Энциклопедия мобильной связи

Величина нелинейных искажений зависит от. Экскурсия в реальный мир

Cтраница 1


Нелинейные искажения усилителя определяются в основном искажениями, вносимыми оконечным каскадом, так как он работает при наибольшей амплитуде сигнала. Поэтому заданные нелинейные искажения между каскадами не распределяют, считая, что все искажения вносит оконечный усилитель.  

Нелинейные искажения усилителя, как было показано выше, сильно зависят от подводимой на вход амплитуды сигнала. На рис. 1.24 показан примерный характер зависимости коэффициента нелинейности от мощности на выходе усилителя. Эта кривая является основной характеристикой нелинейных искажений. Она может служить для определения максимальной полезной мощности усилителя по заданному коэффициенту нелинейности.  

Нелинейные искажения усилителя на резисторах при правильно выбранном режиме настолько малы, что при расчете их не учитывают.  

Динамические (нагрузочные характеристики транзистора. а - выходная. б - входная.  

Нелинейные искажения усилителя принято оценивать, используя сквозную ДХ оконечного каскада. На графике семейства статических выходных ВАХ проводится нагрузочная прямая для переменного тока.  

Степень нелинейных искажений усилителя обычно оценивают величиной коэффициента нелинейных искажений, представляющего собой корень квадратный из отношения суммы высших гармонических составляющих мощности (токов, напряжений) к первой гармонической соста. Допустимое значение коэффициента нелинейных искажений зависит от назначения усилителя, для усилителей радиоустройств и телефонии его значение от 4 до 15 %, для усилителей устройств автоматики и телемеханики - значительно больше.  

Степень нелинейных искажений усилителя обычно оценива - ют величиной коэффициента нелинейных искажений, представляющего собой корень квадратный из отношения суммы высших гармонических составляющих мощности (токов, напряжений) к первой гармонической составляющей усиленного сигнала. Допустимая величина коэффициента нелинейных искажений зависит от назначения усилителя; для усилителей радиоустройств и телефонии его значение от 4 до 15 %, для усилителей устройств автоматики и телемеханики - значительно больше.  

Уровень нелинейных искажений усилителя записи измеряется на частоте 400 гц при помощи измерителя фильтрового типа при номинальном положении регулятора усиления. Для объективной оценки нелинейных искажений должна учитываться неравномерность частотной характеристики усилителя на измеряемой частоте.  


Для измерения коэффициента нелинейных искажений усилителей звуковых частот пользуются специальными измерителями нелинейных искажений. Вначале таким прибором измеряют общую величину исследуемого колебания. Затем в приборе включают фильтр, который полностью подавляет первую гармонику исследуемого колебания. При этом прибор измеряет суммарную величину напряжения одних только высших гармоник. По двум полученным результатам измерений находят коэффициент нелинейных искажений. Практически это производится самим прибором: вначале регулируют усилитель измерителя таким образом, чтобы стрелка индикатора отклонилась до специальной метки на шкале.  

Предназначен для измерения коэффициента нелинейных искажений усилителей и генераторов низкой частоты, а также радиопередающих устройств. Измерение может производиться на частотах 50, 100, 400, 1000, 5000 и 7000 гц. Питание осуществляется от сети переменного тока.  

Предназначен для (Измерения коэффициента нелинейных искажений усилителей и генераторов низкой частоты, а также радиопередающих устройств. Измерение может производиться на частотах 50, 100, 400, 1000, 5000 и 7000 гц. Питание осуществляется от сети переменного тока.  

При больших амплитудах входного сигнала появляются нелинейные искажения усилителя, приводящие к возникновению высших гармоник в выходном напряжении. Последние, проходя по цепи обратной связи Z. Вследствие этого сужается полоса пропускания усилителя.  

Тг, что позволяет снизить коэффициент нелинейных искажений усилителя НЧ. Для коррекции частотной характеристики усилителя НЧ в области верхних звуковых частот применен конденсатор Сзз.  

Частотные и временные характеристики

Как и в случае пассивных линейных систем, частотные характеристики усилителя определяются комплексным коэффициентом передачи, который может быть представлен в виде отношения комплексных амплитуд выходного и входного сигналов при гармоническом входном сигнале. Так для комплексного коэффициента усиления по напряжению будем иметь:

Зависимость модуля коэффициента усиления || = К(щ) от частоты называется амплитудно-частотной характеристикой (АЧХ) или просто частотной характеристикой усилителя.

