Энциклопедия мобильной связи

Физический канальный сетевой. Эталонная модель OSI

Эталонная модель OSI являет собой 7-уровневую сетевую иерархию созданную международной организацией по стандартам (ISO). Представленная модель на рис.1 имеет 2 различных модели:

  • горизонтальная модель на основе протоколов, реализующую взаимодействие процессов и ПО на разных машинах
  • вертикальную модель на основе услуг, реализуемых соседними уровнями друг другу на одной машине

В вертикальной — соседние уровни меняются информацией с помощью интерфейсов API. Горизонтальная модель требует общий протокол для обмена информацией на одном уровне.

Рисунок — 1

Модель OSI описывает только системные методы взаимодействия, реализуемые ОС, ПО и тд. Модель не включает методы взаимодействия конечных пользователей. В идеальных условиях приложения должны обращаться к верхнему уровню модели OSI, однако на практике многие протоколы и программы имеют методы обращения к нижним уровням.

Физический уровень

На физическом уровне данные представлены в виде электрических или оптических сигналов, соответствующие 1 и 0 бинарного потока. Параметры среды передачи определяются на физическом уровне:

  • тип разъемов и кабелей
  • разводка контактов в разъемах
  • схема кодирования сигналов 0 и 1

Самые распространенные виды спецификаций на этом уровне:

На физическом уровне нельзя вникнуть в смысл данных, так как она представлена в виде битов.

Канальный уровень

На этом канале реализована транспортировка и прием кадров данных. Уровень реализует запросы сетевого уровня и использует физический уровень для приема и передачи. Спецификации IEEE 802.x делят этот уровень на два подуровня управление логическим каналом (LLC) и управление доступом к среде (MAC). Самые распространенные протоколы на этом уровне:

  • IEEE 802.2 LLC и MAC
  • Ethernet
  • Token Ring

Также на этом уровне реализуется обнаружение и исправление ошибок при передаче. На канальном уровне пакет помещается в поле данных кадра — инкапсуляция. Обнаружение ошибок возможно с помощью разных методов. К примеру реализация фиксированных границ кадра, или контрольной суммой.

Сетевой уровень

На этом уровне происходит деление пользователей сети на группы. Здесь реализуется маршрутизация пакетов на основе MAC-адресов. Сетевой уровень реализует прозрачную передачу пакетов на транспортный уровень. На этом уровне стираются границы сетей разных технологий. работают на этом уровне. Пример работы сетевого уровня показан на рис.2 Самые частые протоколы:

Рисунок — 2

Транспортный уровень

На этом уровне потоки информации делятся на пакеты для передачи их на сетевом уровне. Самые распространенные протоколы этого уровня:

  • TCP — протокол управления передачей

Сеансовый уровень

На этом уровне происходит организация сеансов обмена информацией между оконечными машинами. На этом уровне идет определение активной стороны и реализуется синхронизация сеанса. На практике многие протоколы других уровней включают функцию сеансового уровня.

Уровень представления

На этом уровне происходит обмен данными между ПО на разных ОС. На этом уровне реализовано преобразование информации ( , сжатие и тд) для передачи потока информации на транспортный уровень. Протоколы уровня используются и те, что используют высшие уровни модели OSI.

Прикладной уровень

Прикладной уровень реализует доступ приложения в сеть. Уровень управляет переносом файлов и управление сетью. Используемые протоколы:

  • FTP/TFTP — протокол передачи файлов
  • X 400 — электронная почта
  • Telnet
  • CMIP — управление информацией
  • SNMP — управление сетью
  • NFS — сетевая файловая система
  • FTAM — метод доступа для переноса файлов

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

В переводе с английского - базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения . Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая - способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа - пересылка битов через физические каналы связи. Физические каналы связи - устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы - кадры. Основная задача канального уровня - выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма . Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор - устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи - хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер , Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!

Понятие «открытая система»

В широком смысле открытой системой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие аппаратные и программные продукты), которая построена в соответствии с открытыми спецификациями.

Напомним, что под термином «спецификация» (в вычислительной технике) понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, ограничений и особых характеристик. Понятно, что не всякая спецификация является стандартом. В свою очередь, под открытыми спецификациями понимаются опубликованные, общедоступные спецификации, соответствующие стандартам и принятые в результате достижения согласия после всестороннего обсуждения всеми заинтересованными сторонами.

Использование при разработке систем открытых спецификаций позволяет третьим сторонам разрабатывать для этих систем различные аппаратные или программные средства расширения и модификации, а также создавать программно-аппаратные комплексы из продуктов разных производителей.

Для реальных систем полная открытость является недостижимым идеалом. Как правило, даже в системах, называемых открытыми, этому определению соответствуют лишь некоторые части, поддерживающие внешние интерфейсы. Например, открытость семейства операционных систем Unix заключается, кроме всего прочего, в наличии стандартизованного программного интерфейса между ядром и приложениями, что позволяет легко переносить приложения из среды одной версии Unix в среду другой версии. Еще одним примером частичной открытости является применение в достаточно закрытой операционной системе Novell NetWare открытого интерфейса Open Driver Interface (ODI) для включения в систему драйверов сетевых адаптеров независимых производителей. Чем больше открытых спецификаций использовано при разработке системы, тем более открытой она является.

Модель OSI касается только одного аспекта открытости, а именно открытости средств взаимодействия устройств, связанных в вычислительную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами с использованием стандартных правил, определяющих формат, содержание и значение принимаемых и отправляемых сообщений.

Если две сети построены с соблюдением принципов открытости, то это дает следующие преимущества:

    возможность построения сети из аппаратных и программных средств различных производителей, придерживающихся одного и того же стандарта;

    возможность безболезненной замены отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;

    возможность легкого сопряжения одной сети с другой;

    простота освоения и обслуживания сети.

Ярким примером открытой системы является международная сеть Internet. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к открытым системам. В разработке ее стандартов принимали участие тысячи специалистов-пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспечения, работающих в разных странах. Само название стандартов, определяющих работу сети Internet - Request For Comments (RFC), что можно перевести как «запрос на комментарии», - показывает гласный и открытый характер принимаемых стандартов. В результате сеть Internet сумела объединить в себе самое разнообразное оборудование и программное обеспечение огромного числа сетей, разбросанных по всему миру.

