Энциклопедия мобильной связи

Реляционная субд. Базы данных реляционные

РЕЛЯЦИОННАЯ БАЗА ДАННЫХ И ЕЕ ОСОБЕННОСТИ. ВИДЫ СВЯЗЕЙ МЕЖДУ РЕЛЯЦИОННЫМИ ТАБЛИЦАМИ

Реляционная база данных - это совокупность взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного типа. Строка таблицы содержит данные об одном объекте (например, товаре, клиенте), а столбцы таблицы описывают различные характеристики этих объектов - атрибутов (например, наименование, код товара, сведения о клиенте). Записи, т. е. строки таблицы, имеют одинаковую структуру - они состоят из полей, хранящих атрибуты объекта. Каждое поле, т. е. столбец, описывает только одну характеристику объекта и имеет строго определенный тип данных. Все записи имеют одни и те же поля, только в них отображаются различные информационные свойства объекта.

В реляционной базе данных каждая таблица должна иметь первичный ключ - поле или комбинацию полей, которые единственным образом идентифицируют каждую строку таблицы. Если ключ состоит из нескольких полей, он называется составным. Ключ должен быть уникальным и однозначно определять запись. По значению ключа можно отыскать единственную запись. Ключи служат также для упорядочивания информации в БД.

Таблицы реляционной БД должны отвечать требованиям нормализации отношений. Нормализация отношений - это формальный аппарат ограничений на формирование таблиц, который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение базы данных.

Пусть создана таблица Студент, содержащая следу-рэщие поля: № группы, ФИО, № зачетки, дата рождения, шазвание специальности, название факультета. Такая организация хранения информации будет иметь ряд недостатков:

  • дублирование информации (наименование специальности и факультета повторяются для каждого студента), следовательно, увеличится объем БД;
  • процедура обновления информации в таблице затрудняется из-за необходимости редактирования каждой записи таблицы.

Нормализация таблиц предназначена для устранения этих недостатков. Имеется три нормальные формы отношений .

Первая нормальная форма. Реляционная таблица приведена к первой нормальной форме тогда и только тогда, когда ни одна из ее строк не содержит в любом своем поле более одного значения и ни одно из ее ключевых полей не пусто. Так, если из таблицы Студент требуется получать сведения по имени студента, то поле ФИО следует разбить на части Фамилия, Имя, Отчество.

Вторая нормальная форма . Реляционная таблица задана во второй нормальной форме, если она удовлетворяет требованиям первой нормальной формы и все ее поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом. Чтобы привести таблицу ко второй нормальной форме, необходимо определить функциональную зависимость полей. Функциональная зависимость полей - это зависимость, при крторой в экземпляре информационного объекта определенному значению ключевого реквизита соответствует только одно значение описательного реквизита.

Третья нормальная форма. Таблица находится в третьей нормальной форме, если она удовлетворяет требованиям второй нормальной формы, ни одно из ее неключевых полей не зависит функционально от любого другого неключевого поля. Например, в таблице Студент (№ группы, ФИО, № зачетной книжки, Дата рождения, Староста) три поля - № зачетной книжки, № группы, Староста находятся в транзитивной зависимости. № группы зависит от № зачетной книжки, а Староста зависит от № группы. Для устранения транзитивной зависимости необходимо часть полей таблицы Студент перенести в другую таблицу Группа. Таблицы примут следующий вид: Студент (№ группы, ФИО, № зачетной книжки, Дата рождения), Группа (№ группы, Староста).

Над реляционными таблицами возможны следующие операции:

  • Объединение таблиц с одинаковой структурой. Результат- общая таблица: сначала первая, затем вторая (конкатенация).
  • Пересечение таблиц с одинаковой структурой. Результат - выбираются те записи, которые находятся в обеих таблицах.
  • Вычитание таблиц с одинаковой структурой. Результат - выбираются те записи, которых нет в вычитаемом.
  • Выборка (горизонтальное подмножество). Результат - выбираются записи, отвечающие определенным условиям.
  • Проекция (вертикальное подмножество). Результат - отношение, содержащее часть полей из исходных таблиц.
  • Декартово произведение двух таблиц Записи результирующей таблицы получаются путем объединения каждой записи первой таблицы с каждой записью другой таблицы.