Зависимость от частоты фазового сдвига выходного сигнала усилителя относительно его входного сигнала называется фазо-частотной характеристикой (ФЧХ) или просто фазовой характеристикой усилителя.

Идеальный усилитель имеет равномерную АЧХ во всем диапазоне частот, т.е. его коэффициент усиления

K(щ) = K 0 = const.

Фазовая характеристика такого усилителя не должна зависеть от частоты или, по крайней мере, должна быть линейной функцией частоты, т.е.

На практике в полосе частот, в пределах которой находится спектр усиливаемого сигнала, можно лишь с той или иной точностью приблизиться к идеальным АЧХ и ФЧХ.


Для усилителей, как и для пассивных линейных систем, вводятся понятия нижней граничной частоты щ н, верхней граничной частоты щ в и полосы пропускания. Частоты щ н и щ в определяются как частоты, на которых коэффициент усиления усилителя уменьшается в раз по сравнению с коэффициентом (рис. 3,а). Область частот, лежащая левее средних частот, носит название области низших частот, область, лежащая правее - области высших частот. Полоса пропускания усилителя

Наряду с частотными характеристиками для определения искажений формы сложного колебания применяется переходная характеристика h(t), представляющая собой реакцию усилителя на единичный скачок напряжения (тока) и импульсная характеристика g(t), являющаяся реакцией линейной цепи на дельта-импульс. Эти характеристики однозначно связаны с частотными характеристиками.

Переходная характеристика h(t) наглядно описывает искажения сигнала, возникающие при усилении прямоугольных импульсов. Основными показателями этих искажений считаются: время запаздывания t З, длительность фронта t Ф и время спада t С (рис.4). При повышении верхней граничной частоты щ в уменьшаются искажения в области малых времен (сокращается время t З и t Ф), а при уменьшении нижней граничной частоты щ Н - в области больших времен (уменьшается спад вершины, т.е. возрастает время t С). У усилителей постоянного тока (щ Н = 0) переходная характеристика не обнаруживает спада вершины.

Линейные и нелинейные искажения в усилителях

Качество усилителя определяется степенью искажений, вносимых усилителем при усилении входного сигнала. Под искажениями понимается изменение формы выходного сигнала по отношению к форме входного. Искажения сигнала при прохождении через усилитель, обусловленные зависимостью параметров усилителя от частоты и не зависящие от амплитуды входного сигнала, называются линейными искажениями. В свою очередь, линейные искажения можно разделить на частотные (вызываемые изменением модуля коэффициента усиления усилителя в полосе частот усиливаемого сигнала) и фазовые (обусловленные нелинейностью фазочастотной характеристики усилителя в полосе частот усиливаемого сигнала).

Идеальный усилитель, у которого линейные частотные искажения отсутствуют, имеет равномерную АЧХ во всем диапазоне частот, т.е. его коэффициент усиления

K(щ) = K 0 = const.

Фазовая характеристика усилителя, у которого отсутствуют фазовые линейные искажения, не должна зависеть от частоты или, по крайней мере, должна быть линейной функцией частоты

(ц к (щ) = const(щ)).

В последнем случае все гармонические составляющие входного сигнала получают одинаковую временную задержку, и выходной сигнал лишь сдвигается во времени (запаздывает) относительно входного на величину t З.

Частотные искажения усилителя на частоте щ характеризуются коэффициентом частотных искажений

M = K U0 /K Uщ.

Здесь K Uщ - коэффициент усиления по напряжению на данной частоте щ. С помощью АЧХ можно определить частотные искажения в любом диапазоне рабочих частот усилителя.

Поскольку наибольшие частотные искажения имеют место на границах рабочего диапазона, то при расчете усилителя, как правило, задают коэффициенты частотных искажений М н и М в соответственно на нижней (щ Н) и верхней (щ В) граничных частотах.

При достаточно низких уровнях входного сигнала усилитель обладает свойствами линейной системы и амплитуда выходного напряжения прямо пропорциональны амплитуде входного напряжения, т.е. коэффициент усиления усилителя не зависит от величины сигнала. В связи с наличием нелинейных свойств у всех усилительных приборов при увеличении входного сигнала линейная зависимость величины выходного сигнала от величины входного сигнала нарушается. При этом коэффициент усиления начинает зависеть от величины усиливаемого сигнала, возникают нелинейные искажения, в спектре выходного сигнала появляются частотные составляющие, отсутствующие в спектре входного сигнала.

