Энциклопедия мобильной связи

Аппаратное обеспечение лвс. Аппаратное и программное обеспечение

составляют активные устройства, обеспечивающие передачу информации между узлами сети. В список таких устройств входят сетевые адаптеры, сетевые концентраторы и коммутаторы, мосты и маршрутизаторы.
Сетевой адаптер устанавливается на узле сети и осуществляет соединение его с каналом передачи данных. Для связи с остальными узлами сети выполняет следующие операции – буферизацию данных, формирование пакета, доступ к среде передачи, преобразование данных, их кодирование и декодирование и, наконец, передачу и прием.

Назначение сетевых концентраторов и коммутаторов аналогично – соединение нескольких узлов ЛВС лежащих в пределах одного сегмента. Разница состоит в том, что концентратор транслирует трафик от одного узла всем доступным, а коммутатор – непосредственно узлу-получателю. То или иное аппаратное обеспечение ЛВС может быть выбрано в зависимости, в первую очередь, от информационной загруженности сети и требований к безопасности передачи данных. В сетях, узлы которых не критичны к объемам трафика вполне достаточно концентраторов. Сети, предъявляющие повышенные требования к производительности и безопасности данных, должны быть укомплектованы коммутаторами, которые исключают необходимость и возможность узлам сети обрабатывать не предназначенную для них информацию.

Мосты и маршрутизаторы - это аппаратное обеспечение ЛВС , обеспечивающее связь между сегментами сети. Маршрутизаторы, в отличие от мостов, работающих на канальном уровне – втором в модели OSI, используют третий уровень модели – сетевой. Это позволяет осуществлять передачу пакетов с учетом специфики протоколов, осуществлять выбор оптимального маршрута передачи пакета на основании анализа полученной от других маршрутизаторов информации о топологии и состоянии сети Мост же является прозрачным для всех сетевых протоколов и, подобно коммутаторам, принимает решение о трансляции пакета только на основания MAC-адреса получателя.

Статьи по теме:

Структурная представляет собой графический документ, отображающий физическое расположение и связь составных частей скс.


Следует доверять исключительно квалифицированным специалистам, официально допущенным к работе в электроустановках.

Для передачи информации по каналам связи необходимо преобразовы­вать компьютерные сигналы в сигналы физических сред.

Например, при передаче информации по оптоволоконному кабелю представленные в компьютере данные будут преобразованы в оптиче­ские сигналы, для чего используют специальные технические устрой­ства - сетевые адаптеры.

Сетевые адаптеры (сетевые карты) - технические устройства, вы полняющие функции сопряжения компьютеров с каналами связи.

Сетевые адаптеры должны соответствовать каналам связи. Для каждого вида канала нужен свой тип сетевого адаптера. Адаптер встав­ляют в свободное гнездо материнской платы компьютера и соединяют кабелем с сетевым адаптером другого компьютера. На сетевых картах выставляют адреса компьютеров в сети, без которых невозможна передача. Ког­да информация циркулирует по сети, любой сетевой компьютер отбирает из нее лишь ту, что предназначена именно для него. Определяется она в соответ­ствии с адресом компьютера.

Коннекторы (соединители ) для подключения кабелей к компьютеру; разъёмы для соединения отрезков кабеля.

Трансиверы повышают уровень качества передачи данных по кабелю, отвечают за приём сигналов из сети и обнаружение конфликтов.

Хабы (концентраторы ) и коммутирующие хабы (коммутаторы ) расширяют топологические, функциональные и скоростные возможности компьютерных сетей. Хаб с набором разнотипных портов позволяет объединять сегменты сетей с различными кабельными системами . К порту хаба можно подключать как отдельный узел сети, так и другой хаб или сегмент кабеля.

Повторители (репитеры ) усиливают сигналы, передаваемые по кабелю при его большой длине.

Для соединения локальных сетей используются следующие устройства, которые различаются между собой по назначению и возможностям:

Мост (англ. Bridge) - связывает две локальные сети. Передаёт данные между сетями в пакетном виде, не производя в них никаких изменений. Ниже на рисунке показаны три локальные сети, соединённые двумя мостами.

Здесь мосты создали расширенную сеть, которая обеспечивает своим пользователям доступ к прежде недоступным ресурсам. Кроме этого, мосты могут фильтровать пакеты, охраняя всю сеть от локальных потоков данных и пропуская наружу только те данные, которые предназначены для других сегментов сети.

Маршрутизатор (англ. Router) объединяет сети с общим протоколом более эффективно, чем мост. Он позволяет, например, расщеплять большие сообщения на более мелкие куски, обеспечивая тем самым взаимодействие локальных сетей с разным размером пакета.

Маршрутизатор может пересылать пакеты на конкретный адрес (мосты только отфильтровывают ненужные пакеты), выбирать лучший путь для прохождения пакета и многое другое. Чем сложней и больше сеть, тем больше выгода от использования маршрутизаторов.

Мостовой маршрутизатор (англ. Brouter) - это гибрид моста и маршрутизатора, который сначала пытается выполнить маршрутизацию, где это только возможно, а затем, в случае неудачи, переходит в режим моста.

Шлюз (англ. GateWay), в отличие от моста, применяется в случаях, когда соединяемые сети имеют различные сетевые протоколы. Поступившее в шлюз сообщение от одной сети преобразуется в другое сообщение, соответствующее требованиям следующей сети. Таким образом, шлюзы не просто соединяют сети, а позволяют им работать как единая сеть. C помощью шлюзов также локальные сети подсоединяются к мэйнфреймам - универсальным мощным компьютерам.

Основные группы кабелей, используемые в локальных сетях

На сегодняшний день подавляющая часть компьютерных сетей использует для соединения провода или кабели. Они выступают в качестве среды передачи сигналов между компьютерами. Существуют различные типы кабелей, которые удовлетворяют потребности всевозможных сетей, от малых до больших.

