Энциклопедия мобильной связи

Проектирование баз данных в кратком изложении. Основные этапы проектирования баз данных

Суть проектирования баз данных (БД), как и любого другого процесса проектирования, в создании описания новой, прежде не существовавшей в таком виде системы, которая при её реализации способна предполагаемо функционировать в соответствующих условиях. Из этого следует, что этапы проектирования базы данных должны последовательно и логически связано отражать суть этого процесса.

Содержание проектирования баз данных и этапность

Замысел проектирования основывается на какой-либо сформулированной общественной потребности. У этой потребности есть среда её возникновения и целевая аудитория потребителей, которые будут пользоваться результатом проектирования. Следовательно, процесс проектирования баз данных начинается с изучения данной потребности с точки зрения потребителей и функциональной среды её предполагаемого размещения. То есть, первым этапом становится сбор информации и определение модели предметной области системы, а также – взгляда на неё с точки зрения целевой аудитории. В целом, для определения требований к системе производится определение диапазона действий, а также границ приложений БД.

Далее проектировщик, уже имеющий определённые представления о том, что ему нужно создать, уточняет предположительно решаемые приложением задачи, формирует их список (особенно, если в проектной разработке большая и сложная БД), уточняет последовательность решения задач и производит анализ данных. Такой процесс – тоже этапная проектная работа, но обычно в структуре проектирования эти шаги поглощаются этапом концептуального проектирования – этапом выделения объектов, атрибутов, связей.

Создание концептуальной (информационной модели) предполагает предварительное формирование концептуальных требований пользователей, включая требования в отношении приложений, которые могут и не быть сразу реализованным, но учёт которых позволит в будущем повысить функциональность системы. Имея дело с представлениями объектов-абстракций множества (без указания способов физического хранения) и их взаимосвязями, концептуальная модель содержательно соответствует модели предметной области. Поэтому в литературе первый этап проектирования БД называется инфологическим проектированием.

Далее отдельным этапом (либо дополнением к предыдущему) следует этап формирования требований к операционной обстановке, где оцениваются требования к вычислительным ресурсам, способным обеспечить функционирование системы. Соответственно, чем больше объем проектируемой БД, чем выше пользовательская активность и интенсивность обращений, тем выше требования предъявляются к ресурсам: к конфигурации компьютера к типу и версии операционной системы. Например, многопользовательский режим работы будущей базы данных требует сетевого подключения с использованием операционной системы, соответствующей многозадачности.

Следующим этапом проектировщик должен выбрать систему управления базой данных (СУБД), а также инструментальные средства программного характера. После этого концептуальную модель необходимо перенести в совместимую с выбранной системой управления модель данных. Но нередко это сопряжено с внесением поправок и изменений в концептуальную модель, поскольку не всегда взаимосвязи объектов между собой, отражённые концептуальной моделью, могут быть реализованы средствами данной СУБД.

Это обстоятельство определяет возникновение следующего этапа – появления обеспеченной средствами конкретной СУБД концептуальной модели. Данный шаг соответствует этапу логического проектирования (создания логической модели).

Наконец, финальным этапом проектирования БД становится физическое проектирование – этап увязки логической структуры и физической среды хранения.

Таким образом, основные этапы проектирования в детализированном виде представлены этапами:

  • инфологического проектирования,
  • формирования требований к операционной обстановке
  • выбора системы управления и программных средств БД,
  • логического проектирования,
  • физического проектирования

Ключевые из них ниже будут рассмотрены подробнее.

Инфологическое проектирование

Идентификация сущностей составляет смысловую основу инфологического проектирования. Сущность здесь – это такой объект (абстрактный или конкретный), информация о котором будет накапливаться в системе. В инфологической модели предметной области в понятных пользователю терминах, которые не зависят от конкретной реализации БД, описывается структура и динамические свойства предметной области. Но термины, при этом берутся в типовых масштабах. То есть, описание выражается не через отдельные объекты предметной области и их взаимосвязи, а через:

  • описание типов объектов,
  • ограничения целостности, связанные с описанным типом,
  • процессы, приводящие к эволюции предметной области – переходу её в другое состояние.

Инфологическую модель можно создавать с помощью нескольких методов и подходов:

  1. Функциональный подход отталкивается от поставленных задач. Функциональным он называется, потому что применяется, если известны функции и задачи лиц, которые с помощью проектируемой базы данных будут обслуживать свои информационные потребности.
  2. Предметный подход во главу угла ставит сведения об информации, которая будет содержаться в базе данных, при том, что структура запросов может не быть определена. В этом случае в исследованиях предметной области ориентируются на её максимально адекватное отображение в базе данных в контексте полного спектра предполагаемых информационных запросов.
  3. Комплексный подход по методу «сущность-связь» объединяет достоинства двух предыдущих. Метод сводится к разделению всей предметной области на локальные части, которые моделируются по отдельности, а затем вновь объединяются в цельную область.

Поскольку использование метода «сущность-связь» является комбинированным способом проектирования на данном этапе, он чаще других становится приоритетным.

Локальные представления при методическом разделении должны, по возможности, включать в себя информацию, которой бы хватило для решения обособленной задачи или для обеспечения запросов какой-то группы потенциальных пользователей. Каждая из этих областей содержит порядка 6-7 сущностей и соответствует какому-либо отдельному внешнему приложению.

Зависимость сущностей отражается в разделении их на сильные (базовые, родительские) и слабые (дочерние). Сильная сущность (например, читатель в библиотеке) может существовать в БД сама по себе, а слабая сущность (например, абонемент этого читателя) «привязывается» к сильной и отдельно не существует.

Следует разделять понятия «экземпляр сущности» (объект, характеризующийся конкретными значениями свойств) и понятие «тип сущности» – объект, для которого характерно общее имя и список свойств.

Для каждой отдельной сущности выбираются атрибуты (набор свойств), которые в зависимости от критерия могут быть:

  • идентифицирующими (с уникальным значением для сущностей этого типа, что делает их потенциальными ключами) или описательными;
  • однозначными или многозначными (с соответствующим количеством значений для экземпляра сущности);
  • основными (независимыми от остальных атрибутов) или производными (вычисляемыми, исходя из значений иных атрибутов);
  • простыми (неделимыми однокомпонентными) или составными (скомбинированными из нескольких компонентов).

После этого производится спецификация атрибута, спецификация связей в локальном представлении (с разделением на факультативные и обязательные) и объединение локальных представлений.При числе локальных областей до 4-5 их можно объединить за один шаг. В случае увеличения числа, бинарное объединение областей происходит в несколько этапов.

В ходе этого и других промежуточных этапов находит своё отражение итерационная природа проектирования, выражающаяся здесь в том, что для устранения противоречий необходимо возвращаться на этап моделирования локальных представлений для уточнения и изменения (например, для изменения одинаковых названий семантически разных объектов или для согласования атрибутов целостности на одинаковые атрибуты в разных приложениях).

Выбор системы управления и программных средств БД

От выбора системы управления БД зависит практическая реализация информационной системы. Наиболее значимыми критериями в процессе выбора становятся параметры:

  • типа модели данных и её соответствие потребностям предметной области,
  • запас возможностей в случае расширения информационной системы,
  • характеристики производительности выбранной системы,
  • эксплуатационная надёжность и удобство СУБД,
  • инструментальная оснащённость, ориентированная на персонал администрирования данных,
  • стоимость самой СУБД и дополнительного софта.

Ошибки в выборе СУБД практически наверняка впоследствии спровоцируют необходимость корректировать концептуальную и логическую модели.

Логическое проектирование БД

Логическая структура БД должна соответствовать логической модели предметной области и учитывать связь модели данных с поддерживаемой СУБД. Поэтому этап начинается с выбора модели данных, где важно учесть её простоту и наглядность.

Предпочтительнее, когда естественная структура данных совпадает с представляющей её моделью. Так, например, если в данные представлены в виде иерархической структуры, то и модель лучше выбирать иерархическую. Однако на практике такой выбор чаще определяется системой управления БД, а не моделью данных. Поэтому концептуальная модель фактически транслируется в такую модель данных, которая совместима с выбранной системой управления БД.