Реляционные таблицы могут быть связаны друг с другом, следовательно, данные могут извлекаться одновременно из нескольких таблиц. Таблицы связываются между собой для того, чтобы в конечном счете уменьшить объем БД. Связь каждой пары таблиц обеспечивается при наличии в них одинаковых столбцов.

Существуют следующие типы информационных связей:

  • один-к-одному;
  • один-ко-многим;
  • многие-ко-многим.

Связь один-к-одному предполагает, что одному атрибуту первой таблицы соответствует только один атрибут второй таблицы и наоборот.

Связь один-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы.

Связь многие-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы и наоборот.

Модель данных - совокупность структур данных и операций по их обработке. С помощью модели данных можно наглядно представить структуру объектов и установленные меж­ду ними связи. Для терминологии моделей данных характерны понятия «эле­мент данных» и «правила связывания». Элемент данных описывает любой на­бор данных, а правила связывания определяют алгоритмы взаимосвязи элементов данных. К настоящему времени разработано множество различных моделей дан­ных, но на практике используется три основных. Выделяют иерархическую, сетевую и реляционную модели данных. Соответственно говорят об иерархичес­ких, сетевых и реляционных СУБД.

О Иерархическая модель данных. Иерархически организованные данные встре­чаются в повседневной жизни очень часто. Например, структура высшего учеб­ного заведения - это многоуровневая иерархическая структура. Иерархичес­кая (древовидная) БД состоит из упорядоченного набора элементов. В этой модели исходные элементы порождают другие элементы, причем эти элементы в свою очередь порождают следующие элементы. Каждый порожденный эле­мент имеет только один порождающий элемент.

Организационные структуры, списки материалов, оглавление в книгах, пла­ны проектов и многие другие совокупности данных могут быть представле­ны в иерархическом виде. Автоматически поддерживается целостность ссы­лок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя.

Основным недостатком данной модели является необходимость использова­ния той иерархии, которая была заложена в основу БД при проектировании. Потребность в постоянной реорганизации данных (а часто невозможность этой реорганизации) привели к созданию более общей модели - сетевой.

О Сетевая модель данных. Сетевой подход к организации данных является рас­ширением иерархического подхода. Данная модель отличается от иерахической тем, что каждый порожденный элемент может иметь более одного по­рождающего элемента. ■

Поскольку сетевая БД может представлять непосредственно все виды связей, присущих данным соответствующей организации, по этим данным можно переме­щаться, исследовать и запрашивать их всевозможными способами, то есть сете­вая модель не связана всего лишь одной иерархией. Однако для того чтобы со­ставить запрос к сетевой БД, необходимо достаточно глубоко вникнуть в ее структуру (иметь под рукой схему этой БД) и выработать механизм навигации по базе данных, что является существенным недостатком этой модели БД.

О Реляционная модель данных. Основная идея реляционной модели данных за­ключается в том, чтобы представить любой набор данных в виде двумерной таблицы. В простейшем случае реляционная модель описывает единственную двумерную таблицу, но чаще всего эта модель описывает структуру и взаи­моотношения между несколькими различными таблицами.

Реляционная модель данных

Итак, целью информационной системы является обработка данных об объектах реального мира, с учетом связей между объектами. В теории БД данные часто называют атрибутами, а объекты - сущностями. Объект, атрибут и связь - фундаментальные понятия И.С.

Объект (или сущность) - это нечто существующее и различимое, то есть объектом можно назвать то «нечто», для которого существуют название и спо­соб отличать один подобный объект от другого. Например, каждая школа - это объект. Объектами являются также человек, класс в школе, фирма, сплав, хи­мическое соединение и т. д. Объектами могут быть не только материальные пред­меты, но и более абстрактные понятия, отражающие реальный мир. Например, события, регионы, произведения искусства; книги (не как полиграфическая про­дукция, а как произведения), театральные постановки, кинофильмы; правовые нормы, философские теории и проч.

Атрибут (или данное) - это некоторый показатель, который характеризует некий объект и принимает для конкретного экземпляра объекта некоторое чис­ловое, текстовое или иное значение. Информационная система оперирует на­борами объектов, спроектированными применительно к данной предметной области, используя при этом конкретные значения атрибутов (данных) тех или иных объектах. Например, возьмем в качестве набора объектов классы в школе. Число учеников в классе - это данное, которое принимает числовое значение (у одного класса 28, у другого- 32). Название класса - это данное, принимающее текстовое значение (у одного - 10А, у другого - 9Б и т. д.).