Выделяют три основные группы кабелей:

коаксиальный кабель (coaxial cable);

витая пара (twisted pair):

Неэкранированная (unshielded);

Экранированная (shielded);

оптоволоконный кабель (fiber optic).

Коаксиамльный камбель (от лат. co -- совместно и axis -- ось, то есть «соосный») -- вид электрического кабеля. Состоит из двух цилиндрических проводников, соответственно вставленных один в другой (рис. 10). Чаще всего используется центральный медный проводник, покрытый пластиковым изолирующим материалом, поверх которого идёт второй проводник -- медная сетка или алюминиевая фольга. Благодаря совпадению центров обоих проводов потери на излучение практически отсутствуют; одновременно обеспечивается хорошая защита от внешних электромагнитных помех. Поэтому такой кабель обеспечивает передачу данных на большие расстояния и использовался при построении компьютерных сетей (пока не был вытеснен витой парой). Используется в сетях кабельного телевидения и во многих других областях. Основной характеристикой кабеля является волновое сопротивление. В зависимости от этой величины и толщины коаксиальный кабель делится на несколько категорий. Компьютерные сети на основе этого кабеля обычно требуют наличия терминаторов на оконечных точках.

Рис. 10.

Наиболее распространённые категории кабеля:

RG-8 и RG-11 -- «Толстый Ethernet» (Thicknet), 50 Ом. Стандарт 10BASE5;

RG-58 -- «Тонкий Ethernet» (Thinnet), 50 Ом. Стандарт 10BASE2.

RG-58/U -- сплошной центральный проводник

RG-58A/U -- многожильный центральный проводник

RG-58C/U -- военный кабель

RG-59 -- телевизионный кабель (Broadband/Cable Television), 50 Ом. Российский аналог РК-50 (Радио-кабель);

RG-59/U -- телевизионный кабель (Broadband/Cable Television), 75 Ом. Российский аналог РК-75;

RG-62 -- ARCNet, 93 Ом

Тонкий Ethernet был наиболее распространённым кабелем для построения локальных сетей. Диаметр примерно 6 миллиметров и значительная гибкость, позволяла ему быть проложенным практически в любых местах. Кабели соединялись друг с другом и с сетевой платой в компьютере при помощи Т-коннектора BNC (British Naval Connector). Между собой кабели могли соединяться с помощью I-коннектора BNC (прямое соединение). На обоих концах сегмента должны быть установлены терминаторы. Поддерживает передачу данных до 10 Мб/с на расстояние до 185 метров.

Толстый Ethernet - более толстый, по сравнению с предыдущим кабель -- около 12 миллиметров в диаметре, имел более толстый центральный проводник. Плохо гнулся и имел значительную стоимость. Кроме того, в присоединении к компьютеру были некоторые сложности -- использовались трансиверы AUI (Attachment Unit Interface), присоединённые к сетевой карте с помощью ответвления, пронизывающего кабель, т.н. «вампирчики». За счёт более толстого проводника передачу данных можно было осуществлять на расстояние до 500 метров со скоростью 10 Мб/с. Однако сложность и дороговизна установки не дали этому кабелю такого широкого распространения, как RG-58. Исторически фирменный кабель RG-8 имел жёлтую окраску и по этому иногда можно встретить название «Жёлтый Ethernet» (англ. Yellow Ethernet)

Витамя памра (англ. twisted pair) -- вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), для уменьшения взаимных наводок при передаче сигнала, и покрытых пластиковой оболочкой (рис. 11). Один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве сетевого носителя во многих технологиях, таких как Ethernet, ARCNet и Token ring. В настоящее время, благодаря своей дешевизне и лёгкости в установке, является самым распространённым для построения локальных сетей.

Рис. 11.

Кабель подключается к сетевым устройствам при помощи соединителя RJ45, немного бомльшим, чем телефонный соединитель RJ11.

В зависимости от наличия защиты -- электрически заземлённой медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности данной технологии:

неэкранированная витая пара (UTP -- Unshielded twisted pair)

экранированная витая пара (STP -- Shielded twisted pair)

фольгированная витая пара (FTP -- Foiled twisted pair)

фольгированная экранированная витая пара (SFTP -- Shielded Foiled twisted pair)

В некоторых типах экранированного кабеля, защита может использоваться ещё и вокруг каждой пары, индивидуальное экранирование. Экранирование обеспечивает лучшую защиту от электромагнитных наводок как внешних, так и внутренних, и т. д.

В дополнение к этому кабель применяется одно- и многожильный. В первом случае каждый провод состоит из одной медной жилы, а во втором - из нескольких.

Существует несколько категорий кабеля витая пара, которые нумеруются от CAT1 до CAT7 и определяют эффективный пропускаемый частотный диапазон. Кабель более высокой категории обычно содержит больше пар проводов и каждая пара имеет больше витков на единицу длины. Категории неэкранированной витой пары описываются в стандарте EIA/TIA 568 (Американский стандарт проводки в коммерческих зданиях).

CAT1 -- (полоса частот 0.1 МГц) телефонный кабель, всего одна пара, известный в России, как «лапша». В США использовался ранее, и проводники были скручены между собой. Используется только для передачи голоса или данных при помощи модема.

CAT2 -- (полоса частот 1 МГц) старый тип кабеля, 2-е пары проводников, поддерживал передачу данных на скоростях до 4 Мбит/с, использовался в сетях token ring и ARCNet. Сейчас иногда встречается в телефонных сетях.

CAT3 -- (полоса частот 16 МГц) 2-х парный кабель, использовался при построении локальных сетей 10BASE-T и token ring, поддерживает скорость передачи данных только до 10 Мбит/с. В отличие от предыдущих двух, отвечает требованиям стандарта IEEE 802.3. Также до сих пор встречается в телефонных сетях.

CAT4 -- (полоса частот 20 МГц) кабель состоит из 4-х скрученных пар, использовался в сетях token ring, 10BASE-T, 10BASE-T4, скорость передачи данных не превышает 16 Мбит/с, сейчас не используется.