Здесь тоже находит отражение природа проектирования, которая допускает возможность (или необходимость) вернуться к концептуальной модели для её изменения в случае, если отражённые там взаимосвязи между объектами (или атрибуты объектов) не удастся реализовать средствами выбранной СУБД.

По завершению этапа должны быть сформированы схемы баз данных обоих уровней архитектуры (концептуального и внешнего), созданные на языке определения данных, поддерживаемых выбранной СУБД.

Схемы базы данных формируются с помощью одного из двух разнонаправленных подходов:

  • либо с помощью восходящего подхода, когда работа идёт с нижних уровней определения атрибутов, сгруппированных в отношения, представляющие объекты, на основе существующих между атрибутами связей;
  • либо с помощью обратного, нисходящего, подхода, применяемого при значительном (до сотен и тысяч) увеличении числа атрибутов.

Второй подход предполагает определение ряда высокоуровневых сущностей и их взаимосвязей с последующей детализацией до нужного уровня, что и отражает, например, модель, созданная на основе метода «сущность-связь». Но на практике оба подхода, как правило, комбинируются.

Физическое проектирование БД

На следующем этапе физического проектирования БД логическая структура отображается в виде структуры хранения БД, то есть увязывается с такой физической средой хранения, где данные будут размещены максимально эффективно. Здесь детально расписывается схема данных с указанием всех типов, полей, размеров и ограничений. Помимо разработки индексов и таблиц, производится определение основных запросов.

Построение физической модели сопряжено с решением во многом противоречивых задач:

  1. задачи минимизации места хранения данных,
  2. задачи достижения целостности, безопасности и максимальной производительности.

Вторая задача вступает в конфликт с первой, поскольку, например:

  • для эффективного функционирования транзакций нужно резервировать дисковое место под временные объекты,
  • для увеличения скорости поиска нужно создавать индексы, число которых определяется числом всех возможных комбинаций участвующих в поиске полей,
  • для восстановления данных будут создаваться резервные копии базы данных и вестись журнал всех изменений.

Всё это увеличивает размер базы данных, поэтому проектировщик ищет разумный баланс, при котором задачи решаются оптимально путём грамотного размещения данных в пространстве памяти, но не за счёт средств защиты базы дынных, куда входит как защита от несанкционированного доступа, так и защита от сбоев.

Для завершения создания физической модели проводят оценку её эксплуатационных характеристик (скорость поиска, эффективность выполнения запросов и расхода ресурсов, правильность операций). Иногда этот этап, как и этапы реализации базы данных, тестирования и оптимизации, а также сопровождения и эксплуатации, выносят за пределы непосредственного проектирования БД.

Лекция

Проектирование БД.

Модели многоуровневой архитектуры систем баз данных. Средства автоматизации проектирования

1. Модели многоуровневой архитектуры систем баз данных

В области проектирования и разработки систем баз данных используются различные средства моделирования, причем даже в рамках одной конкретной системы необходим целый комплекс моделей разного назначения.

Опубликованный в 1975 году отчет ANSI/X3/SPARC зафиксировал не только широкое признание концепций многоуровневой архитектуры систем баз данных, но и необходимость явного выделения специального концептуального уровня представления базы данных, единого для всех ее приложений и независимого от них. Кроме этого уровня предусматривались еще два уровня: внутренний уровень, который должен обеспечивать поддержку представления хранимой базы данных, и внешний, поддерживающий представления базы данных “с точки зрения” приложений. На каждом архитектурном уровне предполагалось использование той или иной модели данных. Кроме того, на внешнем (прикладном, пользовательском) уровне таких моделей может быть несколько. Модели, а также схемы, специфицируемые на их основе, называются, соответственно, внешней, концептуальной и внутренней.

Как очевидно конечной целью проектирования является построение конкретной базы данных, в той или иной степени воплощающей представление проектировщика о предметной области и задачах, решаемых пользователями с использованием созданной базы. Рассматривая базу данных как конкретную реализацию модели , мы по существу устанавливаем порядок процесса, отделяя этап определения принципов (то, какой база должна быть) от этапа воплощения этих принципов при реализации базы данных в конкретной среде СУБД, ОС и языках программирования. И, как показывает практика, между реализациями баз данных и принципами их построения всегда есть расхождения. Различия являются следствием разных причин, но чаще всего - это явный или неявный отказ от некоторых принципиальных ограничений, налагаемых, например, моделью данных или базовыми (встроенными) алгоритмами обработки, в пользу частного решения, которое, по мнению проектировщика, будет более эффективно, например, для понимания или обработки данных.

Важность отделения проектирования на абстрактном уровне от физической реализации состоит в том что, объявляя принципы, мы конструктивно ограничиваем область применения. Во-первых, размерность и сложность задачи должна быть сокращена до такого уровня, чтобы реализация стала возможной в данных конкретных условиях – ресурсах среды, профессионализме проектировщика, подготовленности пользователя и т.д. Во-вторых, поскольку база данных по определению предназначена для многофункционального использования различными пользователями, и в тоже время - для обслуживания запросов, не предвиденных при проектировании, такое явное объявление принципов позволит не вводить в заблуждение пользователя и не создавать приложения для решения задач, которые в силу своего принципиального отличия от тех, которые рассматривались при проектировании, обусловят неэффективную обработку данных . В-третьих, проектирование – это процесс своеобразного согласования точек зрения двух основных субъектов: пользователя и проектировщика базы данных. Для пользователя характерны требования высокой степени общности и широты представления (и не громоздкость детальных описаний), позволяющих ему получить достаточно сведений без затраты значительных временных или интеллектуальных ресурсов. Для администратора, выполняющего проектирование и оптимизацию системы баз данных, необходима высокая степень детализации и формализации, обеспечивающих обоснованность технических решений, а также возможность автоматизации проектирования.

7.2. Типология моделей

Основные отличия любых методов представления информации заключаются в том, каким способом фиксируется семантика предметной области. Но, следует особо отметить, что для всех уровней и для любого метода представления предметной области (но для нас важно, что в контексте создания и использования машинных баз данных ) в основе отображения (т.е., собственно формирования представления) лежит кодирование понятий и отношений между понятиями. Многоуровневая система моделей представления информации иллюстрируется слайдами 2, 3, 4 (Типология моделей) .

Ключевым этапом при разработке любой информационной системы является проведение системного анализа: формализация предметной области и представление системы как совокупности компонент. Системный анализ позволяет, с одной стороны лучше понять «что надо делать» и «кому надо делать» (аналитику, разработчику, руководителю, пользователю), а с другой - отслеживать во времени изменения рассматриваемой модели и обновлять проект.

Декомпозиция, как основа системного анализа, может быть функциональной (построение иерархий функций) или объектной.

Однако в большинстве систем, если говорить, например, о базах данных, типы данных являются более статичным элементом, чем способы их обработки. Поэтому получили интенсивное развитие такие методы системного анализа, как диаграммы массивов данных (Data Flow Diagram). Развитие реляционных баз данных в свою очередь стимулировало развитие методик построения моделей данных, и в частности, ER -диаграмм (Entity Relationship Diagram ). Но и функциональная декомпозиция и диаграммы данных дают только некоторый срез исследуемой предметной области, но не позволяют получить представление системы в целом.

Различаются и методы отображения, используемые на этапе построения даталогических моделей, отражающих способ идентификации элементов и связей, но, что особенно важно, в контексте их будущего представления в одномерном пространстве памяти вычислительной машины. Модели подразделяются на фактографические - ориентированные на представление хорошо структурированной информации, и документальные - представляющие наиболее распространенный способ отражения слабоструктурированной информации. Если в первом случае говорят о реляционной, иерархической или сетевой моделях данных, то во втором – о семантических сетях и документальных моделях. Хотя, разделение на фактографические и документальные в этой группе моделей является достаточно условным. Документ, как последовательность полей может быть представлен, в том числе, и реляционной моделью. И в этом случае выбор специализированного решения чаще всего обуславливается требованием общей эффективности.