Модель OSI

Международная Организация по Стандартам (International Standards Organization, ISO) разработала модель, которая четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI.

В модели OSI взаимодействие делится на семь уровней или слоев (рис. 1.1). Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия декомпозирована на 7 частных проблем, каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.

Рис. 1.1. Модель взаимодействия открытых систем ISO/OSI

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Следует иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI, в таком случае, при необходимости межсетевого обмена оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Приложение конечного пользователя может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машине, но и просто для получения услуг того или иного сетевого сервиса, например, доступа к удаленным файлам, получение почты или печати на разделяемом принтере.

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню. Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д. Некоторые реализации протоколов предусматривают наличие в сообщении не только заголовка, но и концевика. Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.

Кроме термина "сообщение" (message) существуют и другие названия, используемые сетевыми специалистами для обозначения единицы обмена данными. В стандартах ISO для протоколов любого уровня используется такой термин как "протокольный блок данных" - Protocol Data Unit (PDU). Кроме этого, часто используются названия кадр (frame), пакет (packet), дейтаграмма (datagram).

Функции уровней модели ISO/OSI

Физический уровень . Этот уровень имеет дело с передачей битов по физическим каналам, таким, например, как коаксиальный кабель, витая пара или оптоволоконный кабель. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, такие как требования к фронтам импульсов, уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных на кабеле, и другие характеристики среды и электрических сигналов.

Канальный уровень. На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка - точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP-B.

Сетевой уровень. Этот уровень служит для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами. Рассмотрим функции сетевого уровня на примере локальных сетей. Протокол канального уровня локальных сетей обеспечивает доставку данных между любыми узлами только в сети с соответствующейтиповой топологией . Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи данных для типовых топологий, а с другой стороны, допустить использование произвольных топологий, используется дополнительный сетевой уровень. На этом уровне вводится понятие "сеть". В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень.

Сообщения сетевого уровня принято называтьпакетами (packets) . При организации доставки пакетов на сетевом уровне используется понятие"номер сети" . В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами.Маршрутизатор - это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того, чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называетсямаршрутизацией и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту, оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время, как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией . С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень. На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является вся система транспортировки данных в сети. Так, например, если качество каналов передачи связи очень высокое, и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок - с помощью предварительного установления логического соединения, контроля доставки сообщений с помощью контрольных сумм и циклической нумерации пакетов, установления тайм-аутов доставки и т.п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Сеансовый уровень. Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Уровень представления. Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером протокола, работающего на уровне представления, является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень. Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message) .

Существует очень большое разнообразие протоколов прикладного уровня. Приведем в качестве примеров хотя бы несколько наиболее распространенных реализаций файловых сервисов: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, сервисами, предоставляемыми на верхних уровнях и прочими параметрами.

Данный материал посвящен эталонной сетевой семиуровневой модели OSI . Здесь Вы найдете ответ на вопрос для чего системным администраторам необходимо понимать данную сетевую модель, будут рассмотрены все 7 уровней модели, а также Вы узнаете основы модели TCP/IP, которая и была построена на основе эталонной модели OSI.

Когда я начал увлекаться различными IT технологиями, стал работать в этой сфере, я, конечно же, не знал не о какой модели, даже не задумывался об этом, но мне более опытный специалист посоветовал изучить, точнее, просто понять эту модель, добавив что «если будешь понимать все принципы взаимодействия, то будет намного проще управлять, конфигурировать сеть и решать всевозможные сетевые и другие проблемы ». Я его, конечно же, послушался и стал лопатить книги, Интернет и другие источники информации, одновременно с этим проверять на существующей сети, правда ли это все так на самом деле.

В современном мире развитие сетевой инфраструктуры достигло такого высокого уровня, что без построения, даже маленькой сети, предприятие (в т.ч. и маленькое ) не сможет просто на всего нормально существовать, поэтому системные администраторы становятся, все более востребованы. А для качественного построения и конфигурирования любой сети, системный администратор должен понимать принципы эталонной модели OSI, как раз, для того чтобы Вы научились понимать взаимодействие сетевых приложений, да и вообще принципы сетевой передачи данных, я попытаюсь изложить этот материал доступно даже для начинающих админов.

Сетевая модель OSI (open systems interconnection basic reference model ) – это абстрактная модель взаимодействия компьютеров, приложений и других устройств в сети. Если вкратце, суть данной модели состоит в том, что организация ISO (International Organization for Standardization ) разработала стандарт работы сети, для того чтобы все смогли опираться на него, и происходило совместимость всех сетей и взаимодействие между ними. Один из самых популярных протоколов взаимодействия сети, который применяется во всем мире, это TCP/IP он и построен на базе эталонной модели.

Ну, давайте перейдем непосредственно к самим уровням этой модели, и для начала ознакомитесь с общей картиной этой модели в разрезе ее уровней.

Теперь поговорим поподробней о каждом уровне, принято описывать уровни эталонной модели сверху в низ, именно по этому пути, и происходит взаимодействие, на одном компьютере сверху вниз, а на компьютере где идет прием данных снизу вверх, т.е. данные проходят каждый уровень последовательно.

Описание уровней сетевой модели

Уровень приложений (7) (прикладной уровень ) – это отправная и в то же время конечная точка данных, которые Вы хотите передать по сети. Этот уровень отвечает за взаимодействие приложений по сети, т.е. на этом уровне общаются приложения. Это самый верхний уровень и необходимо помнить это, при решении возникающих проблем.

HTTP, POP3, SMTP, FTP, TELNET и другие. Другими словами приложение 1 посылает запрос приложению 2 по средствам этих протоколов, и для того чтобы узнать, что приложение 1 послало запрос именно приложению 2, между ними должна быть связь, вот именно протокол и отвечает за эту связь.

Уровень представления (6) – этот уровень отвечает за кодирование данных, для того чтобы их потом можно было передать по сети и соответственно преобразует их обратно, для того чтобы приложение понимало эти данные. После этого уровня данные для других уровней становятся одинаковыми, т.е. без разницы, что это за данные, будь то документ word или сообщение электронной почты.