САТ5 -- (полоса частот 100 МГц) 4-х парный кабель, это и есть, то, что обычно называют кабель «витая пара», благодаря высокой скорости передачи, до 100 Мбит/с при использовании 2-х пар и до 1000Мбит/с, при использовании 4-х пар, является самым распространённым сетевым носителем, использующимся в компьютерных сетях до сих пор. При прокладке новых сетей пользуются несколько усовершенствованным кабелем CAT5e (полоса частот 125 МГц), который лучше пропускает высокочастотные сигналы.

CAT6 -- (полоса частот 250 МГц) применяется в сетях Fast Ethernet и Gigabit Ethernet, состоит из 4-х пар проводников и способен передавать данные на скорости до 10000Мбит/с. Добавлен в стандарт в июне 2002 года. Существует категория CAT6е, в которой увеличена частота пропускаемого сигнала до 500МГц. По данным IEEE 70 % установленных сетей в 2004 году, использовали кабель категории CAT6, однако возможно это просто дань моде, поскольку кабель CAT5 и CAT5e вполне справляется в сетях 10GBASE-T

CAT7 -- Спецификация на данный тип кабеля пока не утверждена, скорость передачи данных до 10000Мбит/с, частота пропускаемого сигнала до 600--700 МГц. Кабель этой категории экранирован.

Оптоволоконный кабель - кабель на оcнове оптоволокна. Оптоволокно - это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения (рис. 12). Волоконная оптика -- раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

Рис.12. Оптоволоконный кабель.

Простой принцип действия позволяет использовать различные методы, дающие возможность создавать самые разнообразные оптоволокна:

Мультимодовые

Одномодовые оптоволокна

Оптоволокна с градиентным показателем преломления

Оптоволокна со ступенчатым профилем распределения показателей преломления.

Из-за физических свойств оптоволокна необходимы специальные методы для их склеивания и соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей, в зависимости от того, где они будут использоваться.

Оптоволокно может быть использовано как средство для дальней связи и построения компьютерной сети, вследствие своей гибкости и возможности завязываться в узел как кабель. Несмотря на то, что волокна могут быть сделаны из прозрачного пластичного оптоволокна или силика-гелевого волокна, волокна, использующиеся для передачи информации на большие расстояния, всегда сделаны из стекла, из-за низкого оптического ослабления электромагнитного излучения. В связи используются многомодовые и одномодовые оптоволокна; мультимодовое оптоволокно обычно используется на небольших расстояниях (до 500 м), а одномодовое оптоволокно -- на длинных дистанциях. Из-за строгого допуска между одномодовым оптоволокном, передатчиком, приемником, усилителем и другими одномодовыми компонентами, их использование обычно дороже, чем применение мультимодовых компонетов. В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это относительно надежный (защищенный) способ передачи, поскольку электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные, от чего не застрахован любой кабель, проводящий электрические сигналы.

Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается.

Структурированная кабельная система (СКС) представляет собой иерархическую кабельную среду передачи электромагнитных сигналов в здании, разделённую на структурные подсистемы и состоящую из элементов - кабелей и разъемов. По сути СКС состоит из набора медных и оптических кабелей, кросс-панелей, соединительных шнуров, кабельных разъёмов, модульных гнёзд информационных розеток и вспомогательного оборудования. СКС обеспечивает подключение локальной АТС, одновременную работу компьютерной и телефонной сети и предоставляет возможность гибкого изменения конфигурации кабельной системы. Кабели, оснащенные разъемами и проложенные по определенным правилам, образуют линии и магистрали. Линии, магистрали, точки подключения и коммутации составляют функциональные элементы СКС.

Универсальность СКС подразумевает использование ее для различных систем:

компьютерная сеть;

телефонная сеть;

охранная система;

пожарная сигнализация.

Такая кабельная система независима от оконечного оборудования, что позволяет создать гибкую коммуникационную инфраструктуру предприятия.

Структурированная кабельная система - это совокупность пассивного коммуникационного оборудования:

Кабель - этот компонент используется как среда передачи данных СКС.

Розетки - этот компонент используют как точки входа в кабельную сеть здания.

Коммутационные панели - используются для администрирования кабельных систем в коммутационных центрах этажей и здания в целом.

Коммутационные шнуры - используются для подключения офисного оборудования в кабельную сеть здания, организации структуры кабельной системы в центрах коммутации.

СКС - охватывает все пространство здания, соединяет все точки средств передачи информации, такие как компьютеры, телефоны, датчики пожарной и охранной сигнализации, системы видеонаблюдения и контроля доступа. Все эти средства обеспечиваются индивидуальной точкой входа в общую систему здания. Линии, отдельные для каждой информационной розетки, связывают точки входа с коммутационным центром этажа, образуя горизонтальную кабельную подсистему. Все этажные коммутационные узлы специальными магистралями объединяются в коммутационном центре здания. Сюда же подводятся внешние кабельные магистрали для подключения здания к глобальным информационным ресурсам, таким как телефония, интернет и т.п. Такая топология позволяет надежно управлять всей системой здания, обеспечивает гибкость и простоту системы.

В каждом конкретном здании в общем случае присутствуют три подсистемы СКС: вертикальная кабельная подсистема, горизонтальная кабельная подсистема и подсистема рабочих мест. Для достаточно крупных зданий, с большим количеством рабочих мест на этажах, все эти три подсистемы присутствуют в явном виде. Для относительно небольших зданий с ограниченным количеством рабочих мест рекомендуется организовывать один узел коммутации СКС, куда сходится вся горизонтальная кабельная разводка. В этом случае вертикальная кабельная подсистема может отсутствовать либо носить вырожденный характер, при котором вертикальная кабельная подсистема представляется совокупностью коммутационных шнуров, соединяющих порты "этажных" коммутаторов ЛВС (коммутаторов для подключений рабочих мест) с портами центрального (магистрального) коммутатора.