При проектировании информационных систем свойства объектов (их характеристики) задаются атрибутами. Именно значения атрибутов позволяют выделить в предметной области как различные объекты (типы объектов), так и среди объектов одного типа – их различные экземпляры. Представление атрибутов удобнее всего моделируетсятеоретико-множественными отношениями. Отношение наглядно представляется как таблица, где каждая строка – кортеж отношения, а каждый столбец (домен) представляет множество значений атрибута. Список имен атрибутов отношения образует схему отношения, а совокупность схем отношений, ис­пользуемых для представления БД, в свою очередь образует схему базы данных.

Представление схем БД в виде схем отношений упрощает процедуру проектирования БД. Этим объясняется создание си стем, в которых проектирование БД ведется в терминах реляционной модели данных, а работа с БД поддерживается СУБД одного из описанных в данном пособии типов.

Модель данных должна, так или иначе, дать основу для описания данных и манипулирования данными, а также дать средства анализа и синтеза структур данных. Любая модель, построенная более или менее аккуратно с точки зрения математики, сама создает объекты для исследования и начинает жить как бы параллельно с практикой.

Реляционная модель дан ных в качестве основы отображения непосредственно использует понятие отношения. Она ближе всего находится к так называемой концептуальной модели предметной среды и часто лежит в основе последней.

В отличие от теоретико-графовых моделей в реляционной модели связи между отношениями реализуются неявным образом, для чего используются ключи отношений . Например, отношения иерархического типа реализуется механизмом первичных / внешних ключей, когда в подчиненном отношении должен присутствовать набор атрибутов, связывающих это отношение с основным. Такой набор атрибутов в основном отношении будет называться первичным ключом, а в подчиненном – вторичным.

Прогресс в области разработки языков программирования, связанный, в первую очередь с типизацией данных и появлением объектно-ориентированных языков, позволил подойти к анализу сложных систем с точки зрения иерархических представлений - классам объектов со свойствами инкапсуляции, наследования и полиморфизма, схемы которых отображают не только данные и их взаимосвязи, но и методы обработки данных.

В этом смысле объектно-ориентированный подход является гибридным методом и позволяет получить более естественную формализацию системы в целом. В итоге это позволяет снизить существующий барьер между аналитиками и разработчиками (проектировщиками и программистами), повысить надежность системы и упростить сопровождение, в частности, интеграцию с другими системами.

7.3. Этапы проектирования и объекты моделирования

Проектирование базы данных - это упорядоченный формализованный процесс создания системы взаимосвязанных описаний, т.е. таких моделей предметной области, которые связывают (фиксируют) хранимые в базе данные с объектами предметной области, описываемыми этими данными. Прикладное назначение таких описаний состоит в том, чтобы пользователь, практически не имеющий представления об организации данных в БД (физическом размещении в памяти данных и механизмах их поиска), обращая запрос к базе, имел бы практическую возможность получить адекватную информацию о состоянии объекта предметной области. (Слайд 5 - Стадии и объекты)

Проектирование начинается с анализа предметной области и выявления функциональных и других требований к проектируемой системе. Подробнее этот процесс будет рассмотрен ниже, а здесь отметим, что проектирование обычно выполняется человеком (группой людей) – системным аналитиком (а на практике чаще администратором базы данных), которым может быть как специально выделенный сотрудник, так и будущий пользователь базы данных, достаточно хорошо знакомый с машинной обработкой данных.

Объединяя отдельные представления о содержимом базы данных, полученные в результате опроса пользователей, и свои представления о данных, которые могут потребоваться для решения практических задач, системный аналитик сначала создает обобщенное неформальное описание создаваемой базы данных. Это описание, выполненное с использованием естественного языка, математических выражений, таблиц, графов и других средств, понятных всем людям, работающим над проектированием базы данных, называют инфологической моделью.

Такая человеко-ориентированная модель практически полностью независима от физических параметров среды хранения данных, которой может быть как память человека, так и ЭВМ. Поэтому инфологическая модель не изменяется до тех пор, пока какие-то изменения в реальном мире (той его части, которая отнесена к предметной области) не потребуют изменения в модели соответствующего фрагмента описания, чтобы эта модель продолжала адекватно отражать предметную область.

Остальные модели являются машинно-ориентированными. С их помощью СУБД дает возможность программам и пользователям осуществлять доступ к хранимым данным лишь по их именам, не заботясь о физическом расположении этих данных.

Так как доступ к данным осуществляется с помощью конкретной СУБД, то модели должны быть представлены на языке описания данных этой СУБД. Такое описание, создаваемое по инфологической модели данных, называют даталогической моделью данных.

Для размещения и поиска данных на внешних запоминающих устройствах СУБД использует физическую модель данных.

Представленная трехуровневая архитектура (инфологический, даталогический и физический уровни) позволяет обеспечить независимость хранимых данных от использующих их программ. Хранимые данные могут быть переписаны на другие носители или может быть реорганизована их физическая структура, в том числе дополнена полями для новых приложений, но это повлечет лишь изменение физической и, возможно, даталогической модели данных. Главное, такие изменения физической и даталогической моделей не будут замечены пользователями системы (окажутся "прозрачными" для них). Кроме того, независимость данных обеспечивает возможность создания новых приложений для решения новых задач без разрушения существующих.

Приведенная цитата (Слайд 6 ) по-прежнему актуальна, хотя книга издана более 20 лет назад. Действительно, средства проектирования непрерывно развиваются, но и задачи, решение которых пользователь предполагает автоматизировать с помощью систем баз данных, существенно усложнились и для эффективного применения средств формализации и автоматизации необходимо понимать природу системы моделей.

С точки зрения объектов моделирования необходимо различать модели предметной области и модели базы данных. Эти модели взаимосвязаны, поскольку представляют собой образы одного и того же оригинала – некоторого множества предметов реального мира, информацию о которых мы предполагаем хранить и обрабатывать с помощью проектируемой БД. Характер взаимосвязей (и, соответственно, отличий) проявляется и в процессе проектирования системы баз данных. Модель предметной области скорее ассоциируется с неформальным уровнем семантического моделирования, а модель базы данных – с формализованным уровнем системы (и в частности, СУБД).

Разнообразие моделей связано также и с различием используемых парадигм моделирования, по существу определяющих способ представления взаимосвязи объектов на уровне структур данных . С этой точки зрения, различаются реляционные, сетевые, иерархические, объектные, объектно-реляционные, документальные и другие виды моделей. Соответственно различаются и описываемые их средствами схемы баз данных.

7.4. Подходы к проектированию базы данных

Можно выделить два основных подхода к проектированию баз данных: нисходящий и восходящий (слайд 7)

При восходящем подходе работа начинается с самого нижнего уровня атрибутов (т.е. свойств сущностей и связей), которые на основе анализа существующих между ними связей группируются в отношения, пред ставляющие типы сущностей и связи между ними. Далее будет подробно рассмотрен процесс нормализации отношений, который представляет собой вариант восходя щего подхода при проектировании баз данных. Нормализация предусматривает создание норма лизованных отношений, основанных на функциональных зависимостях между выделенными атрибутами.

Восходящий подход в наибольшей степени приемлем для проектирования простых баз данных с относительно небольшим количеством атрибутов. Однако использование этого подхода существенно усложняется при проектировании баз данных с большим количеством атрибутов, установить среди которых все суще­ ствующие функциональные зависимости затруднительно. Поскольку концептуальная и логическая модели данных для сложных баз данных могут содержать от сотен до тысяч атрибутов, очень важно выбрать подход, который помог бы упростить этап проектирования. Кроме того, на начальных стадиях формулирования требований к данным бывает труд но установить все атрибуты , которые должны быть включены в модель данных.

Более подходящей стратегией проектирования сложных баз данных является использование нисходящего подхода, который предопределяет приоритетность разработки концептуальной модели ПрО. Эта модель содержит несколько высокоуровневых сущностей и связей, которые уточняются (детализируются и расширяются) до тех пор, пока не будут выявлены все объекты, их атрибуты и связи между ними, отражающие специфику задач конкретной ПрО.

Восходящий подход часто, например, в случае сложных ПрО, представляет собой очень неудобный процесс для самого проектировщика. Более того, здесь проявляется ограниченность реляционной модели , в частности:(слайд 8)

- реляционная модель не предоставляет достаточных средств для фиксации смысла данных, т.е. семантика предметной области не фиксируется непосредственно в отношениях;

- для многих приложений трудно моделировать предметную область на основе плоских таблиц;

- хотя весь процесс проектирования происходит на основе учета зависимостей, реляционная модель не имеет средств представления (отражения семантики) этих зависимостей;

- несмотря на то, что процесс проектирования начинается с выделения некоторых существенных для приложения объектов предметной области ("сущностей") и выявления связей между этими сущностями, реляционная модель данных не предлагает какого-либо аппарата для различения сущностей и связей.