Зависимость амплитуды первой гармоники выходного напряжения от амплитуды первой гармоники входного напряжения при синусоидальной форме входного сигнала называется амплитудной характеристикой (рис. 5). Нелинейные искажения появляются при превышении амплитудой входного сигнала значения, начиная с которого амплитудная характеристика теряет свою линейность.

Отношение (в децибелах) максимального напряжения на входе усилителя U МАКС к минимальному U МИН D = 20lg(U МАКС / U МИН) называется динамическим диапазоном усиления усилителя. Минимально допустимое входное напряжение обычно ограничено уровнем собственных шумов усилителя, на фоне которых выходной сигнал не удается выделить.

Амплитудная характеристика во многих случаях оказывается слишком грубым средством описания нелинейных искажений усилителя. Поэтому вводится понятие коэффициента гармоник (коэффициента нелинейных искажений), представляющего собой отношение суммы амплитуд всех гармоник напряжения (или тока) искаженного сигнала, кроме первой, к амплитуде напряжения (или тока) первой гармоники на выходе усилителя при воздействии на вход усилителя одного чисто синусоидального сигнала:

где U iВЫХ - амплитуда i-ой гармоники выходного искаженного сигнала, U 1ВЫХ - амплитуда первой (основной) гармоники. Первая гармоника представляет собой полезный сигнал, остальные являются результатом нелинейных искажений. Индекс определяет номер гармоники. Обычно учитывают только вторую и третью гармоники, так как амплитудные значения мощностей более высоких гармоник сравнительно малы.

Линейные и нелинейные искажения характеризуют точность воспроизведения формы входного сигнала усилителем.

ВОПРОС №2

Качество работы усилителя, в основном, определяется степенью искажения сигналов, вносимых усилителем. Под искажениями усиленного сигнала следует понимать изменение формы выходного сигнала по сравнению с формой входного сигнала усилителя.

Любой усилитель в той или иной степени искажает сигнал. В зависимости от причин, изменяющих форму выходного сигнала, различаются следующие виды искажений:

– частотные,

– фазовые,

– переходные,

– нелинейные.

Частотные искажения

Определение. Искажения, проявляющиеся в изменении соотношения амплитуд спектральных составляющих сигнала, называются частотными искажениями.

Другими словами, отдельные гармонические составляющие входного сигнала усиливаются не одинаково. Это происходит за счет наличия в усилителе реактивных элементов: емкостей и индуктивностей.

Частотные искажения относятся к искажениям линейного характера, так как они не зависят от нелинейных свойств элементов схемы, например, от нелинейности характеристик ламп и транзисторов.

Количественная оценка частотных искажений характеризуется коэффициентом частотных искажений М , который равен отношению коэффициента усиления по напряжению на средних частотах К СР к его значению данной частоте

Как правило, на крайних частотах коэффициент усиления уменьшается, следовательно, М >1. На средних частотах М = 1. Исследования показали, что человеческое ухо не ощущает искажений, если их величина не превышает 30−40%, то есть М = 1,3–1,4. Для многокаскадных усилителей коэффициент частотных искажений определяется выражением

Мобщ = М 1 ∙ М 2 ∙ ... ∙ М n ,

гдеn–количество каскадов;

М 1 , М 2 … –коэффициент частотных искажений первого, второго и т.д. каскадов.

Коэффициент частотных искажений может быть определен и в логарифмических единицах (децибелах)

М [дБ] = 20 1gM.

Тогда для многокаскадного усилителя

М ОБЩ [дБ] = М 1 + М 2 + . . .+ М n .

Более полное представление о частотных свойствах усилителя при гармоническом входном сигнале можно получить по амплитудно-частотной характеристике усилителя (АЧХ) (рис.2.5).

Амплитудно-частотной характеристикой электронного усилителя называется зависимость коэффициента усиления напряжения (тока) усилителя от частоты гармонического входного сигнала.

Иногда АХЧ называется частотной характеристикой. Идеальной АЧХ является прямая линия параллельная оси частот (рис.2.5а), а реальная АЧХ (рис.2.5б) имеет «завалы» в областях нижних и верхних частот.