Коммутационное оборудование

Повторитель (англ. repeater) - предназначен для увеличения расстояния сетевого соединения путем повторения электрического сигнала "один в один". Бывают однопортовые повторители и многопортовые. В сетях на витой паре повторитель является самым дешевым средством объединения конечных узлов и других коммуникационных устройств в единый разделяемый сегмент. Повторители Ethernet могут иметь скорость 10 или 100 Мбит/с (Fast Ethernet), единую для всех портов. Для Gigabit Ethernet повторители не используются.

Мост (от англ. bridge - мост) является средством передачи кадров между двумя (и более) логически разнородными сегментами. По логике работы является частным случаем коммутатора. Скорость обычно 10 Мбит/с (для Fast Ethernet чаще используются коммутаторы).

Концентратор или хаб (от англ. hub -- центр деятельности) -- сетевое устройство, для объединения нескольких устройств Ethernet в общий сегмент. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Хаб является частным случаем концентратора

Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.

Многие модели хабов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключенных устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано хабом от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы -- устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизий.

Коммутатор или switch (от англ. -- переключатель) Коммутатор (switch, switching hub) по принципу обработки кадров ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает кадры по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы -- это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.

Коммутатор хранит в памяти специальную таблицу (ARP-таблицу), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует пакеты данных, определяя MAC-адрес компьютера-отправителя, и заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит пакет, предназначенный для этого компьютера, этот пакет будет отправлен только на соответствующий порт. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном и сетевом уровне модели OSI. Обычно их именуют соответственно, например Level 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web-интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Преобразователь интерфейсов или конвертер (англ. media converter) позволяет осуществлять переходы от одной среды передачи к другой (например, от витой пары к оптоволокну) без логического преобразования сигналов. Благодаря усилению сигналов эти устройства могут позволять преодолевать ограничения на длину линий связи (если ограничения не связаны с задержкой распространения). Используются для связи оборудования с разнотипными портами.

Выпускается три типа конвертеров:

Преобразователь RS-232 <-> RS-485;

Преобразователь USB <-> RS-485;

Преобразователь Ethernet <-> RS-485.

Преобразователь RS-232 <-> RS-485 преобразует физические параметры интерфейса RS-232 в сигналы интерфейса RS-485. Может работать в трех режимах приема-передачи. (В зависимости от установленного в конвертере программного обеспечения и состояния переключателей на плате конвертера).

Преобразователь USB <-> RS-485 - этот конвертер предназначен для организации интерфейса RS-485 на любом компьютере, имеющем интерфейс USB. Конвертер выполнен в виде отдельной платы, подключаемой к разъёму USB. Питание конвертера осуществляется непосредственно от порта USB. Драйвер конвертера позволяет создать для интерфейса USB виртуальный СОМ-порт и работать с ним как с обычным портом RS-485 (по аналогии с RS-232). Устройство обнаруживается сразу при подключении к порту USB.

Преобразователь Ethernet <-> RS-485 - этот конвертер предназначен для обеспечения возможности передачи сигналов интерфейса RS-485 по локальной сети. Конвертер имеет свой IP-адрес (устанавливаемый пользователем) и позволяет осуществить доступ к интерфейсу RS-485 с любого компьютера подключенного к локальной сети и установленным соответствующим программным обеспечением. Для работы с конвертером поставляются 2 программы: Port Redirector - поддержка интерфейса RS-485 (СОМ-порта) на уровне сетевой карты и конфигуратор Lantronix, позволяющий установить привязку конвертера к локальной сети пользователя, а также задать параметры интерфейса RS-485 (скорость передачи, количество бит данных и т.д.) Конвертер обеспечивает полностью прозрачную приемо-передачу данных в любом направлении.

Маршрутизамтор или ромутер (от англ. router) -- сетевое устройство, используемое в компьютерных сетях передачи данных, которое, на основании информации о топологии сети (таблицы маршрутизации) и определённых правил, принимает решения о пересылке пакетов сетевого уровня модели OSI их получателю. Обычно применяется для связи нескольких сегментов сети.

Традиционно, маршрутизатор использует таблицу маршрутизации и адрес получателя, который находится в пакетах данных, для дальнейшей передачи данных. Выделяя эту информацию, он определяет по таблице маршрутизации путь, по которому следует передать данные и направляет пакет по этому маршруту. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя (англ. NAT, Network Address Translation), фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/дешифрование передаваемых данных и т. д.

Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы DSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.

В качестве маршрутизатора может выступать как специализированное устройство, так и PC компьютер, выполняющий функции простейшего роутера.

Модемм (аббревиатура, составленная из слов мо дулятор-дем одулятор) -- устройство, применяющееся в системах связи и выполняющее функцию модуляции и демодуляции. Частным случаем модема является широко применяемое периферийное устройство для компьютера, позволяющее ему связываться с другим компьютером, оборудованным модемом, через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем).

Стандарты реализации Fast Ethernet

100 BASE-T -- Общий термин для обозначения одного из трёх стандартов 100 Мбит/с ethernet, использующий в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя 100BASE-TX, 100BASE-T4 и 100BASE-T2.

100BASE-TX, IEEE 802.3u -- Развитие технологии 10BASE-T, используется топология звезда, задействован кабель витая пара категории-5, в котором фактически используются 2 пары проводников, максимальная скорость передачи данных 100 Мбит/с.

100BASE-T4 -- 100 MБит/с ethernet по кабелю категории-3. Задействованы все 4 пары. Сейчас практически не используется. Передача данных идёт в полудуплексном режиме.

100BASE-T2 -- Не используется. 100 Mбит/с ethernet через кабель категории-3. Используется только 2 пары. Поддерживается полнодуплексный режим передачи, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении -- 50 Mбит/с.

100BASE-FX -- 100 Мбит/с ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 400 метров в полудуплексном режиме (для гарантированного обнаружения коллизий) или 2 километра в полнодуплексном режиме по многомодовому оптическому волокну и до 32 километров по одномодовому.