На этом уровне работают такие протоколы как: RDP, LPP, NDR и другие.

Сеансовый уровень (5) – отвечает за поддержание сеанса между передачей данных, т.е. продолжительность сеанса отличается, в зависимости от передаваемых данных, поэтому его необходимо поддерживать или прекращать.

На этом уровне работают следующие протоколы: ASP, L2TP, PPTP и другие.

Транспортный уровень (4) – отвечает за надежность передачи данных. Он также разбивает данные на сегменты и собирает их обратно, так как данные бывают разного размера. Существует два известных протокола этого уровня - это TCP и UDP . TCP протокол дает гарантию на то, что данные будут доставлены в полном объеме, а протокол UDP этого не гарантирует, именно поэтому их используют для разных целей.

Сетевой уровень (3) – он предназначен для определения пути, по которому должны пройти данные. На этом уровне работают маршрутизаторы. Также он отвечает за: трансляцию логических адресов и имён в физические, определение короткого маршрута, коммутацию и маршрутизацию, отслеживание неполадок в сети. Именно на этом уровне работает протокол IP и протоколы маршрутизации, например RIP, OSPF .

Канальный уровень (2) – он обеспечивает взаимодействие на физическом уровне, на этом уровне определяются MAC адреса сетевых устройств, также здесь ведется контроль ошибок и их исправление, т.е. посылает повторный запрос поврежденного кадра.

Физический уровень (1) – это уже непосредственно преобразование всех кадров в электрические импульсы и обратно. Другими словами физическая передача данных. На этом уровне работают концентраторы .

Вот так выглядит весь процесс передачи данных с точки зрения этой модели. Она является эталонной и стандартизированной и поэтому на ней основаны другие сетевые технологии и модели в частности модель TCP/IP.

Модель TCP IP

Модель TCP/IP немного отличается от модели OSI, если говорить конкретней в данной модели объединили некоторые уровни модели OSI и их здесь всего 4:

  • Прикладной;
  • Транспортный;
  • Сетевой;
  • Канальный.

На картинке представлено отличие двух моделей, а также еще раз показано на каких уровнях работают всем известные протоколы.

Говорить о сетевой модели OSI и конкретно про взаимодействие компьютеров в сети можно долго и в рамках одной статьи это не уместить, да и будет немного не понятно, поэтому здесь я попытался представить как бы основу этой модели и описание всех уровней. Главное понимать, что все это действительно так и файл, который Вы отправили по сети проходит просто «огромный » путь, перед тем как попасть к конечному пользователю, но это происходит на столько быстро, что Вы этого не замечаете, во многом благодаря развитым сетевым технологиям.

Надеюсь все это, Вам поможет понимать взаимодействие сетей.

Александр Горячев, Алексей Нисковский

Для того чтобы серверы и клиенты сети могли общаться, они должны работать с использованием одного протокола обмена информацией, то есть должны «говорить» на одном языке. Протокол определяет набор правил для организации обмена информацией на всех уровнях взаимодействия сетевых объектов.

Существует эталонная модель взаимодействия открытых систем (Open System Interconnection Reference Model), часто называемая моделью OSI. Эта модель разработана Международной организацией по стандартизации (International Organization for Standardization, ISO). Модель OSI описывает схему взаимодействия сетевых объектов, определяет перечень задач и правила передачи данных. Она включает в себя семь уровней: физический (Physical - 1), канальный (Data-Link - 2), сетевой (Network - 3), транспортный (Transport - 4), сеансовый (Session - 5), представления данных (Presentation - 6) и прикладной (Application - 7). Считается, что два компьютера могут взаимодействовать друг с другом на конкретном уровне модели OSI, если их программное обеспечение, реализующее сетевые функции этого уровня, одинаково интерпретирует одни и те же данные. В этом случае устанавливается прямое взаимодействие между двумя компьютерами, называемое «точка-точка».

Реализации модели OSI протоколами называются стеками (наборами) протоколов. В рамках одного конкретного протокола невозможно реализовать все функции модели OSI. Обычно задачи конкретного уровня реализуются одним или несколькими протоколами. На одном компьютере должны работать протоколы из одного стека. При этом компьютер одновременно может использовать несколько стеков протоколов.

Рассмотрим задачи, решаемые на каждом из уровней модели OSI.

Физический уровень

На этом уровне модели OSI определяются следующие характеристики сетевых компонентов: типы соединений сред передачи данных, физические топологии сети, способы передачи данных (с цифровым или аналоговым кодированием сигналов), виды синхронизации передаваемых данных, разделение каналов связи с использованием частотного и временного мультиплексирования.

Реализации протоколов физического уровня модели OSI координируют правила передачи битов.

Физический уровень не включает описание среды передачи. Однако реализации протоколов физического уровня специфичны для конкретной среды передачи. С физическим уровнем обычно ассоциируется подключение следующего сетевого оборудования:

  • концентраторов, хабов и повторителей, регенерирующих электрические сигналы;
  • соединительных разъемов среды передачи, обеспечивающих механический интерфейс для связи устройства со средой передачи;
  • модемов и различных преобразующих устройств, выполняющих цифровые и аналоговые преобразования.

Этот уровень модели определяет физические топологии в корпоративной сети, которые строятся с использованием базового набора стандартных топологий.

Первой в базовом наборе является шинная (bus) топология. В этом случае все сетевые устройства и компьютеры подключаются к общей шине передачи данных, которая чаще всего формируется с использованием коаксиального кабеля. Кабель, формирующий общую шину, называется магистральным (backbone). От каждого из устройств, подключенных к шине, сигнал передается в обе стороны. Для удаления сигнала из кабеля на концах шины должны использоваться специальные прерыватели (terminator). Механическое повреждение магистрали сказывается на работе всех устройств, подключенных к ней.