Кроме этих подходов для проектирования могут применяться другие подходы, например, подход «от общего к частному» или «смешанная стратегия проектирования». Подход «от общего к частному » напоминает нисхо дящий подход, но отличается от него тем, что вначале выявляется набор основ ных сущностей с последующим расширением круга рассматриваемых сущностей, связей и атрибутов, которые взаимодействуют с первоначально определенными сущностями. В смешанной стратегии сначала используются восходящий и нис ходящий подходы для создания разных частей модели, после чего все фрагменты собираются в единое целое.

Забегая несколько вперед, отметим взаимосвязь двух известных методов моделирования инфологического уровня - ER -диаграммы и метод нормализации, воспринимаемых зачастую как альтернативные. На самом деле нормализация с помощью хорошо формализованных методов обеспечивает декомпозицию исходных отношений (переменных) большой размерности к возможно большему набору отношений, но меньшей размерности. Эти методы не зависят от особенностей предметной области , но вследствие этого и не позволяют определить исходное отношение и, соответственно, семантику обрабатываемых данных. Для этого удобнее использовать методики, подобные ER -диаграммам - для них свойственны подходы технологии нисходящего проектирования, и которые дают представление «в целом», но именно поэтому (из-за сравнительной простоты) не позволяют провести полноценное проектирование базы.То есть, можно сказать, что метод нормализации и ER -диаграммы по существу являются взаимодополняющими.

7.5. Инфологические модели (системный анализ) предметной области

Базы данных сами по себе представляют относительную ценность. Базы данных это всегда важнейшая, но только одна из составляющих некоторой информационной системы. И надо отметить, что любая ИС, предназначенная, например, для оперативного управления предприятием или архивного хранения и поиска документов – это не только программы, данные и коммуникации, но также и люди (заказчики, пользователи, аналитики, разработчики), организационные структуры, а также цели, стимулы работы предприятия или отдельных людей. И все эти компоненты должны быть понятным как проектировщику, так и пользователю, а, кроме того, непротиворечивым образом соединены в одну систему.

Главная идея процесса такого согласования состоит в том, что его надо начинать с анализа самых главных характеристик предметной области, рассматривая самые главные содержательные аспекты. И проводить его не "мысленно" и не "на словах", а на явно изложенных описаниях (моделях) объектов предметной области, позволяющих видеть все существенные взаимосвязи. Но следует отметить, что попытки использования привычных нотаций формальных моделей (структурных, объектных или каких либо других) на этом этапе приводят к более низкому (более детальному и в тоже время ограниченному) уровню представления предметной области, чем это необходимо для общего понимания.

В общем случае существуют два подхода к определению состава и структуры предметной области.(Слайд 9 Функциональный – объектный подходы)

Функциональный подход предполагает, что проектирование начинается с анализа задач и, соответственно, функций, обеспечивающих реализацию информационных потребностей.

При объектном (предметном) подходе информационные потребности пользователей (задачи) жестко не фиксируются, а основное внимание сосредотачивается на выделении существенных объектов – предметов и связей, информация о которых может быть использована в прикладных задачах пользователя.

Условность такого деления достаточно очевидна, поэтому на практике используются компромиссные варианты, предполагающие по мере развития системы расширение как состава объектов, так и спектра прикладных задач.

Цель системного анализа предметной области как этапа проектирования – выделить предметную область как систему объектов и их взаимосвязей, определив при этом функционально-информационные требования к их последующему представлению в виде системы взаимосвязанных данных.

Главным результатом этапа системного анализа является определение парадигмы информационной (инфологической) модели: требования к средствам представления системы определяются на основании анализа уровня структурированности информации и характера восприятия ее семантики пользователем (точная/приблизительная, четкая/неопределенная).

Например, выбор атрибутивной формы представления объектов предметной области приведет, соответственно, к выбору парадигмы фактографических баз данных , а вербальной - к необходимости выбора документальных БД . В дальнейшем изложении процесс и средства проектирования мы будем рассматривать только для случая фактографических баз данных, использующих реляционную модель.

Полученный результат - концептуальная схема базы данных (в терминах семантической модели) затем преобразуется к реляционной схеме.

7.6. Даталогические модели

Задачей следующей стадии проектирования системы базы данных является выбор подходящей СУБД и отображение в ее среду (структур данных) спецификаций инфологической модели предметной области. Другими словами, модель предметной области разрабатываемой системы должна быть представлена в терминах модели данных концептуального уровня выбранной конкретной СУБД. Эту стадию называют логическим (или даталогическим) проектированием базы данных, а ее результатом является концептуальная схема базы данных, включающая определение всех информационных элементов (единиц) и связей, в том числе задание типов, характеристик и имен.

Хотя даталогическое проектирование оперирует не физическими записями, а логическими понятиями, связанными со структурой базы данных, тем не менее, особенности представления данных, правила и языки агрегирования и манипулирования данными имеют определяющее влияние. Не все виды связей, например, «многие ко многим», могут быть непосредственно отображены в логической модели.

Кроме того, может быть много вариантов отображения инфологической модели предметной области в даталогическую модель базы. Здесь следует учитывать влияние двух следующих значимых факторов, связанных с практикой разработки базы данных.

Во-первых, связи предметной области могут отображаться двумя путями, как декларативным - в логической схеме, так и процедурным – отработкой связей через программные модули, обрабатывающие (связывающие) соответствующие хранимые данные.

Во-вторых, существенным фактором может оказаться характер обработки информации. Например, частые обращения к совместно обрабатываемым данным очевидно предполагают их совместное хранение, а данные (особенно большой размерности), к которым обращаются редко, целесообразно хранить отдельно от часто используемых.

7.7. Физические модели

Стадия физического проектирования базы данных в общем случае включает:

- выбор способа организации базы данных;

- разработку спецификации внутренней схемы средствами модели данных ее внутреннего уровня;

- описание отображения концептуальной схемы во внутреннюю.

Важно заметить, что в отличие от ранних СУБД, многие современные системы не предоставляют разработчику какого-либо выбора на этой стадии. Реально к вопросам проектирования физической модели можно отнести выбор схемы размещения данных (разделение по файлам или тип RAID -массива) и определение числа и типа индексов (например, кластеризованный или некластеризованный в случае MS SQL Server ).

Способ хранения базы данных определяется механизмами СУБД автоматически “по умолчанию” на основе спецификаций концептуальной схемы базы данных, и внутренняя схема в явном виде в таких системах не используется.

Следует также отметить, что внешние схемы базы данных обычно конструируются на стадии разработки приложений.

7.8. Средства автоматизации проектирования

Формализованные знания о предметной области в общем случае могут быть представлены в виде текстовых описаний: наборов должностных инструкций, правил ведения дел и т.п. Однако текстовый способ представления модели предметной области не эффективен. Более информативным и полезным при разработке баз данных и информационных систем являются описания предметной области, выполненные при помощи специализированных графических нотаций, реализующих методики представления знаний о предметной области. Наиболее известными на сегодняшний день являются методика структурного анализа SADT (Structured Analysis and Design Technique ) и основанная на ней нотация IDEF 0, диаграммы массивов данных, методика объектно-ориентированного анализа UML (Unified Modeling Language ) и др. Любая из этих моделей описывает, с одной стороны, процессы, происходящие в предметной области, а с другой – данные, используемые этими процессами.

Наиболее полная система моделей, на которую опираются методики функционального, информационного и поведенческого моделирования ПрО, представлена в семействе стандартов IDEF (Integrated DEFinition )(слайд 10).