Анализируя вышеописанные данные, наиболее эффективным является использование кабеля витая пара категории-5. Данный вид кабеля может обеспечить скорости передачи, до 100 Мбит/с при использовании 2-х пар и до 1000Мбит/с, при использовании 4-х пар, а также он относительно лёгок в установке и недорог.

Для разрабатываемой сети будем использовать неэкранированную витую пару: RJ-45 UTP, lev.5e (305м.) 1689.9 руб (х5 для 1235м прокладки сети). Также необходимо приобрести 122 шт. вилок RJ-45 (3 руб./шт.) - 366 руб.

Для повышения производительности сети и повышения её безопасности для соединения компьютеров будем использовать 3 коммутатора (switch), соединенных с маршрутизатором соответственно на 1-ом (router 1) и 2-ом (router 2) этажах здания, которые в свою очередь будут соединены между собой и третьим маршрутизатором (router 3). Третий маршрутизатор на 1-ом этаже здания будет подключен к серверу.

Ниже приведены технические характеристики сетевого оборудования:

В таблице 3 приведены характеристики используемых коммутаторов (switch)

Таблица 3.

Конечное сетевое оборудование

Конечное сетевое оборудование является источником и получателем информации, передаваемой по сети.

Компьютер (рабочая станция) , подключенный к сети, является самым универсальным узлом. Прикладное использование компьютера в сети определяется программным обеспечением и установленным дополнительным оборудованием. Для дальних коммуникаций используется модем, внутренний или внешний. С точки зрения сети, «лицом» компьютера является его сетевой адаптер. Тип сетевого адаптера должен соответствовать назначению компьютера и его сетевой активности.

Сервер является также компьютером, но с большими ресурсами. Это подразумевает его более высокую сетевую активность и значимость. Серверы желательно подключать к выделенному порту коммутатора. При установке двух и более сетевых интерфейсов (в том числе и модемного подключения) и соответствующего программного обеспечения сервер может играть роль маршрутизатора или моста. Серверы, как правило, должны иметь высокопроизводительную операционную систему.

В таблице 5 приведены параметры типовой рабочей станции и ее стоимость для разрабатываемой локальной сети.

Таблица 5.

Рабочая станция

Системный блок.GH301EA HP dc5750 uMT A64 X2-4200+(2.2GHz),1GB,160GB,ATI Radeon X300,DVD+/-RW,Vista Business

Компьютер Hewlett-Packard GH301EA серии dс 5750. Данный системный блок оборудован процессором AMD Athlon™ 64 X2 4200+ c частотой 2.2 ГГц, 1024 Mб оперативной памяти DDR2, жестким диском на 160 Гб, DVD-RW приводом и установленной ОС Windows Vista Business.

Цена: 16 450.00 руб.

Монитор. TFT 19 “Asus V W1935

Цена: 6 000,00 руб.

Устройства ввода

Клавиатура

Общая стоимость

В Таблице 6 приведены параметры сервера.

Таблица 6.

DESTEN Системный блок DESTEN eStudio 1024QM

Процессор INTEL Core 2 Quad Q6600 2.4GHz 1066MHz 8Mb LGA775 OEM Материнская плата Gigabyte GA-P35-DS3R ATX Модуль памяти DDR-RAM2 1Gb 667Mhz Kingston KVR667D2N5/1G - 2 Жесткий диск 250 Gb Hitachi Deskstar T7K500 HDP725025GLA380 7200RPM 8Mb SATA-2 - 2 Видео адаптер 512MB Zotac PCI-E 8600GT DDR2 128 bit DVI (ZT-86TEG2P-FSR) Привод DVD RW NEC AD-7200S-0B SATA Черный Корпус ZALMAN HD160XT BLACK.

Цена: 50 882.00 руб.

Монитор. TFT 19 “Asus V W1935

Тип: ЖК * Технология ЖК: TN * Диагональ: 19" * Формат экрана: 5:4 * Макс. разрешение: 1280 x 1024 * Входы: VGA * Вертикальная развертка: 75 Гц * Горизонтальная развертка: 81 КГц

Цена: 6 000,00 руб.

Устройства ввода

Клавиатура

Logitech Value Sea Grey (refresh) PS/2

Общая стоимость

Программное обеспечение сети

В программное обеспечение сервера входят:

Операционная система Windows Server 2003 SP2+R2

Пакет программ ABBY FineReader Corporate Edition v8.0 (серверная лицензия)

Программа для администрирования сети Symantec pcAnywhere 12 (сервер)

В программное обеспечение рабочей станции входят:

Операционная система Windows XP SP2

Антивирусная программа NOD 32 AntiVirus System.

Пакет программ Microsoft Office 2003 (pro)

Пакет программ ABBY FineReader Corporate Edition v8.0 (клиентская лицензия)

Программа для администрирования сети Symantec pcAnywhere 12 (клиент)

Пользовательские программы

Независимо от того, в какой сети работает некоторый компьютер, функции установленного на нем программного обеспечения условно можно разделить на две группы:

управление ресурсами самого компьютера (в том числе и в интересах решения задач для других компьютеров)

управление обменом с другими компьютерами (сетевые функции).

Собственными ресурсами компьютера традиционно управляет ОС. Функции сетевого управления реализует сетевое ПО , которое может быть выполнено как в виде отдельных пакетов сетевых программ, так и виде сетевой ОС (СОС). При разработке сетевого ПО используется иерархический подход, предполагающий определение совокупности сравнительно независимых уровней и интерфейсов между ними. Это позволяет легко модифицировать алгоритмы программ произвольного уровня без существенного изменения других уровней. В общем случае допускается упрощение функций некоторого уровня или даже его полная ликвидация.

Для упорядочения разработки сетевого ПО и обеспечения возможности взаимодействия любых вычислительных систем, Международная Организация по Стандартизации (International Organization for Standardization - ISO) разработала Эталонную Модель взаимодействия открытых систем (Open System Interconnection Reference model - модель OSI).