Кольцевая топология предусматривает соединение всех сетевых устройств и компьютеров в физическое кольцо (ring). В этой топологии информация всегда передается по кольцу в одну сторону - от станции к станции. Каждое сетевое устройство должно иметь приемник информации на входном кабеле и передатчик на выходном. Механическое повреждение среды передачи информации в одинарном кольце повлияет на работу всех устройств, однако сети, построенные с использованием двойного кольца, как правило, имеют запас по отказоустойчивости и функции самовосстановления. В сетях, построенных на двойном кольце, одна и та же информация передается по кольцу в обе стороны. В случае повреждения кабеля кольцо будет продолжать работать в режиме одинарного кольца на двойной длине (функции самовосстановления определяются используемыми аппаратными средствами).

Следующей топологией является звездообразная топология, или звезда (star). Она предусматривает наличие центрального устройства, к которому лучами (отдельными кабелями) подключаются другие сетевые устройства и компьютеры. Сети, построенные на звездообразной топологии, имеют одиночную точку отказа. Этой точкой является центральное устройство. В случае выхода из строя центрального устройства все остальные участники сети не смогут обмениваться информацией между собой, поскольку весь обмен осуществлялся только через центральное устройство. В зависимости от типа центрального устройства принимаемый с одного входа сигнал может транслироваться (с усилением или без) на все выходы либо на конкретный выход, к которому подключено устройство - получатель информации.

Полносвязанная (mesh) топология обладает высокой отказоустойчивостью. При построении сетей с подобной топологией каждое из сетевых устройств или компьютеров соединяется с каждым другим компонентом сети. Эта топология обладает избыточностью, за счет чего кажется непрактичной. Действительно, в малых сетях эта топология применяется редко, однако в больших корпоративных сетях полносвязанная топология может использоваться для соединения наиболее важных узлов.

Рассмотренные топологии чаще всего строятся с применением кабельных соединений.

Существует еще одна топология, использующая беспроводные соединения, - сотовая (cellular). В ней сетевые устройства и компьютеры объединяются в зоны - ячейки (cell), взаимодействуя только с приемо-передающим устройством ячейки. Передача информации между ячейками осуществляется приемо-передающими устройствами.

Канальный уровень

Этот уровень определяет логическую топологию сети, правила получения доступа к среде передачи данных, решает вопросы, связанные с адресацией физических устройств в рамках логической сети и управлением передачей информации (синхронизация передачи и сервис соединений) между сетевыми устройствами.

Протоколами канального уровня определяются:

  • правила организации битов физического уровня (двоичные единицы и нули) в логические группы информации, называемые фреймами (frame), или кадрами. Фрейм является единицей данных канального уровня, состоящей из непрерывной последовательности сгруппированных битов, имеющей заголовок и окончание;
  • правила обнаружения (и иногда исправления) ошибок при передаче;
  • правила управления потоками данных (для устройств, работающих на этом уровне модели OSI, например, мостов);
  • правила идентификации компьютеров в сети по их физическим адресам.

Подобно большинству других уровней канальный уровень добавляет собственную управляющую информацию в начало пакета данных. Эта информация может включать адрес источника и адрес назначения (физический или аппаратный), информацию о длине фрейма и индикацию активных протоколов верхнего уровня.

С канальным уровнем обычно связаны следующие сетевые соединительные устройства:

  • мосты;
  • интеллектуальные концентраторы;
  • коммутаторы;
  • сетевые интерфейсные платы (сетевые интерфейсные карты, адаптеры и т.д.).

Функции канального уровня подразделяются на два подуровня (табл. 1):

  • управление доступом к среде передачи (Media Access Control, MAC);
  • управление логическим соединением (Logical Link Control, LLC).

Подуровень MAC определяет такие элементы канального уровня, как логическая топология сети, метод доступа к среде передачи информации и правила физической адресации между сетевыми объектами.

Аббревиатура MAC также используется при определении физического адреса сетевого устройства: физический адрес устройства (который определяется внутри сетевого устройства или сетевой карты на этапе производства) часто называют MAC-адресом этого устройства. Для большого количества сетевых устройств, особенно сетевых карт, существует возможность программно изменить MAC-адрес. При этом необходимо помнить, что канальный уровень модели OSI накладывает ограничения на использование MAC-адресов: в одной физической сети (сегменте большей по размеру сети) не может быть двух или более устройств, использующих одинаковые MAC-адреса. Для определения физического адреса сетевого объекта может быть использовано понятие «адрес узла» (node address). Адрес узла чаще всего совпадает с MAC-адресом или определяется логически при программном переназначении адреса.

Подуровень LLC определяет правила синхронизации передачи и сервиса соединений. Этот подуровень канального уровня тесно взаимодействует с сетевым уровнем модели OSI и отвечает за надежность физических (с использованием MAC-адресов) соединений. Логическая топология (logical topology) сети определяет способ и правила (последовательность) передачи данных между компьютерами в сети. Сетевые объекты передают данные в зависимости от логической топологии сети. Физическая топология определяет физический путь данных; при этом в некоторых случаях физическая топология не отражает способ функционирования сети. Фактический путь данных определяется логической топологией. Для передачи данных по логическому пути, который может отличаться от пути в физической среде, используются сетевые устройства подключения и схемы доступа к среде передачи. Хороший пример различий между физической и логической топологиями - сеть Token Ring фирмы IBM. В локальных сетях Token Ring часто используется медный кабель, который прокладывается в звездообразную схему с центральным разветвителем (хабом). В отличие от нормальной звездообразной топологии хаб не пересылает входящие сигналы всем другим подключенным устройствам. Внутренняя схема хаба последовательно отправляет каждый входящий сигнал следующему устройству в заранее предопределенном логическом кольце, то есть по круговой схеме. Физической топологией этой сети является звезда, а логической - кольцо.

Еще одним примером различий между физической и логической топологиями может служить сеть Ethernet. Физическая сеть может быть построена с использованием медных кабелей и центрального хаба. Образуется физическая сеть, выполненная по топологии звезды. Однако технология Ethernet предусматривает передачу информации от одного компьютера ко всем остальным, находящимся в сети. Хаб должен ретранслировать принятый с одного своего порта сигнал на все остальные порты. Образована логическая сеть с шинной топологией.