Методология концептуального проектирования, основанная на наглядной графической технике, предоставила в распоряжение разработчиков информационных систем строгие формализованные методы описания ИС и принимаемых технических решений. Эти модели по существу представляют собой систему соглашений, обеспечивающих взаимопонимание бизнес-аналитика, представляющего реалии предметной области, и программиста (или программного средства), создающего модель данных для отражения состояния этой ПрО. Если соглашения в точности будут реализованы в программных продуктах, основанных на этой методологии, то такая автоматизированная система, умеющая «читать» разработанные аналитиком модели, позволит контролировать синтаксис модели и в итоге сгенерировать схему данных.

Вслед за методологией концептуального проектирования появились специализированные программно-технологические средства специального класса - CASE-средства, реализующие технологию создания и сопровождения ИС.

CASE-технология представляет собой методологию проектирования ИС, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей.

CASE-средства в соответствии с их функциональной ориентацией на те или иные процессы жизненного цикла ИС можно подразделить на следующие группы (слайд 11 – СА SE ).


Применяемые формальные языки представления предметной области не позволяют описывать все отношения, которые проектировщик считает важными. С другой стороны, многие проекты (и, в частности, рассматриваемые примеры ) воспринимаются как достаточно простые, а проектные решения кажутся очевидными. Кроме того, опытный программист всегда может предложить некоторый эмпирический и, возможно, действительно эффективный способ для целевого представления и обработки нужной информации.Однако это означает отказ от единого формализма, что при увеличении количества данных и связей значительно усложняет проблемы управления базой и в частности – понимание пользователем организации и методов доступа.

Правильнее было бы говорить о неформализованности , связанной с невозможностью обоснованного однозначного выбора (из реально существующих) объектов средств, используемых для моделирования.

Перевод цикла из 15 статей о проектировании баз данных.
Информация предназначена для новичков.
Помогло мне. Возможно, что поможет еще кому-то восполнить пробелы.

Руководство по проектированию баз данных.

1. Вступление.
Если вы собираетесь создавать собственные базы данных, то неплохо было бы придерживаться правил проектирования баз данных, так как это обеспечит долговременную целостность и простоту обслуживания ваших данных. Данное руководство расскажет вам что представляют из себя базы данных и как спроектировать базу данных, которая подчиняется правилам проектирования реляционных баз данных.

Базы данных – это программы, которые позволяют сохранять и получать большие объемы связанной информации. Базы данных состоят из таблиц , которые содержат информацию . Когда вы создаете базу данных необходимо подумать о том, какие таблицы вам нужно создать и какие связи существуют между информацией в таблицах. Иначе говоря, вам нужно подумать о проекте вашей базы данных. Хороший проект базы данных, как было сказано ранее, обеспечит целостность данных и простоту их обслуживания.
База данных создается для хранения в ней информации и получения этой информации при необходимости. Это значит, что мы должны иметь возможность помещать, вставлять (INSERT ) информацию в базу данных и мы хотим иметь возможность делать выборку информации из базы данных (SELECT ).
Язык запросов к базам данных был придуман для этих целей и был назван Структурированный язык запросов или SQL. Операции вставки данных (INSERT) и их выборки (SELECT) – части этого самого языка. Ниже приведен пример запроса на выборку данных и его результат.

SQL – большая тема для повествования и его рассмотрение выходит за рамки данного руководства. Данная статья строго сфокусирована на изложении процесса проектирования баз данных . Позднее, в отдельном руководстве, я расскажу об основах SQL.

Реляционная модель.
В этом руководстве я покажу вам как создавать реляционную модель данных. Реляционная модель – это модель, которая описывает как организовать данные в таблицах и как определить связи между этими таблицами.

Правила реляционной модели диктуют, как информация должна быть организована в таблицах и как таблицы связаны друг с другом. В конечном счете результат можно предоставить в виде диаграммы базы данных или, если точнее, диаграммы «сущность-связь», как на рисунке (Пример взят из MySQL Workbench).

Примеры.
В качестве примеров в руководстве я использовал ряд приложений.

РСУБД.

РСУБД, которую я использовал для создания таблиц примеров – MySQL. MySQL – наиболее популярная РСУБД и она бесплатна.

Утилита для администрирования БД.

После установки MySQL вы получаете только интерфейс командной строки для взаимодействия с MySQL. Лично я предпочитаю графический интерфейс для управления моими базами данных. Я часто использую SQLyog. Это бесплатная утилита с графическим интерфейсом. Изображения таблиц в данном руководстве взяты оттуда.

Визуальное моделирование.

Существует отличное бесплатное приложение MySQL Workbench. Оно позволяет спроектировать вашу базу данных графически. Изображения диаграмм в руководстве сделаны в этой программе.

Проектирование независимо от РСУБД.
Важно знать, что хотя в данном руководстве и приведены примеры для MySQL, проектирование баз данных независимо от РСУБД. Это значит, что информация применима к реляционным базам данных в общем, не только к MySQL. Вы можете применить знания из этого руководства к любым реляционным базам данных, подобным Mysql, Postgresql, Microsoft Access, Microsoft Sql or Oracle.

В следующей части я коротко расскажу об эволюции баз данных. Вы узнаете откуда взялись базы данных и реляционная модель данных.

2. История.
В 70-х – 80-х годах, когда компьютерные ученые все еще носили коричневые смокинги и очки с большими, квадратными оправами, данные хранились бесструктурно в файлах, которые представляли собой текстовый документ с данными, разделенными (обычно) запятыми или табуляциями.

Так выглядели профессионалы в сфере информационных технологий в 70-е. (Слева внизу находится Билл Гейтс).

Текстовые файлы и сегодня все еще используются для хранения малых объемов простой информации. Comma-Separated Values (CSV) - значения, разделённые запятыми, очень популярны и широко поддерживаются сегодня различным программным обеспечением и операционными системами. Microsoft Excel – один из примеров программ, которые могут работать с CSV–файлами. Данные, сохраненные в таком файле могут быть считаны компьютерной программой.

Выше приведен пример того, как такой файл мог бы выглядеть. Программа, производящая чтение данного файла, должна быть уведомлена о том, что данные разделены запятыми. Если программа хочет выбрать и вывести категорию, в которой находится урок "Database Design Tutorial" , то она должна строчка за строчкой производить чтение до тех пор, пока не будут найдены слова "Database Design Tutorial" и затем ей нужно будет прочитать следующее за запятой слово для того, чтобы вывести категорию Software .

Таблицы баз данных.
Чтение файла строчка за строчкой не является очень эффективным. В реляционной базе данных данные хранятся в таблицах. Таблица ниже содержит те же самые данные, что и файл. Каждая строка или “запись” содержит один урок. Каждый столбец содержит какое-то свойство урока. В данном случае это заголовок (title) и его категория (category).

Компьютерная программа могла бы осуществить поиск в столбце tutorial_id данной таблицы по специфическому идентификатору tutorial_id для того, чтобы быстро найти соответствующие ему заголовок и категорию. Это намного быстрее, чем поиск по файлу строка за строкой, подобно тому, как это делает программа в текстовом файле.

Современные реляционные базы данных созданы так, чтобы позволять делать выборку данных из специфических строк, столбцов и множественных таблиц, за раз, очень быстро.

История реляционной модели.
Реляционная модель баз данных была изобретена в 70-х Эдгаром Коддом (Ted Codd), британским ученым. Он хотел преодолеть недостатки сетевой модели баз данных и иерархической модели. И он очень в этом преуспел. Реляционная модель баз данных сегодня всеобще принята и считается мощной моделью для эффективной организации данных.

Сегодня доступен широкий выбор систем управления базами данных: от небольших десктопных приложений до многофункциональных серверных систем с высокооптимизированными методами поиска. Вот некоторые из наиболее известных систем управления реляционными базами данных (РСУБД):

- Oracle – используется преимущественно для профессиональных, больших приложений.
- Microsoft SQL server – РСУБД компании Microsoft. Доступна только для операционной системы Windows.
- Mysql – очень популярная РСУБД с открытым исходным кодом. Широко используется как профессионалами, так и новичками. Что еще нужно?! Она бесплатна.
- IBM – имеет ряд РСУБД, наиболее известна DB2.
- Microsoft Access – РСУБД, которая используется в офисе и дома. На самом деле – это больше, чем просто база данных. MS Access позволяет создавать базы данных с пользовательским интерфейсом.
В следующей части я расскажу кое-что о характеристиках реляционных баз данных.