Развитие реляционных баз данных началось в конце 60-х годов, когда по­явились первые работы, в которых обсуждались; возможности использования при проектировании баз данных привычных и естественных способов представле­ния данных - так называемых табличных даталогических моделей.

Основоположником теории реляционных баз данных считается сотрудник фирмы IBM доктор Э. Кодд, опубликовавший 6 (июня 1970 г. статью A Relational Model of Data for Large-Shared Data Banks (Реляционная модель данных для больших коллективных банков данных). В этой статье впервые был использован термин «реляционная модель данных. Теория реляционных баз данных, разработанная в 70-х годах в США докто­ром Э. Коддом, имеет под собой мощную математическую основу, описывающую правила эффективной организации данных. Разработанная Э. Коддом теорети­ческая база стала основой для разработки теории проектирования баз данных.

Э. Кодд, будучи математиком по образованию, предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, раз­ность, декартово произведение). Он доказал, что любой набор данных можно представить в виде двумерных таблиц особого вида, известных в математике как «отношения».

Реляционной считается такая база данных, в которой все данные представле­ны для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами.

Таблица состоит из столбцов (полей) и строк (записей); имеет имя, уникаль­ное внутри базы данных. Таблица отражает тип объекта реального мира (сущ­ность), а каждая ее строка- конкретный объект. Каждый столбец таблицы - это совокупность значений конк­ретного атрибута объекта. Значения выбираются из множества всех возможных значений атрибута объек­та, которое называется доменом (domain) .

В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементам данных. Если при вычислении логическо­го условия относительно элемента данных в результате получено значение «исти­на», то этот элемент принадлежит домену. В простейшем случае домен определяется как допустимое потенциальное множество значений одного типа. Например, со­вокупность дат рождения всех сотрудников составляет «домен дат рождения», а имена всех сотрудников составляют «домен имен сотрудников». Домен дат рож­дения имеет тип данных, позволяющий хранить информацию о моментах време­ни, а домен имен сотрудников должен иметь символьный тип данных.

Если два значения берутся из одного и того же домена, то можно выполнять сравнение этих двух значений. Например, если два значения взяты из домена дат рождения, то можно сравнить их и определить, кто из сотрудников старше. Если же значения берутся из разных доменов, то их сравнение не допускается, так как, по всей вероятности, оно не имеет смысла. Например, из сравнения имени и даты рождения сотрудника ничего определенного не выйдет.

Каждый столбец (поле) имеет имя, которое обычно записывается в верхней части таблицы. При проектировании таблиц в рамках конкретной СУБД имеет­ся возможность выбрать для каждого поля его тип, то есть определить набор правил по его отображению, а также определить те операции, которые можно выполнять над данными, хранящимися в этом поле. Наборы типов могут разли­чаться у разных СУБД.

Имя поля должно быть уникальным в таблице, однако различные таблицы могут иметь поля с одинаковыми именами. Любая таблица должна иметь, по крайней мере, одно поле; поля расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от полей, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.

Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции - среди них не существует «первой», «второй», «последней». Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом (primary key) . Часто вводят искусственное поле, предназначенное для нумерации за­писей в таблице. Таким полем, например, может быть его порядковый, который сможет обеспечить уникальность каж­дой записи в таблице. Ключ должен обладать следующими свойствами.

Уникальностью. В каждый момент времени никакие два различных кортежа отношения не имеют одинакового значения для комбинации входящих в ключ атрибутов. То есть в таблице не может быть двух строк, имеющих одинако­вый идентификационный номер или номер паспорта.

Минимальностью. Ни один из входящих в ключ атрибутов не может быть ис­ключен из ключа без нарушения уникальности. Это означает, что не стоит со­здавать ключ, включающий и номер паспорта, и идентификационный номер. Достаточно использовать любой из этих атрибутов, чтобы однозначно иденти­фицировать кортеж. Не стоит также включать в ключ неуникальный атрибут, то есть запрещается использование в качестве ключа комбинации идентифи­кационного номера и имени служащего. При исключении имени служащего из ключа все равно можно уникально идентифицировать каждую строку.

Каждое отношение имеет, по крайней мере, один возможный ключ, посколь­ку совокупность всех его атрибутов удовлетворяет условию уникальности - это следует из самого определения отношения.