Чтобы определить логическую топологию сети, необходимо понять, как в ней принимаются сигналы:

  • в логических шинных топологиях каждый сигнал принимается всеми устройствами;
  • в логических кольцевых топологиях каждое устройство получает только те сигналы, которые были посланы конкретно ему.

Также важно знать, каким образом сетевые устройства получают доступ к среде передачи информации.

Доступ к среде передачи

Логические топологии используют специальные правила, управляющие разрешением на передачу информации другим сетевым объектам. Процесс управления контролирует доступ к среде передачи данных. Рассмотрим сеть, в которой всем устройствам позволено функционировать безо всяких правил получения доступа к среде передачи. Все устройства в такой сети передают информацию по мере готовности данных; эти передачи могут иногда накладываться во времени. В результате наложения сигналы искажаются, происходит потеря передаваемых данных. Такая ситуация называется коллизией (collision). Коллизии не позволяют организовать надежную и эффективную передачу информации между сетевыми объектами.

Коллизии в сети распространяются на физические сегменты сети, к которым подключаются сетевые объекты. Такие соединения образуют единое пространство коллизий (collision space), в котором влияние коллизий распространяется на всех. Для уменьшения размеров пространств коллизий путем сегментации физической сети можно использовать мосты и другие сетевые устройства, обладающие функциями фильтрации трафика на канальном уровне.

Сеть не может нормально работать до тех пор, пока все сетевые объекты не смогут контролировать коллизии, управлять ими или устранять их влияние. В сетях необходим некоторый метод снижения числа коллизий, интерференции (наложения) одновременных сигналов.

Существуют стандартные методы доступа к среде передачи, описывающие правила, по которым осуществляется управление разрешением на передачу информации для сетевых устройств: состязание, передача маркера и опрос.

Перед тем как выбрать протокол, в котором реализован один из этих методов доступа к среде передачи данных, следует обратить особое внимание на следующие факторы:

  • характер передач - непрерывный или импульсный;
  • количество передач данных;
  • необходимость передачи данных в строго определенные интервалы времени;
  • количество активных устройств в сети.

Каждый из этих факторов в комбинации с преимуществами и недостатками поможет определить, какой из методов доступа к среде передачи является наиболее подходящим.

Состязание. Системы на основе состязания (конкуренции) предполагают, что доступ к среде передачи реализуется на основе принципа «первый пришел - первым обслужен». Другими словами, каждое сетевое устройство борется за контроль над средой передачи. Системы, использующие метод состязания, разработаны таким образом, чтобы все устройства в сети могли передавать данные лишь по мере необходимости. Эта практика в конечном счете приводит к частичной или полной потере данных, потому что в действительности происходят коллизии. По мере добавления к сети каждого нового устройства количество коллизий может возрастать в геометрической прогрессии. Увеличение количества коллизий снижает производительность сети, а в случае полного насыщения среды передачи информации - снижает работоспособность сети до нуля.

Для снижения количества коллизий разработаны специальные протоколы, в которых реализована функция прослушивания среды передачи информации до начала передачи данных станцией. Если прослушивающая станция обнаруживает передачу сигнала (от другой станции), то она воздерживается от передачи информации и будет пытаться повторить ее позже. Эти протоколы называются протоколами множественного доступа с контролем несущей (Carrier Sense Multiple Access, CSMA). Протоколы CSMA значительно снижают число коллизий, но не устраняют их полностью. Коллизии тем не менее происходят, когда две станции опрашивают кабель: не обнаруживают никаких сигналов, решают, что среда передачи данных свободна, а затем одновременно начинают передачу данных.

Примерами таких состязательных протоколов являются:

  • множественный доступ с контролем несущей/обнаружением коллизий (Carrier Sense Multiple Access/Collision Detection, CSMA/CD);
  • множественный доступ с контролем несущей/предотвращением коллизий (Carrier Sense Multiple Access/Collision Avoidance, CSMA/CA).

Протоколы CSMA/CD. Протоколы CSMA/CD не только прослушивают кабель перед передачей, но также обнаруживают коллизии и инициализируют повторные передачи. При обнаружении коллизии станции, передававшие данные, инициализируют специальные внутренние таймеры случайными значениями. Таймеры начинают обратный отсчет, и при достижении нуля станции должны попытаться повторить передачу данных. Поскольку таймеры были инициализированы случайными значениями, то одна из станций будет пытаться повторить передачу данных раньше другой. Соответственно, вторая станция определит, что среда передачи данных уже занята, и дождется ее освобождения.

Примерами протоколов CSMA/CD являются Ethernet version 2 (Ethernet II, разработанный в корпорации DEC) и IEEE802.3.

Протоколы CSMA/CA. CSMA/CA использует такие схемы, как доступ с квантованием времени (time slicing) или посылка запроса на получение доступа к среде. При использовании квантования времени каждая станция может передавать информацию только в строго определенные для этой станции моменты времени. При этом в сети должен реализовываться механизм управления квантами времени. Каждая новая станция, подключаемая к сети, оповещает о своем появлении, тем самым инициируя процесс перераспределения квантов времени для передачи информации. В случае использования централизованного управления доступом к среде передачи каждая станция формирует специальный запрос на передачу, который адресуется к управляющей станции. Центральная станция регулирует доступ к среде передачи для всех сетевых объектов.

Примером CSMA/CA является протокол LocalTalk фирмы Apple Computer.

Системы на основе метода состязания больше всего подходят для использования при импульсном трафике (при передаче больших файлов) в сетях с относительно небольшим количеством пользователей.

Системы с передачей маркера. В системах с передачей маркера (token passing) небольшой фрейм (маркер) передается в определенном порядке от одного устройства к другому. Маркер - это специальное сообщение, которое передает временное управление средой передачи устройству, владеющему маркером. Передача маркера распределяет управление доступом между устройствами сети.

Каждое устройство знает, от какого устройства оно получает маркер и какому устройству должно его передать. Обычно такими устройствами являются ближайшие соседи владельца маркера. Каждое устройство периодически получает контроль над маркером, выполняет свои действия (передает информацию), а затем передает маркер для использования следующему устройству. Протоколы ограничивают время контроля маркера каждым устройством.