3. Характеристики реляционных баз данных.
Реляционные базы данных разработаны для быстрого сохранения и получения больших объемов информации. Ниже приведены некоторые характеристики реляционных баз данных и реляционной модели данных.
Использование ключей.
Каждая строка данных в таблице идентифицируется уникальным “ключом”, который называется первичным ключом. Зачастую, первичный ключ это автоматически увеличиваемое (автоинкрементное) число (1,2,3,4 и т.д). Данные в различных таблицах могут быть связаны вместе при использовании ключей. Значения первичного ключа одной таблицы могут быть добавлены в строки (записи) другой таблицы, тем самым, связывая эти записи вместе.

Используя структурированный язык запросов (SQL), данные из разных таблиц, которые связаны ключом, могут быть выбраны за один раз. Для примера вы можете создать запрос, который выберет все заказы из таблицы заказов (orders), которые принадлежат пользователю с идентификатором (id) 3 (Mike) из таблицы пользователей (users). О ключах мы поговорим далее, в следующих частях.


Столбец id в данной таблице является первичным ключом. Каждая запись имеет уникальный первичный ключ, часто число. Столбец usergroup (группы пользователей) является внешним ключом. Судя по ее названию, она видимо ссылается на таблицу, которая содержит группы пользователей.

Отсутствие избыточности данных.
В проекте базы данных, которая создана с учетом правил реляционной модели данных, каждый кусочек информации, например, имя пользователя, хранится только в одном месте. Это позволяет устранить необходимость работы с данными в нескольких местах. Дублирование данных называется избыточностью данных и этого следует избегать в хорошем проекте базы данных.
Ограничение ввода.
Используя реляционную базу данных вы можете определить какой вид данных позволено сохранять в столбце. Вы можете создать поле, которое содержит целые числа, десятичные числа, небольшие фрагменты текста, большие фрагменты текста, даты и т.д.


Когда вы создаете таблицу базы данных вы предоставляете тип данных для каждого столбца. К примеру, varchar – это тип данных для небольших фрагментов текста с максимальным количеством знаков, равным 255, а int – это числа.

Помимо типов данных РСУБД позволяет вам еще больше ограничить возможные для ввода данные. Например, ограничить длину или принудительно указать на уникальность значения записей в данном столбце. Последнее ограничение часто используется для полей, которые содержат регистрационные имена пользователей (логины), или адреса электронной почты.

Эти ограничения дают вам контроль над целостностью ваших данных и предотвращают ситуации, подобные следующим:

Ввод адреса (текста) в поле, в котором вы ожидаете увидеть число
- ввод индекса региона с длинной этого самого индекса в сотню символов
- создание пользователей с одним и тем же именем
- создание пользователей с одним и тем же адресом электронной почты
- ввод веса (числа) в поле дня рождения (дата)

Поддержание целостности данных.
Настраивая свойства полей, связывая таблицы между собой и настраивая ограничения, вы можете увеличить надежность ваших данных.
Назначение прав.
Большинство РСУБД предлагают настройку прав доступа, которая позволяет назначать определенные права определенным пользователям. Некоторые действия, которые могут быть позволены или запрещены пользователю: SELECT (выборка), INSERT (вставка), DELETE (удаление), ALTER (изменение), CREATE (создание) и т.д. Это операции, которые могут быть выполнены с помощью структурированного языка запросов (SQL).
Структурированный язык запросов (SQL).
Для того, чтобы выполнять определенные операции над базой данных, такие, как сохранение данных, их выборка, изменение, используется структурированный язык запросов (SQL). SQL относительно легок для понимания и позволяет в т.ч. и уложненные выборки, например, выборка связанных данных из нескольких таблиц с помощью оператора SQL JOIN. Как и упоминалось ранее, SQL в данном руководстве обсуждаться не будет. Я сосредоточусь на проектировании баз данных.

То, как вы спроектируете базу данных будет оказывать непосредственное влияние на запросы, которые вам будет необходимо выполнить, чтобы получить данные из базы данных. Это еще одна причина, почему вам необходимо задуматься о том, какой должна быть ваша база. С хорошо спроектированной базой данных ваши запросы могут быть чище и проще.

Переносимость.
Реляционная модель данных стандартна. Следуя правилам реляционной модели данных вы можете быть уверены, что ваши данные могут быть перенесены в другую РСУБД относительно просто.

Как говорилось ранее, проектирование базы данных – это вопрос идентификации данных, их связи и помещение результатов решения данного вопроса на бумагу (или в компьютерную программу). Проектирование базы данных независимо от РСУБД, которую вы собираетесь использовать для ее создания.

В следующей части подробнее рассмотрим первичные ключи.

Суть проектирования баз данных (БД), как и любого другого процесса проектирования, в создании описания новой, прежде не существовавшей в таком виде системы, которая при её реализации способна предполагаемо функционировать в соответствующих условиях. Из этого следует, что этапы проектирования базы данных должны последовательно и логически связано отражать суть этого процесса.

Содержание проектирования баз данных и этапность

Замысел проектирования основывается на какой-либо сформулированной общественной потребности. У этой потребности есть среда её возникновения и целевая аудитория потребителей, которые будут пользоваться результатом проектирования. Следовательно, процесс проектирования баз данных начинается с изучения данной потребности с точки зрения потребителей и функциональной среды её предполагаемого размещения. То есть, первым этапом становится сбор информации и определение модели предметной области системы, а также – взгляда на неё с точки зрения целевой аудитории. В целом, для определения требований к системе производится определение диапазона действий, а также границ приложений БД.

Далее проектировщик, уже имеющий определённые представления о том, что ему нужно создать, уточняет предположительно решаемые приложением задачи, формирует их список (особенно, если в проектной разработке большая и сложная БД), уточняет последовательность решения задач и производит анализ данных. Такой процесс – тоже этапная проектная работа, но обычно в структуре проектирования эти шаги поглощаются этапом концептуального проектирования – этапом выделения объектов, атрибутов, связей.

Создание концептуальной (информационной модели) предполагает предварительное формирование концептуальных требований пользователей, включая требования в отношении приложений, которые могут и не быть сразу реализованным, но учёт которых позволит в будущем повысить функциональность системы. Имея дело с представлениями объектов-абстракций множества (без указания способов физического хранения) и их взаимосвязями, концептуальная модель содержательно соответствует модели предметной области. Поэтому в литературе первый этап проектирования БД называется инфологическим проектированием.

Далее отдельным этапом (либо дополнением к предыдущему) следует этап формирования требований к операционной обстановке, где оцениваются требования к вычислительным ресурсам, способным обеспечить функционирование системы. Соответственно, чем больше объем проектируемой БД, чем выше пользовательская активность и интенсивность обращений, тем выше требования предъявляются к ресурсам: к конфигурации компьютера к типу и версии операционной системы. Например, многопользовательский режим работы будущей базы данных требует сетевого подключения с использованием операционной системы, соответствующей многозадачности.

Следующим этапом проектировщик должен выбрать систему управления базой данных (СУБД), а также инструментальные средства программного характера. После этого концептуальную модель необходимо перенести в совместимую с выбранной системой управления модель данных. Но нередко это сопряжено с внесением поправок и изменений в концептуальную модель, поскольку не всегда взаимосвязи объектов между собой, отражённые концептуальной моделью, могут быть реализованы средствами данной СУБД.

Это обстоятельство определяет возникновение следующего этапа – появления обеспеченной средствами конкретной СУБД концептуальной модели. Данный шаг соответствует этапу логического проектирования (создания логической модели).

Наконец, финальным этапом проектирования БД становится физическое проектирование – этап увязки логической структуры и физической среды хранения.

Таким образом, основные этапы проектирования в детализированном виде представлены этапами:

  • инфологического проектирования,
  • формирования требований к операционной обстановке
  • выбора системы управления и программных средств БД,
  • логического проектирования,
  • физического проектирования

Ключевые из них ниже будут рассмотрены подробнее.