Один из возможных ключей произвольно выбирается в качестве первичного ключа. Остальные возможные ключи, если они есть, принимаются за альтерна­тивные ключи. Например, если в качестве первичного ключа выбрать иденти­фикационный номер, то номер паспорта будет альтернативным ключом.

Взаимосвязь таблиц является важнейшим элементом реляционной модели данных. Она поддерживается внешними ключами (foreign key).

При описании модели реляционной базы данных для одного и того же поня­тия часто употребляют различные термины, что зависит от уровня описания (теория или практика) и системы (Access, SQL Server, dBase). В табл. 2.3 приве­дена сводная информация об используемых терминах.

Таблица 2.3. Терминология баз данных

Теория БД____________ Реляционные БД_________ SQL Server __________

Отношение (Relation) Таблица (Table) Таблица (Table)

Кортеж (Tuple) Запись (Record) Строка (Row)

Атрибут (Attribute)Поле (Field)_______________ Столбец или колонка (Column)

Реляционные базы данных

Реляционная база данных - это совокупность отношений, содержащих всю ин­формацию, которая должна храниться в базе данных. То есть база данных пред­ставляет набор таблиц, необходимых для хранения всех данных. Таблицы реля­ционной базы данных логически связаны между собой.Требования к проектированию реляционной базы данных в общем виде можно свести к нескольким правилам.

О Каждая таблица имеет уникальное в базе данных имя и состоит из однотипных строк.

О Каждая таблица состоит из фиксированного числа столбцов и значений. В одном столбце строки не может быть сохранено более одного значения. Например, если есть таблица с информацией об авторе, дате издания, тираже и т. д., то в столбце с именем автора не может храниться более одной фамилии. Если книга написана двумя и более авторами, придется использовать дополнительные таблицы.

О Ни в какой момент времени в таблице не найдется двух строк, дублирующих друг друга. Строки должны отличаться хотя бы одним значением, чтобы была возможность однозначно идентифицировать любую строку таблицы.

О Каждому столбцу присваивается уникальное в пределах таблицы имя; для него устанавливается конкретный тип данных, чтобы в этом столбце размещались однородные значения (даты, фамилии, телефоны, денежные суммы и т. д.).

О Полное информационное содержание базы данных представляется в виде яв­ных значений самих данных, и такой метод представления является единствен­ным. Например, связь между таблицами осуществляется на основе хранимых в соответствующих столбцах данных, а не на основе каких-либо указателей, искусственно определяющих связи.

О При обработке данных можно свободно обращаться к любой строке или лю­бому столбцу таблицы. Значения, хранимые в таблице, не накладывают ни­каких ограничений на очередность обращения к данным. Описание столбцов,

Нормализация

Нормальные формы

См. также

  • Реляционная модель
  • Реляционные СУБД

Смотреть что такое "Реляционные БД" в других словарях:

    Реляционные базы данных - Реляционная база данных база данных, основанная на реляционной модели данных. Слово «реляционный» происходит от англ. relation (отношение). Для работы с реляционными БД применяют реляционные СУБД. Использование реляционных баз данных было… … Википедия

    Реляционные СУБД - Реляционная СУБД (РСУБД; иначе Система управления реляционными базами данных, СУРБД) СУБД, управляющая реляционными базами данных. Понятие реляционный (англ. relation отношение) связано с разработками известного английского специалиста в… … Википедия

    Пространственная БД - Реляционные БД хранят данные в двухмерном формате, в котором таблицы с данными представлены в виде строчек и столбцов. Многомерные системы БД предлагают расширение этой системы для обеспечения возможности многомерного изображения данных. К… … Википедия

    Алгебра Кодда - Содержание 1 Реляционные операторы 1.1 Совместимость отношений … Википедия

    OLAP - (англ. online analytical processing, аналитическая обработка в реальном времени) технология обработки данных, заключающаяся в подготовке суммарной (агрегированной) информации на основе больших массивов данных, структурированных по… … Википедия

    Грамматическая категория - Грамматическая категория замкнутая система взаимоисключающих и противопоставленных друг другу грамматических значений (граммем), задающая разбиение обширной совокупности словоформ (или небольшого набора высокочастотных словоформ с… … Википедия

    ORM - также может означать: англ. Object Role Model, рус. Модель ролей объекта методика концептуального проектирования информационных систем, включающая собственную графическую нотацию. Содержание 1 Задача … Википедия

