической поляризации, как и полного сопротивления, основывается на понятиях относительных амплитуд и фаз двух колеблющихся величин. Следовательно, весь математический аппарат, разработанный для описания полного сопротивления, может быть легко приспособлен для описания эллиптической поляризации. Во второй части Десчемпс применяет известный метод Пуанкаре, описывающий эллиптически поляризованные световые волны. Форма и ориентация эллипса задаются широтой и долготой на сфере. Соответствующая проекция сферы Пуанкаре на плоскость приводит к представлению эллиптической поляризации на диаграмме полных сопротивлений, описанной в первой части. Ранее Синклером было установлено, что эквивалентная длина для антенн эллиптической поляризации является комплексной величиной; во второй части показано, как для таких антенн может быть введена действительная эквивалентная длина.  

Электромагнитная волна с круговой поляризацией. (Эллиптическая поляризация занимает промежуточное положение между плоской (и круговой (поляризацией.  

При эллиптической поляризации существует некоторая комбинация вращательного и колебательного движений, а вектор электрического поля вычерчивает в пространстве эллипс.  

Измерение эллиптической поляризации света, отраженного от поверхности металла при наклонном падении линейно поляризованного света, лежит в основе предложенного Друде экспериментального метода определения оптических характеристик них металла. Теория связывает п и х с эксцентриситетом и положением осей эллипса колебаний.  

Определение эллиптической поляризации луча, отраженного поверхностью стекла (или других материалов), производят на поляризационном спектрометре [ 1 (гл.  

Состояние эллиптической поляризации плоской волны в данной точке может быть описано амплитудами и относительными фазами трех взаимно перпендикулярных компонент электрического (или магнитного) поля. Во многих задачах, особенно связанных с антеннами, вполне допустимо выбирать такую систему координат, в которой одна из координатных плоскостей совпадает с поляризационным эллипсом. При этом состояние эллиптической поляризации может быть описано амплитудами и разностью фаз только двух ортогональных компонент вектора поля. Если каждую из этих компонент представить в виде комплексной колебательной функции, то их отношение будет фазором, модуль которого определяет отношение амплитуд компонент, а аргумент - разность фаз.  

Антенны эллиптической поляризации ставят ряд проблем их математического описания и техники измерений, которые не возникают для антенн линейной поляризации. Например, при снятии диаграммы направленности антенны линейной поляризации обычно просто измеряется напряженность поля на достаточном расстоянии от антенны как функция направления; измерением фазы, как правило, не интересуются. У антенн эллиптической поляризации должны быть измерены две компоненты поля, причем важно знать разность фаз между ними. Эти величины изменяются с направлением, и, естественно, возникает вопрос о способе фиксирования такой информации на бумаге.  

С эллиптической поляризацией связано наиболее общее определение естественного света.  



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!