Имеется несколько протоколов передачи маркера. Двумя стандартами сетей, использующими передачу маркера, являются IEEE 802.4 Token Bus и IEEE 802.5 Token Ring. В сети Token Bus используется управление доступом с передачей маркера и физическая или логическая шинная топология, в то время как в сети Token Ring используется управление доступом с передачей маркера и физическая или логическая кольцевая топология.

Сети с передачей маркера следует использовать при наличии зависящего от времени приоритетного трафика, типа цифровых аудио- или видеоданных, или же при наличии очень большого количества пользователей.

Опрос. Опрос (polling) - это метод доступа, при котором выделяется одно устройство (называемое контроллером, первичным, или «мастер»-устройством) в качестве арбитра доступа к среде. Это устройство опрашивает все остальные устройства (вторичные) в некотором предопределенном порядке, чтобы узнать, имеют ли они информацию для передачи. Чтобы получить данные от вторичного устройства, первичное устройство направляет ему соответствующий запрос, а затем получает данные от вторичного устройства и направляет их устройству-получателю. Затем первичное устройство опрашивает другое вторичное устройство, принимает данные от него, и так далее. Протокол ограничивает количество данных, которое может передать после опроса каждое вторичное устройство. Опросные системы идеальны для сетевых устройств, чувствительных ко времени, например, при автоматизации оборудования.

Этот уровень также обеспечивает сервис соединений. Существует три типа сервиса соединений:

  • сервис без подтверждения и без установления соединений (unacknowledged connectionless) - посылает и получает фреймы без управления потоком и без контроля ошибок или последовательности пакетов;
  • сервис, ориентированный на соединение (connection-oriented), - обеспечивает управление потоком, контроль ошибок и последовательности пакетов посредством выдачи квитанций (подтверждений);
  • сервис с подтверждением без установления соединения (acknowledged connectionless) - использует квитанции для управления потоком и контроля ошибок при передачах между двумя узлами сети.

Подуровень LLC канального уровня обеспечивает возможность одновременного использования нескольких сетевых протоколов (из разных стеков протоколов) при работе через один сетевой интерфейс. Другими словами, если в компьютере установлена только одна сетевая карта, но есть необходимость работать с различными сетевыми сервисами от разных производителей, то клиентское сетевое программное обеспечение именно на подуровне LLC обеспечивает возможность такой работы.

Сетевой уровень

Сетевой уровень определяет правила доставки данных между логическими сетями, формирование логических адресов сетевых устройств, определение, выбор и поддержание маршрутной информации, функционирование шлюзов (gateways).

Главной целью сетевого уровня является решение задачи перемещения (доставки) данных в заданные точки сети. Доставка данных на сетевом уровне в общем-то похожа на доставку данных на канальном уровне модели OSI, где для передачи данных используется физическая адресация устройств. Однако адресация на канальном уровне относится только к одной логической сети, действует только внутри этой сети. Сетевой уровень описывает методы и средства передачи информации между многими независимыми (и часто разнородными) логическими сетями, которые, соединенные вместе, формируют одну большую сеть. Такая сеть называется объединенной сетью (internetwork), а процессы передачи информации между сетями - межсетевым взаимодействием (internetworking).

С помощью физической адресации на канальном уровне данные доставляются всем устройствам, входящим в одну логическую сеть. Каждое сетевое устройство, каждый компьютер определяют назначение принятых данных. Если данные предназначены компьютеру, то он их обрабатывает, если же нет - игнорирует.

В отличие от канального сетевой уровень может выбирать конкретный маршрут в объединенной сети и избегать посылки данных в те логические сети, в которые данные не адресованы. Сетевой уровень осуществляет это путем коммутаций, адресации на сетевом уровне и с использованием алгоритмов маршрутизации. Сетевой уровень также отвечает за обеспечение правильных маршрутов для данных через объединенную сеть, состоящую из разнородных сетей.

Элементы и методы реализации сетевого уровня определяются следующим:

  • все логически отдельные сети должны иметь уникальные сетевые адреса;
  • коммутация определяет, как устанавливаются соединения через объединенную сеть;
  • возможность реализовать маршрутизацию так, чтобы компьютеры и маршрутизаторы определяли наилучший путь прохождения данных через объединенную сеть;
  • сеть будет выполнять различные уровни сервиса соединений в зависимости от ожидаемого в рамках объединенной сети количества ошибок.

На этом уровне модели OSI работают маршрутизаторы и некоторые из коммутаторов.

Сетевой уровень определяет правила формирования логических адресов (logical network address) сетевых объектов. В рамках большой объединенной сети каждый сетевой объект должен обладать уникальным логическим адресом. В формировании логического адреса участвуют два компонента: логический адрес сети, который является общим для всех объектов сети, и логический адрес сетевого объекта, который является уникальным для этого объекта. При формировании логического адреса сетевого объекта может либо использоваться физический адрес объекта, либо определяться произвольный логический адрес. Использование логической адресации позволяет организовать передачу данных между разными логическими сетями.

Каждый сетевой объект, каждый компьютер может выполнять много сетевых функций одновременно, обеспечивая работу различных сервисов. Для обращения к сервисам используется специальный идентификатор сервиса, который называется порт (port), или сокет (socket). При обращении к сервису идентификатор сервиса следует сразу за логическим адресом компьютера, обеспечивающего работу сервиса.

Во многих сетях резервируются группы логических адресов и идентификаторов сервисов с целью выполнения конкретных заранее определенных и общеизвестных действий. Например, в случае необходимости отправить данные всем сетевым объектам отправка будет произведена на специальный broadcast-адрес.

Сетевой уровень определяет правила передачи данных между двумя сетевыми объектами. Эта передача может осуществляться с использованием коммутации или маршрутизации.

Различают три метода коммутации при передаче данных: коммутация каналов, коммутация сообщений и коммутация пакетов.

При использовании коммутации каналов устанавливается канал передачи данных между отправителем и получателем. Этот канал будет задействован в течение всего сеанса связи. При использовании этого метода возможны длительные задержки при выделении канала, связанные с отсутствием достаточной полосы пропускания, загруженностью коммутационного оборудования или занятостью получателя.