    СУБД

    Файл-серверная СУБД - Система управления базами данных (СУБД) специализированная программа (чаще комплекс программ), предназначенная для организации и ведения базы данных. Для создания и управления информационной системой СУБД необходима в той же степени, как для… … Википедия

    Реляционная алгебра - Реляционная алгебра замкнутая система операций над отношениями в реляционной модели данных. Операции реляционной алгебры также называют реляционными операциями. Первоначальный набор из 8 операций был предложен Э. Коддом в 1970 е годы и… … Википедия

Книги

  • Реляционные базы данных. Руководство , Уидом Дженнифер. Книга "Реляционные базы данных" написана хорошо известными учеными Станфордского университета Джеффри Ульманом и Дженнифер Уидом. Авторы предлагают ориентированный на пользователя подход к… Купить за 1074 руб
  • Реляционные базы данных , Ульман Д., Уидом Д.. Книга"Реляционные базы данных"написана хорошо известными учеными Станфордского университета Джеффри Ульманом и Дженнифер Уидом. Авторы предлагают ориентированный на пользователя подход к…

Появление компьютерной техники в нашей современности ознаменовало информационный переворот во всех сферах человеческой деятельности. Но для того, чтобы вся информация не стала ненужным мусором в глобальной сети Интернет, была изобретена система баз данных, в которой материалы сортируются, систематизируются, в результате чего их легко отыскать и представить последующей обработке. Существуют три основные разновидности - выделяют базы данных реляционные, иерархические, сетевые.

Фундаментальные модели

Возвращаясь к возникновению баз данных, стоит сказать, что этот процесс был достаточно сложным, он берет свое начало вместе с развитием программируемого оборудования обработки информации. Поэтому неудивительно, что количество их моделей на данный момент достигает более 50, но основными из них считаются иерархическая, реляционная и сетевая, которые и до сих пор широко применяются на практике. Что же они собой представляют?

Иерархическая имеет древовидную структуру и составляется из данных разных уровней, между которыми существуют связи. Сетевая модель БД представляет собой более сложный шаблон. Ее структура напоминает иерархическую, а схема расширенная и усовершенствованная. Разница между ними в том, что потомственные данные иерархической модели могут иметь связь только с одним предком, а у сетевой их может быть несколько. Структура реляционной базы данных гораздо сложнее. Поэтому ее следует разобрать более подробно.

Основное понятие реляционной базы данных

Такая модель была разработана в 1970-х годах доктором науки Эдгаром Коддом. Она представляет собой логически структурированную таблицу с полями, описывающую данные, их отношения между собой, операции, произведенные над ними, а главное - правила, которые гарантируют их целостность. Почему модель называется реляционной? В ее основе лежат отношения (от лат. relatio) между данными. Существует множество определений этого типа базы данных. Реляционные таблицы с информацией гораздо проще систематизировать и придать обработке, нежели в сетевой или иерархической модели. Как же это сделать? Достаточно знать особенности, структуру модели и свойства реляционных таблиц.

Процесс моделирования и составления основных элементов

Для того чтобы создать собственную СУБД, следует воспользоваться одним из инструментов моделирования, продумать, с какой информацией вам необходимо работать, спроектировать таблицы и реляционные одно- и множественные связи между данными, заполнить ячейки сущностей и установить первичный, внешние ключи.

Моделирование таблиц и проектирование реляционных баз данных производится посредством бесплатных инструментов, таких как Workbench, PhpMyAdmin, Case Studio, dbForge Studio. После детальной проектировки следует сохранить графически готовую реляционную модель и перевести ее в готовый SQL-код. На этом этапе можно начинать работу с сортировкой данных, их обработку и систематизацию.

Особенности, структура и термины, связанные с реляционной моделью

Каждый источник по-своему описывает ее элементы, поэтому для меньшей путаницы хотелось бы привести небольшую подсказку:

  • реляционная табличка = сущность;
  • макет = атрибуты = наименование полей = заголовок столбцов сущности;
  • экземпляр сущности = кортеж = запись = строка таблички;
  • значение атрибута = ячейка сущности= поле.

Для перехода к свойствам реляционной базы данных следует знать, из каких базовых компонентов она состоит и для чего они предназначены.