АЧХ может быть представлена и в системе координат, где по вертикальной оси отложен коэффициент усиления в относительных единицах


или в логарифмических единицах Y = –20 1gM [дБ] , а по горизонтальной оси – частота.

К а

К Н К СР К В

Область Область Область

нижних средних верхних

частот частот частот

Рис.2.5. Амплитудно-частотная характеристика усилителя:

а) идеальная; б) реальная

Фазовые искажения

Определение. Искажения, вызванные нарушением фазовых соотношений между отдельными спектральными составляющими сигнала при передаче по какой-либо цепи, называются фазовыми.

Эти искажения тесно связаны с частотными искажениями, так как причина их появления общая – наличие в схеме усилителя реактивных элементов. Фазовые искажения, как и частотные, не зависят от нелинейности характеристик усилительных элементов и поэтому являются линейными.

Человеческий слух практически не реагирует на фазовые искажения и поэтому при проектировании усилителей звуковой частоты эти искажения не учитываются.

При определении фазовых искажений учитываются только фазовые сдвиги, создаваемые реактивными элементами схемы (рис.2.6), и не учитываются повороты фазы, вызываемые УЭ. При прохождении через УЭ происходит запаздывание отдельных составляющих на одинаковое время Δt (рис.2.7). Фазовые свойства усилителя характеризуются его фазочастотной характеристикой. ФЧХ показывает зависимость разности фаз входного и выходного гармонических сигналов (φ) усилителя от частоты (f).

Определение. Фазо-частотной характеристикой (ФЧХ) электронного усилителя называется зависимость аргумента передаточной функции усилителя от частоты гармоничного входного сигнала.

Идеальная фазочастотная характеристика (когда отсутствуют фазовые искажения) имеет вид прямой линии (рис.2.8а). Такая характеристика выражает пропорциональную зависимость угла сдвига фазы от изменения частоты. Реальная ФЧХ представлена на рисунке 2.8б. При оценке фазовых частот берутся не абсолютные значения фазовых сдвигов, а величина отклонения Δφ 0 реальной характеристики от идеальной.

Фазочастотную характеристику усилителя можно построить, используя соотношение, связывающее между собой частотные и фазовые искажения

U ВХ 1-я гармоника U ВХ 1-я гармоника

2-я гармоника 2-я гармоника

U ВЫХ 1-я гармоника U ВЫХ 1-я гармоника

2-я гармоника 2-я гармоника

Рис. 2.6. Фазовые сдвиги Рис.2.7. Поворот фазы сигнала

отдельных гармоник сигнала усилительным элементом

Δφ Н f Н f В f

Рис.2.8. Фазочастотная характеристика:

а) идеальная; б) реальная

Величина фазовых искажений и требования, предъявляемые к фазочастотной характеристике, зависят от назначения усилителя. При этом для получения необходимой формы характеристики используются специальные корректирующие цепи.

В многокаскадном усилителе фазовый сдвиг равен сумме фазовых сдвигов отдельных каскадов

φ общ = φ 1 + φ 2 + … + φ n .

Переходные искажения

Определение. Искажения выходного импульса по сравнению с входным прямоугольным импульсом называются переходными искажениями.

Переходные искажения создаются за счет присутствия в схеме усилителя реактивных элементов (индуктивностей, емкостей). Эти искажения также относятся к линейным, так как не зависят от нелинейных элементов схемы.

Основной характеристикой импульсного сигнала является его форма. На рисунке 2.9а показан входной прямоугольный импульс, а на рисунке 2.9б выходной искаженный импульс.

U ВХ t И


Рис.2.9. Искажения прямоугольного импульса при усилении

а) входной прямоугольный импульс; б) выходной искаженный импульс

Для оценки искажений прямоугольного импульса используются следующие величины:

tф – длительность фронта,

ΔU C – спад вершины,

t C – длительность спада,

ΔU B – выброс фронта.

Принято считать, что импульс имеет «активную» длительность, которая отсчитывается на некотором определенном уровне, обычно на уровне 0,1U m . Длительность фронта tф равна промежутку времени между моментами, когда напряжение или ток с уровня 0,1U m достигнет уровня 0,9U m .