Инфологическое проектирование

Идентификация сущностей составляет смысловую основу инфологического проектирования. Сущность здесь – это такой объект (абстрактный или конкретный), информация о котором будет накапливаться в системе. В инфологической модели предметной области в понятных пользователю терминах, которые не зависят от конкретной реализации БД, описывается структура и динамические свойства предметной области. Но термины, при этом берутся в типовых масштабах. То есть, описание выражается не через отдельные объекты предметной области и их взаимосвязи, а через:

  • описание типов объектов,
  • ограничения целостности, связанные с описанным типом,
  • процессы, приводящие к эволюции предметной области – переходу её в другое состояние.

Инфологическую модель можно создавать с помощью нескольких методов и подходов:

  1. Функциональный подход отталкивается от поставленных задач. Функциональным он называется, потому что применяется, если известны функции и задачи лиц, которые с помощью проектируемой базы данных будут обслуживать свои информационные потребности.
  2. Предметный подход во главу угла ставит сведения об информации, которая будет содержаться в базе данных, при том, что структура запросов может не быть определена. В этом случае в исследованиях предметной области ориентируются на её максимально адекватное отображение в базе данных в контексте полного спектра предполагаемых информационных запросов.
  3. Комплексный подход по методу «сущность-связь» объединяет достоинства двух предыдущих. Метод сводится к разделению всей предметной области на локальные части, которые моделируются по отдельности, а затем вновь объединяются в цельную область.

Поскольку использование метода «сущность-связь» является комбинированным способом проектирования на данном этапе, он чаще других становится приоритетным.

Локальные представления при методическом разделении должны, по возможности, включать в себя информацию, которой бы хватило для решения обособленной задачи или для обеспечения запросов какой-то группы потенциальных пользователей. Каждая из этих областей содержит порядка 6-7 сущностей и соответствует какому-либо отдельному внешнему приложению.

Зависимость сущностей отражается в разделении их на сильные (базовые, родительские) и слабые (дочерние). Сильная сущность (например, читатель в библиотеке) может существовать в БД сама по себе, а слабая сущность (например, абонемент этого читателя) «привязывается» к сильной и отдельно не существует.

Следует разделять понятия «экземпляр сущности» (объект, характеризующийся конкретными значениями свойств) и понятие «тип сущности» – объект, для которого характерно общее имя и список свойств.

Для каждой отдельной сущности выбираются атрибуты (набор свойств), которые в зависимости от критерия могут быть:

  • идентифицирующими (с уникальным значением для сущностей этого типа, что делает их потенциальными ключами) или описательными;
  • однозначными или многозначными (с соответствующим количеством значений для экземпляра сущности);
  • основными (независимыми от остальных атрибутов) или производными (вычисляемыми, исходя из значений иных атрибутов);
  • простыми (неделимыми однокомпонентными) или составными (скомбинированными из нескольких компонентов).

После этого производится спецификация атрибута, спецификация связей в локальном представлении (с разделением на факультативные и обязательные) и объединение локальных представлений.При числе локальных областей до 4-5 их можно объединить за один шаг. В случае увеличения числа, бинарное объединение областей происходит в несколько этапов.

В ходе этого и других промежуточных этапов находит своё отражение итерационная природа проектирования, выражающаяся здесь в том, что для устранения противоречий необходимо возвращаться на этап моделирования локальных представлений для уточнения и изменения (например, для изменения одинаковых названий семантически разных объектов или для согласования атрибутов целостности на одинаковые атрибуты в разных приложениях).

Выбор системы управления и программных средств БД

От выбора системы управления БД зависит практическая реализация информационной системы. Наиболее значимыми критериями в процессе выбора становятся параметры:

  • типа модели данных и её соответствие потребностям предметной области,
  • запас возможностей в случае расширения информационной системы,
  • характеристики производительности выбранной системы,
  • эксплуатационная надёжность и удобство СУБД,
  • инструментальная оснащённость, ориентированная на персонал администрирования данных,
  • стоимость самой СУБД и дополнительного софта.

Ошибки в выборе СУБД практически наверняка впоследствии спровоцируют необходимость корректировать концептуальную и логическую модели.

Логическое проектирование БД

Логическая структура БД должна соответствовать логической модели предметной области и учитывать связь модели данных с поддерживаемой СУБД. Поэтому этап начинается с выбора модели данных, где важно учесть её простоту и наглядность.

Предпочтительнее, когда естественная структура данных совпадает с представляющей её моделью. Так, например, если в данные представлены в виде иерархической структуры, то и модель лучше выбирать иерархическую. Однако на практике такой выбор чаще определяется системой управления БД, а не моделью данных. Поэтому концептуальная модель фактически транслируется в такую модель данных, которая совместима с выбранной системой управления БД.

Здесь тоже находит отражение природа проектирования, которая допускает возможность (или необходимость) вернуться к концептуальной модели для её изменения в случае, если отражённые там взаимосвязи между объектами (или атрибуты объектов) не удастся реализовать средствами выбранной СУБД.

По завершению этапа должны быть сформированы схемы баз данных обоих уровней архитектуры (концептуального и внешнего), созданные на языке определения данных, поддерживаемых выбранной СУБД.

Схемы базы данных формируются с помощью одного из двух разнонаправленных подходов:

  • либо с помощью восходящего подхода, когда работа идёт с нижних уровней определения атрибутов, сгруппированных в отношения, представляющие объекты, на основе существующих между атрибутами связей;
  • либо с помощью обратного, нисходящего, подхода, применяемого при значительном (до сотен и тысяч) увеличении числа атрибутов.

Второй подход предполагает определение ряда высокоуровневых сущностей и их взаимосвязей с последующей детализацией до нужного уровня, что и отражает, например, модель, созданная на основе метода «сущность-связь». Но на практике оба подхода, как правило, комбинируются.

Физическое проектирование БД

На следующем этапе физического проектирования БД логическая структура отображается в виде структуры хранения БД, то есть увязывается с такой физической средой хранения, где данные будут размещены максимально эффективно. Здесь детально расписывается схема данных с указанием всех типов, полей, размеров и ограничений. Помимо разработки индексов и таблиц, производится определение основных запросов.

Построение физической модели сопряжено с решением во многом противоречивых задач:

  1. задачи минимизации места хранения данных,
  2. задачи достижения целостности, безопасности и максимальной производительности.

Вторая задача вступает в конфликт с первой, поскольку, например:

  • для эффективного функционирования транзакций нужно резервировать дисковое место под временные объекты,
  • для увеличения скорости поиска нужно создавать индексы, число которых определяется числом всех возможных комбинаций участвующих в поиске полей,
  • для восстановления данных будут создаваться резервные копии базы данных и вестись журнал всех изменений.

Всё это увеличивает размер базы данных, поэтому проектировщик ищет разумный баланс, при котором задачи решаются оптимально путём грамотного размещения данных в пространстве памяти, но не за счёт средств защиты базы дынных, куда входит как защита от несанкционированного доступа, так и защита от сбоев.

Для завершения создания физической модели проводят оценку её эксплуатационных характеристик (скорость поиска, эффективность выполнения запросов и расхода ресурсов, правильность операций). Иногда этот этап, как и этапы реализации базы данных, тестирования и оптимизации, а также сопровождения и эксплуатации, выносят за пределы непосредственного проектирования БД.

Проектирование баз данных

Основные понятия о базах данных и СУБД

Информационная система (ИС) – это система, построенная на базе компьютерной техники, предназначенная для хранения, поиска, обработки и передачи значительных объемов информации, имеющая определенную практическую сферу применения.

База данных – это ИС, которая хранится в электронном виде.

База данных (БД) – организованная совокупность данных, предназначенная для длительного хранения во внешней памяти ЭВМ, постоянного обновления и использования.

БД служат для хранения и поиска большого объёма информации. Примеры баз данных: записная книжка, словари, справочники, энциклопедии и т.д.

Классификация баз данных:

1. По характеру хранимой информации:

- Фактографические – содержат краткие сведения об описываемых объектах, представленных в строго определённом формате (картотеки, н-р: БД книжного фонда библиотеки, БД кадрового состава учреждения),

- Документальные – содержат документы (информацию) самого разног типа: текстового, графического, звукового, мультимедийного (архивы, н-р: справочники, словари, БД законодательных актов в области уголовного права и др.)

2. По способу хранения данных:

- Централизованные (хранятся на одном компьютере),

- Распределенные (используются в локальных и глобальных компьютерных сетях).