  1. Сущность. Таблица реляционной базы данных может быть одна, а может быть целый набор из таблиц, которые характеризируют описанные объекты благодаря хранящимся в них данным. У них фиксированное количество полей и переменное число записей. Таблица реляционной модели баз данных составляется из строк, атрибутов и макета.
  2. Запись - переменное число строк, отображающих данные, что характеризируют описываемый объект. Нумерация записей производится системой автоматически.
  3. Атрибуты - данные, демонстрирующие собой описание столбцов сущности.
  4. Поле. Представляет собой столбец сущности. Их количество - фиксированная величина, устанавливаемая во время создания или изменения таблицы.

Теперь, зная составляющие элементы таблицы, можно переходить к свойствам реляционной модели database:

  • Сущности реляционной БД двумерные. Благодаря этому свойству с ними легко проделывать различные логические и математические операции.
  • Порядок следования значений атрибутов и записей в реляционной таблице может быть произвольным.
  • Столбец в пределах одной реляционной таблицы должен иметь свое индивидуальное название.
  • Все данные в столбце сущности имеют фиксированную длину и одинаковый тип.
  • Любая запись в сущности считается одним элементом данных.
  • Составляющие компоненты строк единственны в своем роде. В реляционной сущности отсутствуют одинаковые строки.

Исходя из свойств понятно, что значения атрибутов должны быть одинакового типа, длины. Рассмотрим особенности значений атрибутов.

Основные характеристики полей реляционных БД

Названия полей должны быть уникальными в рамках одной сущности. Типы атрибутов или полей реляционных баз данных описывают, данные какой категории хранятся в полях сущностей. Поле реляционной базы данных должно иметь фиксированный размер, исчисляемый в символах. Параметры и формат значений атрибутов определяют манеру исправления в них данных. Еще есть такое понятие, как "маска", или "шаблон ввода". Оно предназначено для определения конфигурации ввода данных в значение атрибута. Непременно при записи неправильного в поле должно выдаваться извещение об ошибке. Также на элементы полей накладываются некоторые ограничения - условия проверки точности и безошибочности ввода данных. Существует некоторое обязательное значение атрибута, которое однозначно должно быть заполнено данными. Некоторые строки атрибутов могут быть заполнены NULL-значениями. Разрешается ввод пустых данных в атрибуты полей. Как и извещение об ошибке, есть значения, которые заполняются системой автоматически - это данные по умолчанию. Для ускорения поиска любых данных предназначено индексированное поле.

Схема двумерной реляционной таблицы базы данных

Для детального понимания модели с помощью SQL лучше всего рассмотреть схему на примере. Нам уже известно, что представляет собой реляционная БД. Запись в каждой таблице - это один элемент данных. Чтобы предотвратить избыточность данных, необходимо провести операции нормализации.

Базовые правила нормализации реляционной сущности

1. Значение названия поля для реляционной таблицы должно быть уникальным, единственным в своем роде (первая нормальная форма - 1НФ).

2. Для таблицы, которая уже приведена к 1НФ, наименование любого неидентифицирующего столбца должно быть зависимым от уникального идентификатора таблицы (2НФ).

3. Для всей таблицы, что уже находится в 2НФ, каждое неидентифицирующее поле не может зависеть от элемента другого неопознанного значения (3НФ сущности).

Базы данных: реляционные связи между таблицами

Существует 2 основных реляционных табличек:

  • «Один-многие». Возникает при соответствии одной ключевой записи таблицы №1 нескольким экземплярам второй сущности. Значок ключа на одном из концов проведенной линии говорит о том, что сущность находится на стороне «один», второй конец линии зачастую отмечают символом бесконечности.

  • Связь «много-много» образуется в случае возникновения между несколькими строками одной сущности явного логичного взаимодействия с рядом записей другой таблицы.
  • Если между двумя сущностями возникает конкатенация «один к одному», это значит, что ключевой идентификатор одной таблицы присутствует в другой сущности, тогда следует убрать одну из таблиц, она лишняя. Но иногда исключительно в целях безопасности программисты преднамеренно разделяют две сущности. Поэтому гипотетически связь «один к одному» может существовать.

Существование ключей в реляционной базе данных

Первичный и вторичный ключи определяют потенциальные отношения базы данных. Реляционные связи модели данных могут иметь только один потенциальный ключ, это и будет primary key. Что же он собой представляет? Первичный ключ - это столбец сущности или набор атрибутов, благодаря которому можно получить доступ к данным конкретной строки. Он должен быть уникальным, единственным, а его поля не могут содержать пустых значений. Если первичный ключ состоит всего из одного атрибута, тогда он называется простым, в ином случае будет составляющим.