Длительность импульса t И определяется на уровне 0,1U m (0,1І m ) или на уровне 0,5 U m (0,5І m) . Длительность спада, а также фронта, не должны превышать 0,1–0,3 длительности импульса t И. Величина спада вершины импульса определяется выражением

. (2.20)

При этом величина Δс не должна превышать 3–5%.

Величина выброса фронта определяется выражением

. (2.21)

Эта величина также не должна превышать 3–5%.

Если усилитель многокаскадный, то вышеуказанные параметры прямоугольного импульса будут находиться так:

; (2.22)

, (2.24)

где n – количество каскадов усилителя.

Нелинейные искажения

Определение. Нелинейными искажениями называются искажения, проявляющиеся в появлении в частотном спектре выходного сигнала составляющих, отсутствующих в спектре входного сигнала.

Нелинейные искажения вызываются нелинейностью характеристик УЭ (ламп, транзисторов), а также нелинейностью намагничивания сердечников трансформатора усилителя.

Появление нелинейных искажений происходит следующим образом. На вход подан гармонический сигнал (рис.2.10а). На выходе усилителя за счет нелинейных искажений получается искаженный сигнал. На рисунке 2.10б он обозначен как «результат». Искаженный выходной сигнал, как и любой не гармонический сигнал, может быть представлен суммой гармонических сигналов с частотами f и 2f.

Таким образом, на выходе усилителя в сигнале появляются дополнительные частотные составляющие, отсутствующие на входе. При этом, чем больше нелинейности характеристик УЭ, тем больше искажается выходной сигнал, тем больше частотных составляющих появляются в его спектре.

Нелинейные искажения оцениваются с помощью коэффициента гармоник, который равен отношению среднеквадратического напряжения суммы гармоник сигнала, кроме первой, к эффективному значению напряжения первой гармоники, при воздействии на вход усилителя синусоидального сигнала

, (2.25)

где U 1 , U 2 , U 3 …U n – напряжение 1-й, 2-й, 3-й … n-й гармоник выходного сигнала.

Иногда вместо значений напряжения могут использоваться значения тока

, (2.26)

где I 1 , I 2 , I 3 …I n – ток 1-й, 2-й, 3-й … n-й гармоник выходного сигнала.

U ВХ f

Результат

Рис.2.10. Искажение формы сигнала при усилении

Можно найти такой коэффициент второй, третьей и т.д. гармоник

; . (2.27)

В этом случае общий коэффициент гармоник также находится через коэффициент второй, третьей и т.д. гармоник

Общий коэффициент гармоник многокаскадного усилителя КГ ОБЩ определяется через коэффициенты гармоник отдельных каскадов

где К Г1 , К Г2 ,…К Гn – коэффициент гармоник первого, второго и т.д. каскадов усилителя.

Допустимая величины коэффициента гармоник зависит от назначения усилителя. Так, в усилителях высокого класса К Г не должен превышать 1%, для среднего класса 5–7%.

Выводы по 2-му вопросу:

1. Рассмотренные искажения возникают практически во всех усилителях и задача инженеров сводится к их максимальному снижению.

2. Нелинейные искажения возникают во многих радиоэлектронных устройствах и играют, кроме того, важную роль в генерации сигналов и синтезе частот.

3. Усилители электрических сигналов являются основными функциональными элементами средств связи:

– радиопередающих устройств (РПДУ),

– радиоприемных устройств (РПУ),

– радиостанций,

– устройств обработки сигнала.

4. Усилитель отличается от других электрических цепей способностью увеличивать не только амплитуду напряжения (тока), но и увеличивать мощность сигнала.

5. Усилитель должен иметь в своем составе следующие составные части:

– источник входного сигнала,

– усилительный элемент,

– нагрузку,

– источник питания.

6. Основные параметры усилителя могут изменяться в относительных или логарифмических единицах (децибелах). В случае многокаскадного усилителя относительные единицы перемножаются, а логарифмические складываются.

7. Любой усилитель искажает проходящий через него сигнал. Различаются частотные, фазовые, переходные, нелинейные искажения.

8. Величины допустимых искажений определяются назначением усилителя.

ЗАКЛЮЧЕНИЕ

Данная лекция имеет важное значение в подготовке будущего офицера-связиста, инженера. Рассматриваемые в лекции вопросы отражают значимые для специалиста радиосвязи моменты: раскрыта физическая суть основных характеристик и параметров любого усилителя электрических сигналов. Стоит отметить, что указанные параметры характеризуют не только усилители, но и другие электронные устройства, а также и такие средства связи, как радиоприемник, радиопередатчик и др.