3. По структуре организации данных:

- Реляционные (табличные),

- Нереляционные.

Термин «реляционный» (от лат. relatio – отношение) указывает на то, что такая модель хранения данных построена на взаимоотношении составляющих её частей. Реляционная база данных, по сути, представляет собой двумерную таблицу . Каждая строка такой таблицы называется записью. Столбцы таблицы называются полями: каждое поле характеризуется своим именем и топом данных. Поле БД – это столбец таблицы, содержащий значения определенного свойства.

Свойства реляционной модели данных:

Каждый элемент таблицы – один элемент данных;

Все поля таблицы являются однородными, т.е. имеют один тип;

Одинаковые записи в таблице отсутствуют;

Порядок записей в таблице может быть произвольным и может характеризоваться количеством полей, типом данных.

Иерархической называется БД, в которой информация упорядоченная следующим образом: один элемент считается главным, остальные – подчинёнными. В иерархической базе данных записи упорядочиваются в определенную последовательность, как ступеньки лестницы, и поиск данных может осуществляться последовательным «спуском» со ступени на ступень. Данная модель характеризуется такими параметрами, как уровни, узлы, связи. Принцип работы модели таков, что несколько узлов более низкого уровня соединяются при помощи связи с одним узлом более высокого уровня.

Узел – информационная модель элемента, находящегося на данном уровне иерархии.

Свойства иерархической модели данных:

Несколько узлов низшего уровня связано только с одним узлом высшего уровня;

Иерархическое дерево имеет только одну вершину (корень), не подчинено никакой другой вершине;

Каждый узел имеет своё имя (идентификатор);

Существует только один путь от корневой записи к более частной записи данных.

Иерархической базой данных является Каталог папок Windows, с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол. На втором уровне находятся папки Мой компьютер, Мои документы, Сетевое окружение и Корзина, которые представляют собой потомков папки Рабочий стол, будучи между собой близнецами. В свою очередь, папка Мой компьютер – предок по отношению к папкам третьего уровня, папкам дисков (Диск 3,5(А:), С:, D:, E:, F:) и системным папкам (Принтеры, Панель управления и др.).

Сетевой называется БД, в которой к вертикальным иерархическим связям добавляются горизонтальные связи. Любой объект может быть главным и подчинённым.

Сетевой базой данных фактически является Всемирная паутина глобальной компьютерной сети Интернет. Гиперссылки связывают между собой сотни миллионов документов в единую распределенную сетевую базу данных.

Программное обеспечение, предназначенное для работы с базами данных, называется система управления базами данных (СУБД). СУБД используются для упорядоченного хранения и обработки больших объемов информации.

Система управления базами данных (СУБД) – это система, обеспечивающая поиск, хранение, корректировку данных, формирование ответов на запросы. Система обеспечивает сохранность данных, их конфиденциальность, перемещение и связь с другими программными средствами.

Основные действия, которые пользователь может выполнять с помощью СУБД:

Создание структуры БД;

Заполнение БД информацией;

Изменение (редактирование) структуры и содержания БД;

Поиск информации в БД;

Сортировка данных;

Защита БД;

Проверка целостности БД.

Современные СУБД дают возможность включать в них не только текстовую и графическую информацию, но и звуковые фрагменты и даже видеоклипы.

Простота использования СУБД позволяет создавать новые базы данных, не прибегая к программированию, а пользуясь только встроенными функциями. СУБД обеспечивают правильность, полноту и непротиворечивость данных, а также удобный доступ к ним.

Популярные СУБД - FoxPro, Access for Windows, Paradox.

Таким образом, необходимо различать собственно базы данных (БД) – упорядоченные наборы данных, и системы управления базами данных (СУБД) – программы, управляющие хранением и обработкой данных. Например, приложение Access, входящее в офисный пакет программ Microsoft Office, является СУБД, позволяющей пользователю создавать и обрабатывать табличные базы данных.

Принципы построения систем управления баз данных следуют из требований, которым должна удовлетворять организация баз данных:

- Производительность и готовность. Запросы от пользователя базой данных удовлетворяются с такой скоростью, которая требуется для использования данных. Пользователь быстро получает данные всякий раз, когда они ему необходимы.

- Минимальные затраты. Низкая стоимость хранения и использования данных, минимизация затрат на внесение изменений.

- Простота и легкость использования. Пользователи могут легко узнать и понять, какие данные имеются в их распоряжении. Доступ к данным должен быть простым, исключающим возможные ошибки со стороны пользователя.

- Простота внесения изменений. База данных может увеличиваться и изменяться без нарушения имеющихся способов использования данных.



- Возможностьпоиска. Пользователь базы данных может обращаться с самыми различными запросами по поводу хранимых в ней данных. Для реализации этого служит так называемый язык запросов.

- Целостность . Современные базы данных могут содержать данные, используемые многими пользователями. Очень важно, чтобы в процессе работы элементы данных и связи между ними не нарушались. Кроме того, аппаратные ошибки и различного рода случайные сбои не должны приводить к необратимым потерям данных. Значит, система управления данными должна содержать механизм восстановления данных.

- Безопасность и секретность. Под безопасностью данных понимают защиту данных от случайного или преднамеренного доступа к ним лиц, не имеющих на это права, от неавторизированной модификации (изменения) данных или их разрушения. Секретность определяется как право отдельных лиц или организаций решать, когда, как какое количество информации может быть передано другим лицам или организациям.

Далее на примере одной из самых распространенных систем управления базами данных – Microsoft Access входит в состав популярного пакета Microsoft Office – мы познакомимся с основными типами данных, способами создания баз данных и с приемами работы с базами данных.

Проектирование баз данных

Как и любой программный продукт, база данных обладает собственным жизненным циклом (ЖЦБД). Главной составляющей в жизненном цикле БД является создание единой базы данных и программ, необходимых для ее работы.

ЖЦБД включает в себя следующие основные этапы:

1. Планирование разработки базы данных;

2. Определение требований к системе;

3. Сбор и анализ требований пользователей:

4. Проектирование базы данных:

Концептуальное проектирование базы данных – создание концептуальной модели данных, то есть информационной модели. Такая модель создаётся без ориентации на какую-либо конкретную СУБД и модель данных. Чаще всего концептуальная модель базы данных включает в себя: описание информационных объектов, или понятий предметной области и связей между ними; описание ограничений целостности, т.е. требований к допустимым значениям данных и к связям между ними;

Логическое проектирование базы данных – создание логической модели данных; создание схемы базы данных на основе конкретной модели данных, например, реляционной модели данных. Для реляционной модели данных логическая модель - набор схем отношений, обычно с указанием первичных ключей, а также «связей» между отношениями, представляющих собой внешние ключи.

Преобразование концептуальной модели в логическую модель, как правило, осуществляется по формальным правилам. Этот этап может быть в значительной степени автоматизирован.

На этапе логического проектирования учитывается специфика конкретной модели данных, но может не учитываться специфика конкретной СУБД.

Физическое проектирование базы данных – создание схемы базы данных для конкретной СУБД, создание описания СУБД. Специфика конкретной СУБД может включать в себя ограничения на именование объектов базы данных, ограничения на поддерживаемые типы данных и т.п. Кроме того, специфика конкретной СУБД при физическом проектировании включает выбор решений, связанных с физической средой хранения данных (выбор методов управления дисковой памятью, разделение БД по файлам и устройствам, методов доступа к данным, разработка средств защиты данных), создание индексов и т.д.;

5. Разработка приложений:

Проектирование транзакций (группа инструкций SQL (набор команд), исполняемых как единое целое);

Проектирование пользовательского интерфейса;

6. Реализация;

8. Тестирование;

9. Эксплуатация и сопровождение:

Анализ функционирования и поддержка исходного варианта БД;

Адаптация, модернизация и поддержка переработанных вариантов.

Проектирование баз данных – процесс создания схемы базы данных и определения необходимых ограничений целостности (соответствие имеющейся в базе данных информации её внутренней логике, структуре и всем явно заданным правилам).

Основные задачи проектирования баз данных:

Обеспечение хранения в БД всей необходимой информации.

Обеспечение возможности получения данных по всем необходимым запросам.

Сокращение избыточности и дублирования данных.

Обеспечение целостности базы данных.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!