Коммутация сообщений позволяет передавать целое (неразбитое на части) сообщение по принципу «сохранить и передать дальше» (store-and-forward). Каждое промежуточное устройство принимает сообщение, локально его сохраняет и при освобождении канала связи, по которому это сообщение должно быть отправлено, отправляет его. Этот метод хорошо подходит для передачи сообщений электронной почты и организации электронного документооборота.

При использовании коммутации пакетов соединяются вместе преимущества двух предыдущих методов. Каждое большое сообщение разбивается на небольшие пакеты, каждый из которых последовательно отправляется получателю. При прохождении через объединенную сеть для каждого из пакетов определяется наилучший в этот момент времени путь. Получается, что части одного сообщения могут прийти к получателю в разное время и только после того, как все части будут собраны вместе, получатель сможет работать с полученными данными.

Каждый раз при определении дальнейшего пути для данных необходимо выбрать наилучший маршрут. Задача определения наилучшего пути называется маршрутизацией (routing). Эту задачу выполняют маршрутизаторы (router). Задача маршрутизаторов - определение возможных путей передачи данных, поддержание маршрутной информации, выбор наилучших маршрутов. Маршрутизация может осуществляться статическим либо динамическим способом. При задании статической маршрутизации должны быть заданы все взаимосвязи между логическими сетями, которые остаются неизменными. Динамическая маршрутизация предполагает, что маршрутизатор может сам определять новые пути либо модифицировать информацию о старых. Динамическая маршрутизация использует специальные алгоритмы маршрутизации, наиболее распространенными из которых являются вектор дистанции (distance vector) и состояние канала (link state). В первом случае маршрутизатор использует информацию о структуре сети от соседних маршрутизаторов, из вторых рук. Во втором случае маршрутизатор оперирует информацией о собственных каналах связи и взаимодействует со специальным представительским маршрутизатором для построения полной карты сети.

На выбор наилучшего маршрута чаще всего влияют такие факторы, как количество переходов через маршрутизаторы (hop count) и количество тиков (единиц времени), необходимых для достижения сети назначения (tick count).

Сервис соединений сетевого уровня работает тогда, когда сервис соединений LLC-подуровня канального уровня модели OSI не используется.

При построении объединенной сети приходится соединять логические сети, построенные с использованием различных технологий и предоставляющие разнообразные сервисы. Для того чтобы сеть могла работать, логические сети должны уметь правильно интерпретировать данные и управляющую информацию. Эта задача решается с помощью шлюза, который представляет собой устройство, или прикладную программу, переводящую и интерпретирующую правила одной логической сети в правила другой. Вообще, шлюзы могут быть реализованы на любом уровне модели OSI, однако чаще всего они реализуются на верхних уровнях модели.

Транспортный уровень

Транспортный уровень позволяет спрятать физическую и логическую структуры сети от приложений верхних уровней модели OSI. Приложения работают только с сервисными функциями, которые достаточно универсальны и не зависят от физической и логической топологий сети. Особенности логической и физической сетей реализуются на предыдущих уровнях, куда транспортный уровень передает данные.

Транспортный уровень часто компенсирует отсутствие надежного или ориентированного на соединение сервиса соединений на нижних уровнях. Термин «надежный» (reliable) не означает, что все данные будут доставлены во всех случаях. Тем не менее надежные реализации протоколов транспортного уровня обычно могут подтверждать или отрицать доставку данных. Если данные не доставлены принимающему устройству правильно, транспортный уровень может осуществить повторную передачу или информировать верхние уровни о невозможности доставки. Верхние уровни могут затем предпринять необходимые корректирующие действия или обеспечить пользователя возможностью выбора.

Многие протоколы в вычислительных сетях обеспечивают пользователям возможность работы с простыми именами на естественном языке вместо сложных и тяжелых для запоминания алфавитно-цифровых адресов. Преобразование адресов в имена и обратно (Address/Name Resolution) является функцией идентификации или отображения имен и алфавитно-цифровых адресов друг в друга. Эта функция может выполняться каждым объектом в сети или поставщиками специального сервиса, называемыми каталоговыми серверами (directory server), серверами имен (name server) и т.п. Следующие определения классифицируют методы преобразования адресов/имен:

  • инициация потребителем сервиса;
  • инициация поставщиком сервиса.

В первом случае пользователь сети обращается к какому-либо сервису по его логическому имени, не зная точное расположение сервиса. Пользователь не знает, доступен ли этот сервис в данный момент. При обращении логическое имя ставится в соответствие физическому имени, и рабочая станция пользователя инициирует обращение непосредственно к сервису. Во втором случае каждый сервис извещает о себе всех клиентов сети на периодической основе. Каждый из клиентов в любой момент времени знает, доступен ли сервис, и умеет обратиться непосредственно к сервису.

Методы адресации

Адреса сервиса идентифицируют конкретные программные процессы, выполняемые на сетевых устройствах. В дополнение к этим адресам поставщики сервиса отслеживают различные диалоги, которые они ведут с устройствами, запрашивающими услуги. Два различных метода диалога используют следующие адреса:

  • идентификатор соединения;
  • идентификатор транзакции.

Идентификатор соединения (connection identifier), также называемый ID соединения (connection ID), портом (port), или сокетом (socket), идентифицирует каждый диалог. С помощью идентификатора соединения поставщик соединения может связываться более чем с одним клиентом. Поставщик сервиса обращается к каждому объекту коммутации по его номеру, а для координации других адресов нижнего уровня полагается на транспортный уровень. Идентификатор соединения связан с конкретным диалогом.

Идентификаторы транзакций подобны идентификаторам соединений, но оперируют единицами, меньшими, чем диалог. Транзакция составляется из запроса и ответа. Поставщики и потребители сервиса отслеживают отправление и прибытие каждой транзакции, а не диалога в целом.

Сеансовый уровень

Сеансовый уровень способствует взаимодействию между устройствами, запрашивающими и поставляющими услуги. Сеансы связи контролируются посредством механизмов, которые устанавливают, поддерживают, синхронизируют и управляют диалогом между поддерживающими связь объектами. Этот уровень также помогает верхним уровням идентифицировать доступный сетевой сервис и соединиться с ним.