Эталонная Модель определяет следующие семь функциональных уровней:

физический (physical layer);

канальный или управления линией (звеном) передачи (data link);

сетевой (network layer);

транспортный (transport layer);

сеансовый (session layer);

представительный (presentation layer);

прикладной или уровень приложений (application layer).

Отличия сетей друг от друга вызваны особенностями используемого аппаратного и программного обеспечения, различной интерпретацией рекомендаций фирмами-разработчиками, различием требований к системе со стороны решаемых задач (требования защищенности информации, скорости обмена, безошибочности передачи данных и т.д.) и другими причинами. В сетевом ПО локальных сетей часто наблюдается сокращение числа реализуемых уровней.

Аппаратные средства лвс

Основными аппаратными компонентами ЛВС являются: рабочие станции, серверы, интерфейсные платы и кабели.

Рабочие станции (PC) - это, как правило, персональные ЭВМ, которые являются рабочими местами пользователей сети. Иногда в PC, непосредственно подключенной к сетевому кабелю, могут отсутствовать накопители на магнитных дисках. Такие PC называют бездисковыми рабочими станциями . Основным преимуществом бездисковых PC является низкая стоимость, а также высокая защищенность от несанкционированного проникновения в систему пользователей и компьютерных вирусов. Недостаток бездисковой PC заключается в невозможности работать в автономном режиме (без подключения к серверу) и иметь собственные архивы данных и программ.

Серверы в ЛВС выполняют функции распределения сетевых ресурсов. Обычно его функции возлагают на достаточно мощный ПК, мини-ЭВМ, большую ЭВМ или специальную ЭВМ-сервер. В одной сети может быть один или несколько серверов. Каждый из серверов может быть отдельным или совмещенным с PC. В последнем случае только часть ресурсов сервера оказывается общедоступной.

При наличии в ЛВС нескольких серверов, каждый из них управляет работой подключенных к нему PC. Совокупность компьютеров сервера и относящихся к нему PC часто называют доменом . Иногда в одном домене находится несколько серверов. Обычно один из них является главным, а другие - выполняют роль резерва (на случай отказа главного сервера) или логического расширения основного сервера.

Используемые сетевые адаптеры имеют три основные характеристики: тип шины компьютера, к которому они подключаются (ISA, EISA, Micro Channel и пр.), разрядность (8, 16, 32, 64) и используемый метод доступа к сетевому каналу данных.

Существуют различные схемы объединения компьютеров в ЛВС. Классическими считаются топологии "звезда", "кольцо" и "общая шина". Наиболее широко используются следующие стандартизованные методы доступа к сетевому каналу:

Ethernet (поддерживает шинную топологию);

Arcnet (поддерживает звездную топологию);

Token-Ring (поддерживает кольцевую топологию).

Конфигурация соединения элементов в сеть (топология) во многом определяет такие важнейшие характеристики сети, как ее надежность, производительность, стоимость, защищенность и т.д.

Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий:

широковещательных

последовательных .

В широковещательных конфигурациях каждый персональный компьютер передает сигналы, которые могут быть восприняты остальными компьютерами. К таким конфигурациям относятся топологии "общая шина", "дерево", "звезда с пассивным центром". Сеть типа "звезда с пассивным центром" можно рассматривать как разновидность "дерева", имеющего корень с ответвлением к каждому подключенному устройству.

В последовательных конфигурациях каждый физический подуровень передает информацию одному компьютеру. Примерами последовательных конфигураций являются: произвольная (произвольное соединение компьютеров), иерархическая, "кольцо", "цепочка", "звезда с интеллектуальным центром", "снежинка".

Для соединения компьютеров в ЛВС чаще всего используют коаксиальный кабель (тонкий и толстый). Помимо коаксиального кабеля может применяться "витая пара" и оптоволокно. В последнее время ведутся интенсивные работы по разработке и внедрению беспроводных радиосетей. Известные системы на их основе, по сравнению с кабельными системами, пока значительно уступают по скорости передачи данных и дальности приема (сотни метров), но позволяют создавать мобильные распределенные системы.

К дополнительному оборудованию ЛВС относят источники бесперебойного питания, модемы, трансиверы, повторители, а также различные разъемы (коннекторы, терминаторы).

Для объединения компьютеров в локальных сетях наиболее часто используются сетевые адаптеры (сетевые карты), концентраторы, коммутаторы, маршрутизаторы.

Рассмотрим более подробно каждый тип оборудования.

Сетевой адаптер – это устройство необходимое для подключения компьютера к локальной сети. Сетевой адаптер устанавливается в свободный слот (разъем) материнской платы компьютера, как и адаптеры, выполняющие другие функции, например видеоадаптер. Сетевые адаптеры можно классифицировать по следующим признакам:

· в зависимости от типа и разрядности используемой в компьютере внутренней шины;

· в зависимости от типа принятой в сети сетевой технологии – Ethernet, Token Ring, FDDI и т. д.;

· в зависимости от типа среды (канала) передачи данных – коаксиальный кабель, оптоволоконный кабель, кабель типа витая пара.

Сетевой адаптер присоединяется к кабелю с помощью специальных коннекторов. Для кабеля типа витая пара используется коннектор типа RG-45, внешне напоминающий разъем для подключения телефона. Для подключения к коаксиальному кабелю используются так называемые BNC-коннекторы и Т-коннекторы. Существуют сетевые адаптеры, использующие беспроводной принцип взаимодействия. В настоящее время тремя главными типами беспроводной передачи данных являются радиосвязь, связь в микроволновом диапазоне и инфракрасная связь. Наиболее распространенным, в настоящее время, вариантом организации беспроводной локальной сети является использование WiFi оборудования. WiFi является аббревиатурой от «Wireless Fidelity» (беспроводная связь) и представляет собой стандарт беспроводного доступа, обеспечивающий скорость передачи информации до 54 Мбит/сек.

Каждый сетевой адаптер имеет уникальный внутренний номер, так называемый MAC-адрес, позволяющий однозначно идентифицировать источник информации в сетевой среде.