Знание основных параметров и характеристик усилителя во многом поможет быстрее и глубже разобраться в принципах построения и функционирования усилителей и других электронных устройств. При этом следует учитывать, что компетенция инженера во многом определяется способностью свободно оперировать техническими терминами.

Лекция 9.

Основные параметры и характеристики усилителя:

1. R вх =U 1 /I 1. – входное сопротивление.

На низких частотах – активное. Зависит от частоты.

На высоких частотах – комплексное.

2. R вых =U 2 xx/I 2 кз. (хх-холостой ход, кз-короткое замыкание).

3. К – коэффициент усиления, во сколько раз выходной сигнал больше входного.

а) К u =U 2 m /U 1 m – по напряжению.

б) K I =I 2 m /I 1 m – по току.

в) K p =P 2 /P 1 – по мощности.

Коэффициент усиления – величина безразмерная, иногда его выражают в относительных логарифмических единицах, которые называют децибелами.

При воздействии на усилитель гармонического сигнала, его коэффициент усиления оказывается частотно-зависимым и аналитически выражается комплексной функцией коэффициента передачи, которая называется частотной характеристикой.

Комплексный коэффициент передачи.

4. Зависимость коэффициента передачи от частоты – частотная характеристика.

АЧХ: K (j w) = (0

ФЧХ: j (j w) =j 2 -j 1 (0


Графики усилителя:

Идеальный усилитель должен иметь коэффициент усиления К 0 на всем диапазоне частот, в реальном же усилителе коэффициент меняется.

ФЧХ говорит о том, что на низких частотах фазовый сдвиг положителен, а на высоких частотах происходит запаздывание (т.е. отрицателен).

Амплитудная характеристика усилителя.

U вых =f(U вх.м);

Амплитудная характеристика.

1.Отличия в области малых амплитуд входного сигнала состоят в том, что при отсутствии входного сигнала на выходе имеется некоторый сигнал. Он возникает из-за наличия электромагнитных наводок и собственных шумов на вход усилителя

2.В области больших амплитуд отличия связаны с нелинейностью ВАХ активных элементов.

Из ВАХ вытекают основные параметры определяемые по амплитудной характеристике:

а. - динамический диапазон усилителя. Чем больше D, тем он качественнее.

Б.Чувствительность. Различают две чувствительности:

1.)Номинальная – величина входного сигнала, при котором на выходе обеспечивается номинальная мощность.

2).Пороговая – минимальный входной сигнал, при котором выходной сигнал однозначно определяется над уровнем шумов усилителя.

Пороговую чувствительность определяют, когда:

Искажения сигналов в усилителях.

Для идеального линейного усилителя форма входного и выходного сигналов должны совпадать. В реальных усилителях этого не происходит. Всякое отклонение формы сигнала на выходе от формы его на входе есть искажение создаваемое усилителем.

Искажения бывают:

1.Линейное;


2.Нелинейное.

Нелинейное искажение – это изменения формы сигнала на выходе, которые возникаютза счет нелинейности ВАХ активных металлов. Количественно нелинейные искажения оценивают коэффициентом нелинейных искажений (КНИ).

Линейное искажение бывает двух видов:

а. Частотное;

б. Фазовое;

Частотное искажение связано с наличием в схеме усилителя реактивных элементов и возникающих за счет неодинакового усиления различных гармонических составляющих.

Фазовое искажение возникает за счет неодинакового фазового сдвига различных гармонических составляющих. Причина этого - наличие реактивных элементов в схеме усилителя.

КПД усилителя.

КПД играет существенную роль в усилителях мощности.

Классификация усилителей.

Классификация усилителей может быть произведена по различным признакам:

1.По полосе пропускания и абсолютному значению усиливаемых частот усилители делятся на усилители постоянного тока и усилители переменного тока. Усилители переменного тока в свою очередь делятся на усилители низких частот, широкополосные усилители и на избирательные усилители.

а. Усилители постоянного тока – способны усиливать как переменные, так и постоянные составляющие сигнала. У них f н =0;

б. Усилители переменного тока – способны усиливать только переменные составляющие сигнала. F н >0.