Кроме первичного ключа, существует и внешний (foreign key). Многие не понимают, какая между ними разница. Разберем их более детально на примере. Итак, существует 2 таблицы: «Деканат» и «Студенты». Сущность «Деканат» содержит поля: «ID студента», «ФИО» и «Группа». Таблица «Студенты» имеет такие значения атрибутов, как «ФИО», «Группа» и «Средний бал». Так как ID студента не может быть одинаковым для нескольких студентов, это поле и будет первичным ключом. «ФИО» и «Группа» из таблицы «Студенты» могут быть одинаковыми для нескольких человек, они ссылаются на ID номер студента из сущности «Деканат», поэтому могут быть использованы в качестве внешнего ключа.

Пример модели реляционной базы данных

Для наглядности приведем простой пример реляционной модели базы данных, состоящей из двух сущностей. Существует таблица с названием «Деканат».

Необходимо провести связи, чтобы получилась полноценная реляционная база данных. Запись "ИН-41", как и "ИН-72", может присутствовать не единожды в табличке "Деканат", также фамилия, имя и отчество студентов в редких случаях могут совпадать, поэтому данные поля никак нельзя сделать первичным ключом. Покажем сущность «Студенты».

Как мы видим, типы полей реляционных баз данных совершенно различаются. Присутствуют как цифровые записи, так и символьные. Поэтому в настройках атрибутов следует указывать значения integer, char, vachar, date и другие. В таблице "Деканат" уникальным значением является только ID студента. Данное поле можно взять за первичный ключ. ФИО, группа и телефон из сущности "Студенты" могут быть взяты как внешний ключ, ссылающийся на ID студента. Связь установлена. Это пример модели со связью «один к одному». Гипотетически одна из таблиц лишняя, их можно легко объединить в одну сущность. Чтобы ID-номера студентов не стали всеобще известными, вполне реально существование двух таблиц.

Базой данных (БД) называется организованная в соответствии с определенными правилами и поддерживаемая в памяти компьютера совокупность сведений об объектах, процессах, событиях или явлениях, относящихся к некоторой предметной области, теме или задаче. Она организована таким образом, чтобы обеспечить информационные потребности пользователей, а также удобное хранение этой совокупности данных, как в целом, так и любой ее части.

Реляционная база данных представляет собой множество взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного вида. Каждая строка таблицы содержит данные об одном объекте (например, автомобиле, компьютере, клиенте), а столбцы таблицы содержат различные характеристики этих объектов - атрибуты (например, номер двигателя, марка процессора, телефоны фирм или клиентов).

Строки таблицы называются записями. Все записи таблицы имеют одинаковую структуру - они состоят из полей (элементов данных), в которых хранятся атрибуты объекта (рис. 1). Каждое поле записи содержит одну характеристику объекта и представляет собой заданный тип данных (например, текстовая строка, число, дата). Для идентификации записей используется первичный ключ. Первичным ключом называется набор полей таблицы, комбинация значений которых однозначно определяет каждую запись в таблице.

Рис. 1. Названия объектов в таблице

Для работы с данными используются системы управления базами данных (СУБД). Основные функции СУБД:

Определение данных (описание структуры баз данных);

Обработка данных;

Управление данными.

Разработка структуры БД - важнейшая задача, решаемая при проектировании БД. Структура БД (набор, форма и связи ее таблиц) - это одно из основных проектных решений при создании приложений с использованием БД. Созданная разработчиком структура БД описывается на языке определения данных СУБД.

Любая СУБД позволяет выполнять следующие операции с данными:

Добавление записей в таблицы;

Удаление записей из таблицы;

Обновление значений некоторых полей в одной или нескольких записях в таблицах БД;

Поиск одной или нескольких записей, удовлетворяющих заданному условию.

Для выполнения этих операций применяется механизм запросов. Результатом выполнения запросов является либо отобранное по определенным критериям множество записей, либо изменения в таблицах. Запросы к базе формируются на специально созданном для этого языке, который так и называется «язык структурированных запросов» (SQL - Structured Query Language).

Под управлением данными обычно понимают защиту данных от несанкционированного доступа, поддержку многопользовательского режима работы с данными и обеспечение целостности и согласованности данных.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!