Различные типы кабелей используются в качестве носителей, или среды передачи данных. Хотя беспроводные технологии передачи данных становятся все более популярными в настоящее время, основным типом носителя для сетевых коммуникаций остается кабель. Наиболее распространены кабели следующих типов:

· кабель типа витая пара;

· коаксиальный кабель;

· оптоволоконный кабель.

Кабель типа витая пара – наиболее распространенный в настоящее время тип кабеля, бывает двух видов: неэкранированная и экранированная витая пара. Внутренняя конструкция состоит из нескольких скрученных пар медных проводов, окруженных заземленной оболочкой из медной сетки, или алюминиевой фольги, в случае экранированной витой пары. Существует несколько типов неэкранированной витой пары. В настоящее время наиболее часто используются тип UTP-5 (UTP – Unshielded Twisted Pair). Кабель UTP-5 обеспечивает скорость передачи информации до 1000 Мбит/сек. Кабель типа неэкранированная витая пара – это наиболее дешевый и простой в установке тип кабеля. Но у него существуют и недостатки. Кабель чувствителен к помехам со стороны внешних электромагнитных источников и взаимному наложению сигналов между отдельными проводами самого кабеля. Длина кабельного сегмента, т.е. расстояние от компьютера до усилителя (повторителя) сигнала не может превышать 100 метров, поскольку сигнал ослабевает при перемещении по кабелю.

Кабель типа экранированная витая пара (STP – Shielded Twisted Pair) в меньшей степени подвержен внешним электромагнитным воздействиям, более сложен в установке. Длина кабельного сегмента также ограничена 100 метрами.

Коаксиальный кабель напоминает кабель, который используется для подключения антенны к бытовому телевизору. Скорость передачи данных по этому типу носителя составляет 10 Мбит/сек. Длина кабельного сегмента может составлять от 185 до 500м, в зависимости от типа коаксиального кабеля. Наибольшее распространение получили так называемый «тонкий» маркировка RG-58 и «толстый» кабель маркировка RG-8 и RG-11. Данный тип кабеля устарел и мало используется в настоящее время.

Оптоволоконный кабель является в настоящее время самой совершенной, но и самой дорогой средой для передачи информации. Оптическое волокно изготовлено из кварца, основу которого составляет двуокись кремния. Кабель состоит из центрального волоконного проводника, по которому и распространяется световой сигнал, окруженного другим слоем волокна. Показатель преломления светового луча у двух этих слоев разный. Существует два типа кабелей: одномодовый, в котором может распространяться только один луч, и многомодовый, в котором может распространяться большое число лучей. В одномодовом волокне диаметр центрального волоконного проводника несколько меньше чем в многомодовом. Скорость передачи информации при использовании данного типа кабеля достигает 10 Gb/сек (10000 Мбит/сек). Оптоволоконный кабель используется в основном в глобальных и региональных сетях, а также на магистралях больших локальных сетей.

Концентратор (многопортовый повторитель, или HUB) – это устройство, используемое для объединения отдельных рабочих мест (компьютеров) в локальную сеть. Современные концентраторы имеют, как правило, 8, 12, 16, 24, или 48 портов (разъемов) для подключения компьютеров. Все порты концентратора равноправны. При получении сигнала от одного из подключенных к нему компьютеров концентратор транслирует его на все остальные порты. Таким образом, концентратор является центральной точкой соединения компьютеров в сети. Кроме функции соединения компьютеров концентратор может выполнять еще несколько функций. Это: усиление (повторение) сигнала, автосегментация (автоматическое отключение неисправных портов), обеспечение сбора статистики по загрузке сети. Концентраторы можно соединять друг с другом для увеличения размера сети.

Коммутатор (switch) – это устройство, которое также может использоваться для объединения компьютеров, или различных сегментов локальной сети (ЛС). В отличии от концентратора, коммутатор при получении сигнала (пакета данных) от одного из подключенных к нему компьютеров не транслирует его на все остальные порты, а передает его только в тот порт, к которому подключен компьютер, являющийся получателем этого пакета данных. В результате скорость передачи данных увеличивается, поскольку в сети сокращается количество коллизий, характерных для технологии Ethernet.

ЛC имеют свойство перерастать начальные проекты. С ростом компаний растут и ЛС. Изменение профиля деятельности или организации работы компании могут потребовать переконфигурации сети. Это становится очевидным, когда:

  • недопустимо долго документы стоят в очереди на сетевой принтер;
  • увеличилось время запроса к БД;
  • изменились требования по защите информации и т. д.

Сети не могут расширяться за счет простого добавления рабочих станций и прокладки кабеля. Любая топология или архитектура имеет свои ограничения. Однако существуют устройства, которые могут:

  • сегментировать ЛС так, что каждый сегмент станет самостоятельной ЛС;
  • объединять две ЛС в одну;
  • подключать ЛС к другим сетям для объединения их в интернет.

К таким устройствам относятся: репитеры, мосты, маршрутизаторы, мосты-маршрутизаторы и шлюзы.

Репитеры

Это устройства, которые принимают затухающий сигнал из одного сегмента сети, восстанавливают его и передают в следующий сегмент, чем повышают дальность передачи сигналов между отдельными узлами сети (рис. ниже).

Подключение репитера в ЛВС

Репитеры передают весь трафик в обоих направлениях и работают на физическом уровне модели OSI. Это означает, что каждый сегмент должен использовать одинаковые: форматы пакетов, протоколы и методы доступа. То есть, с помощью репитера можно объединить в единую сеть два сегмента Ethernet и невозможно Ethernet и Token Ring.

Однако репитеры позволяют соединять два сегмента, которые используют различные физические среды передачи сигналов (кабель - оптика, кабель - пара и т. д.). Некоторые многопортовые репитеры работают как многопортовые концентраторы, соединяющие разные типы кабелей.

Применение репитеров оправдано в тех случаях, когда требуется преодолеть ограничение по длине сегмента или по количеству РС. Причем ни один из сегментов сети не генерирует повышенного трафика, а стоимость ЛВС - главный фактор. Связано это с тем, что репитеры не выполняют функций: изоляции и фильтрации.