в. Усилители низких частот – усилители звуковой частоты - f н »50 Гц,f в »20 кГц;

г. Избирательные усилители предназначены для усиления электрических сигналов в относительно узком диапазоне частот. Для них

2.По характеру входного сигнала:

а. Усилители непрерывных сигналов;

б. Усилители импульсных сигналов.

3.По виду используемых активных элементов:

а. Ламповые;

б. На биполярных транзисторах;

в. На полевых транзисторах;

г. На туннельных диодах;

д. Параметрические элементы. В них активным элементом является индуктивность и емкость, они могут усиливать электрический сигнал.

4. По числу усилительных каскадов:

Под усилительным каскадом понимают совокупность элементов способных усиливать электрические сигналы.

а. Однокаскадные;

б. Многокаскадные.

5. По виду связи между каскадами:

а. Усилители с непосредственной гальванической связью между каскадами:

Б. Связь между усилителями осуществляющаяся через RC-элемент:

В. Усилители с трансформаторной связью:

Трансформаторная связь обеспечивает гальваническую развязку между каскадами.

Г. Усилители с оптоэлектронной связью:


Обеспечивает гальваническую развязку между каскадами и в то же время обеспечивает полную передачу сигнала от одного каскада к другому по переменной и постоянной составляющей.

Многокаскадные усилители.

Основным параметром электронного усилителя является коэффициент усиления К. Коэффициент усиления мощности (напряжения, тока) определяется отношением мощности (напряжения, тока) выходного сигнала к мощности (напряжению, току) входного и характеризует усилительные свойства схемы. Выходной и входной сигналы должны быть выражены в одних и тех же количественных единицах, поэтому коэффициент усиления является безразмерной величиной.

В отсутствие реактивных элементов в схеме, а также при определенных режимах ее работы, когда исключается их влияние, коэффициент усиления является действительной величиной, не зависящей от частоты. В этом случае выходной сигнал повторяет форму входного и отличается от него в К раз только амплитудой. В дальнейшем изложении материала речь пойдет о модуле коэффициента усиления, если нет особых оговорок.

В зависимости от требований, предъявляемых к выходным параметрам усилителя переменного сигнала, различают коэффициенты усиления:

а) по напряжению, определяемый как отношение амплитуды переменной составляющей выходного напряжения к амплитуде переменной составляющей входного, т. е.

б) по току, который определяется отношением амплитуды переменной составляющей выходного тока к амплитуде переменной составляющей входного:

в) по мощности

Так как , то коэффициент усиления по мощности можно определить следующим образом:

При наличии реактивных элементов в схеме (конденсаторов, индуктивностей) коэффициент усиления следует рассматривать как комплексную величину

где m и n - действительная и мнимая составляющие, зависящие от частоты входного сигнала:

Положим, что коэффициент усиления К не зависит от амплитуды входного сигнала. В этом случае при подаче на вход усилителя синусоидального сигнала выходной сигнал также будет иметь синусоидальную форму, но отличаться от входного по амплитуде в К раз и по фазе на угол .

Периодический сигнал сложной формы согласно теореме Фурье можно представить суммой конечного или бесконечно большого числа гармонических составляющих, имеющих разные амплитуды, частоты и фазы. Так как К - комплексная величина, то амплитуды и фазы гармонических составляющих входного сигнала при прохождении через усилитель изменяются по-разному и выходной сигнал будет отличаться по форме от входного.

Искажения сигнала при прохождении через усилитель, обусловленные зависимостью параметров усилителя от частоты и не зависящие от амплитуды входного сигнала, называются линейными искажениями. В свою очередь, линейные искажения можно разделить на частотные (характеризующие изменение модуля коэффициента усиления К в полосе частот за счет влияния реактивных элементов в схеме); фазовые (характеризующие зависимость сдвига по фазе между выходным и входным сигналами от частоты за счет влияния реактивных элементов).

Частотные искажения сигнала можно оценить с помощью амплитудно-частотной характеристики, выражающей зависимость модуля коэффициента усиления по напряжению от частоты. Амплитудно-частотная характеристика усилителя в общем виде представлена на рис. 1.2. Рабочий диапазон частот усилителя, внутри которого коэффициент усиления можно считать с известной степенью точности постоянным, лежит между низшей и высшей граничными частотами и называется полосой пропускания. Граничные частоты определяют уменьшение коэффициента усиления на заданную величину от своего максимального значения на средней частоте .