Так передавая из сегмента в сегмент каждый бит данных, они будут передавать и искаженные пакеты, и пакеты, не предназначенные этому сегменту. В результате проблемы одного сегмента скажутся и на других. Т.е. применение репитеров не обеспечивает функцию изоляции сегментов. Кроме того, репитеры будут распространять по сети все широковещательные пакеты. И если устройство не отвечает на все пакеты или пакеты постоянно пытаются достичь устройств, которые никогда не отзываются, то производительность сети падает, т. е. репитеры не осуществляют фильтрацию сигналов.

Мосты

Мост - это устройство, соединяющее две сети, использующие одинаковые методы передачи данных. Эти устройства, как и репитеры, могут:

  • увеличивать размер сети и количество РС в ней;
  • соединять разнородные сетевые кабели. Однако принципиальным их отличием является то, что они работают на канальном уровне модели OSI, т.е. на более высоком, чем репитеры и учитывают больше особенностей передаваемых данных, позволяя:
  • восстанавливать форму сигналов, но делая это на уровне пакетов;
  • соединять разнородные сегменты сети (например, Ethernet и Token Ring) и переносить между ними пакеты;
  • повысить производительность, эффективность, безопасность и надежность сетей (что будет рассмотрено ниже).

Принципы работы мостов

Работа моста основана на принципе, согласно которому все узлы сети имеют уникальные сетевые адреса, и мост передает пакеты исходя из адреса узла назначения (рис. ниже).


Пример комплексирования сегментов ЛВС с использованием мостов

Управляя доступом к сети, мост:

  • слушает весь трафик;
  • проверяет адрес источника и получателя пакета;
  • строит таблицу маршрутизации;
  • передает пакеты на основе адреса узла назначения.

Мост обладает некоторым "интеллектом", поскольку изучает, куда направить данные. Когда пакеты передаются через мост, адреса передатчиков сохраняются в памяти моста, и на их основе создается таблица маршрутизации. В начале работы таблица пуста. Затем, когда узлы передают пакеты, их адреса копируются в таблицу. Имея эти данные, мост изучает расположение компьютеров в сегментах сети. Прослушивая трафик всех сегментов, и принимая пакет, мост ищет адрес передатчика в таблице маршрутизации. Если адрес источника не найден, он добавляет его в таблицу. Затем сравнивает адрес получателя с БД таблицы маршрутизации.

  • Если адрес получателя есть в таблице и адресат находится в одном сегменте с источником, пакет отбрасывается. Эта фильтрация уменьшает сетевой трафик и изолирует сегменты сети.
  • Если адрес получателя есть в таблице, но адресат и источник находятся в разных сегментах, мост передает пакет через соответствующий порт в нужный сегмент.
  • Если адреса нет в таблице, пакет ретранслируется во все сегменты, исключая тот, откуда был принят.

Короче говоря, если мост знает о местоположении узла - адресата, он передает пакет ему. В противном случае - транслирует пакет во все сегменты.

Рассмотренный вариант соответствует наиболее простым, так называемым прозрачным мостам. В настоящее время находят применение мосты с алгоритмом остовного дерева, мосты с маршрутизацией от источника и др.

Назначение мостов

  1. Мосты позволяют увеличить дальность охвата сети, работая в качестве повторителей. При этом допускается каскадное соединение ЛВС через мосты. Причем эти ЛВС могут быть разнородны.
  2. Использование мостов повышает производительность сети вследствие возможности ее сегментации. Т. к. мосты способны фильтровать пакеты согласно некоторым критериям, то большая сеть делится на несколько сегментов, соединенных мостами. Два небольших сегмента будут работать быстрее, чем один большой, т. к. трафик локализуется в пределах каждого сегмента.
  3. Применение мостов повышает эффективность работы сети, т. к. для каждой подсети (сегмента) можно использовать разные топологии и среды передачи, а затем их объединять мостами. Так, например, если в отдельных отделах ПК соединены витыми парами, то мостом эти подсети можно соединить с корпоративной ЛВС оптической магистралью. Т. к. витые пары стоят дешево, то это сэкономит средства, а в базовой магистрали (на которую приходится большая часть трафика) будет использована среда высокой пропускной способности.
  4. Мосты позволяют увеличить безопасность (защиту) данных за счет того, что их можно программировать на передачу только тех пакетов, которые содержат адреса определенных отправителей и получателей. Это позволяет ограничить круг РС, способных посылать и принимать информацию из другой подсети. Например, в сети, обслуживающей бухучет можно поставить мост, который позволит принимать информацию лишь некоторым внешним станциям.
  5. Мосты увеличивают надежность и отказоустойчивость сети. При сегментировании сети отказ какой-либо подсети не приведет к остановке всех других. Кроме этого, когда выходит из строя единственный файл-сервер, прекращает работу вся сеть. Если с помощью внутренних мостов связать два файл-сервера, страхующих друг друга, то:
  • возрастет отказоустойчивость сети;
  • снизится уровень трафика.

Различают локальные и удаленные мосты. Удаленные мосты используются в больших сетях, когда ее отдельные сегменты связываются телефонными (или иными) каналами связи.

Однако если для соединения двух кабельных сегментов ЛВС используют только один локальный мост, то в крупных сетях приходится использовать два удаленных моста, подключенных через синхронные модемы к выделенному каналу связи (рис. ниже).


Использование двух удаленных мостов

Маршрутизаторы

Маршрутизатор - это устройство для соединения сетей, использующих различные архитектуры и протоколы. Работая на сетевом уровне модели OSI, они могут:

  • коммутировать и направлять пакеты через несколько сетей;
  • определять наилучший путь для их передачи;
  • обходить медленные и неисправные каналы;
  • отфильтровывать широковещательные сообщения;
  • действовать как барьер безопасности между сетями.

Маршрутизатор в отличие от моста имеет свой адрес и используется как промежуточный пункт назначения.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!