Введя коэффициент частотных искажений на данной частоте ,

где - коэффициент усиления по напряжению на данной частоте, можно с помощью амплитудно-частотной характеристики определить частотные искажения в любом диапазоне рабочих частот усилителя.

Поскольку наибольшие частотные искажения имеем на границах рабочего диапазона, то при расчете усилителя, как правило, задают коэффициенты частотных искажений на низшей и высшей граничных частотах, т. е.

где - соответственно коэффициенты усиления по напряжению на высшей и низшей граничных частотах.

Обычно принимают , т. е. на граничных частотах коэффициент усиления по напряжению уменьшается до уровня 0,707 значения коэффициента усиления на средней частоте. При таких условиях полоса пропускания усилителей звуковой частоты, предназначенных для воспроизведения речи и музыки, лежит в пределах 30-20 000 Гц. Для усилителей, применяемых в телефонии, допустима более узкая полоса пропускания 300-3400 Гц. Для усиления импульсных сигналов необходимо использовать так называемые широкополосные усилители, полоса пропускания которых располагается в диапазоне частот от десятков или единиц герц до десятков или даже сотен мегагерц.

Для оценки качества усилителя часто пользуются параметром

Для широкополосных усилителей , поэтому

Противоположностью широкополосных усилителей являются избирательные усилители, назначение которых состоит в усилении сигналов в узкой полосе частот (рис. 1.3).

Усилители, предназначенные для усиления сигналов со сколь угодно малой частотой, называются усилителями постоянного тока. Из определения ясно, что низшая граничная частота полосы пропускания такого усилителя равна нулю. Амплитудно-частотная характеристика усилителя постоянного тока дана на рис. 1.4.

Фазочастотная характеристика показывает, как меняется угол сдвига фаз между выходным и входным сигналами при изменении частоты и определяет фазовые искажения.

Фазовые искажения отсутствуют при линейном характере фазочастотной характеристики (пунктирная линия на рис. 1.5), так как в этом случае каждая гармоническая составляющая входного сигнала при прохождении через усилитель сдвигается по времени на один и тот же интервал . Угол сдвига фаз между входным и выходным сигналами при этом пропорционален частоте

где - коэффициент пропорциональности, определяющий угол наклона характеристики к оси абсцисс.

Фазочастотная характеристика реального усилителя представлена на рис. 1.5 сплошной линией. Из рис. 1.5 видно, что в пределах полосы пропускания усилителя фазовые искажения минимальны, однако резко возрастают в области граничных частот.

Если коэффициент усиления зависит от амплитуды входного сигнала, то имеют место нелинейные искажения усиливаемого сигнала, обусловленные наличием в усилителе элементов с нелинейными вольт-амперными характеристиками.

Задавая закон изменения можно проектировать нелинейные усилители с определенными свойствами. Пусть коэффициент усиления определяется зависимостью , где - коэффициент пропорциональности.

Тогда при подаче на вход усилителя синусоидального входного сигнала выходной сигнал усилителя

где - амплитуда и частота входного сигнала.

Первая гармоническая составляющая в выражении (1.6) представляет собой полезный сигнал, остальные являются результатом нелинейных искажений.

Нелинейные искажения можно оценить с помощью так называемого коэффициента гармоник

где - амплитудные значения соответственно мощности, напряжения и тока гармонических составляющих.

Индекс определяет номер гармоники. Обычно учитывают только вторую и третью гармоники, так как амплитудные значения мощностей более высоких гармоник сравнительно малы.

Линейные и нелинейные искажения характеризуют точность воспроизведения формы входного сигнала усилителем.

Амплитудная характеристика четырехполюсников, состоящих только из линейных элементов, при любом значении теоретически является наклонной прямой. Практически же максимальное значение ограничивается электрической прочностью элементов четырехполюсника. Амплитудная характеристика усилителя, выполненного на электронных приборах (рис. 1.6), в принципе нелинейна, однако может содержать участки ОА, где кривая носит приблизительно линейный характер с большой степенью точности. Рабочий диапазон входного сигнала не должен выходить за пределы линейного участка (ОА) амплитудной характеристики усилителя, иначе нелинейные искажения превысят допустимый уровень.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!