Сеансовый уровень использует информацию о логических адресах, поставляемую нижними уровнями, для идентификации имен и адресов серверов, необходимых верхним уровням.

Сеансовый уровень также инициирует диалоги между устройствами-поставщиками сервиса и устройствами-потребителями. Выполняя эту функцию, сеансовый уровень часто осуществляет представление, или идентификацию, каждого объекта и координирует права доступа к нему.

Сеансовый уровень реализует управление диалогом с использованием одного из трех способов общения - симплекс (simplex), полудуплекс (half duplex) и полный дуплекс (full duplex).

Симплексное общение предполагает только однонаправленную передачу от источника к приемнику информации. Никакой обратной связи (от приемника к источнику) этот способ общения не обеспечивает. Полудуплекс позволяет использовать одну среду передачи данных для двунаправленных передач информации, однако в каждый момент времени информация может передаваться только в одну сторону. Полный дуплекс обеспечивает одновременную передачу информации в обе стороны по среде передачи данных.

Администрирование сеанса связи между двумя сетевыми объектами, состоящее из установления соединения, передачи данных, завершения соединения, также выполняется на этом уровне модели OSI. После установления сеанса программное обеспечение, реализующее функции данного уровня, может проверять работоспособность (поддерживать) соединения вплоть до его завершения.

Уровень представления данных

Основная задача уровня представления данных - преобразование данных во взаимно согласованные форматы (синтаксис обмена), понятные всем сетевым приложениям и компьютерам, на которых работают приложения. На этом уровне также решаются задачи компрессии и декомпрессии данных и их шифрование.

Под преобразованием понимается изменение порядка битов в байтах, порядка байтов в слове, кодов символов и синтаксиса имен файлов.

Необходимость изменения порядков битов и байтов обусловлена наличием большого количества разнообразных процессоров, вычислительных машин, комплексов и систем. Процессоры разных производителей могут по-разному трактовать нулевой и седьмой биты в байте (либо нулевой бит является старшим, либо - седьмой). Аналогично по-разному трактуются байты, из которых состоят большие единицы информации - слова.

Для того чтобы пользователи различных операционных систем могли получать информацию в виде файлов с корректными именами и содержимым, этот уровень обеспечивает корректное преобразование синтаксиса файлов. Различные операционные системы по-разному работают со своими файловыми системами, реализуют разные способы формирования имен файлов. Информация в файлах также хранится в определенной кодировке символов. При взаимодействии двух сетевых объектов важно, чтобы каждый из них мог интерпретировать файловую информацию по-своему, но смысл информации изменяться не должен.

Уровень представления данных преобразует данные во взаимно согласованный формат (синтаксис обмена), понятный всем сетевым приложениям и компьютерам, на которых работают приложения. Может, кроме того, сжимать и разворачивать, а также шифровать и расшифровывать данные.

Компьютеры используют различные правила представления данных с помощью двоичных нулей и единиц. Несмотря на то что все эти правила пытаются достичь общей цели - представить данные, понятные человеку, производители компьютеров и стандартизирующие организации создали правила, противоречащие друг другу. Когда два компьютера, использующие различные наборы правил, пытаются связаться друг с другом, им часто бывает необходимо выполнить некоторые преобразования.

Локальные и сетевые операционные системы часто шифруют данные для защиты их от несанкционированного использования. Шифрование - это общий термин, который описывает некоторые методы защиты данных. Защита зачастую выполняется с помощью перемешивания данных (data scrambling), при котором используется один или несколько методов из трех: перестановка, подстановка, алгебраический метод.

Каждый из подобных методов - это просто особый способ защиты данных таким образом, чтобы они могли быть поняты только тем, кто знает алгоритм шифрования. Шифрование данных может выполняться как аппаратно, так и программно. Однако сквозное шифрование данных обычно выполняется программным способом и считается частью функций уровня представления данных. Для оповещения объектов об используемом методе шифрования обычно применяется 2 метода - секретные ключи и открытые ключи.

Методы шифрования с секретным ключом используют единственный ключ. Сетевые объекты, владеющие ключом, могут шифровать и расшифровывать каждое сообщение. Следовательно, ключ должен сохраняться в секрете. Ключ может быть встроен в микросхемы оборудования или установлен администратором сети. При каждом изменении ключа все устройства должны быть модифицированы (желательно не использовать сеть для передачи значения нового ключа).

Сетевые объекты, использующие методы шифрования с открытым ключом, обеспечиваются секретным ключом и некоторым известным значением. Объект создает открытый ключ, манипулируя известным значением посредством секретного ключа. Объект, инициирующий коммуникацию, посылает свой открытый ключ приемнику. Другой объект затем математически комбинирует собственный секретный ключ с переданным ему открытым ключом для установки взаимоприемлемого значения шифрования.

Владение только открытым ключом мало полезно несанкционированным пользователям. Сложность результирующего ключа шифрования достаточно велика, чтобы его можно было вычислить за приемлемое время. Даже знание собственного секретного ключа и чьего-то открытого ключа не слишком поможет определить другой секретный ключ - из-за сложности логарифмических вычислений для больших чисел.

Прикладной уровень

Прикладной уровень содержит все элементы и функции, специфичные для каждого вида сетевого сервиса. Шесть нижних уровней объединяют задачи и технологии, обеспечивающие общую поддержку сетевого сервиса, в то время как прикладной уровень обеспечивает протоколы, необходимые для выполнения конкретных функций сетевого сервиса.

Серверы представляют клиентам сети информацию о том, какие виды сервиса они обеспечивают. Основные механизмы идентификации предлагаемых услуг обеспечивают такие элементы, как адреса сервиса. Кроме того, серверы используют такие методы представления своего сервиса, как активное и пассивное представление сервиса.

При осуществлении активного представления сервиса (Active service advertisement) каждый сервер периодически посылает сообщения (включающие адреса сервиса), объявляя о своей доступности. Клиенты также могут опрашивать сетевые устройства в поисках определенного типа сервиса. Клиенты сети собирают представления, сделанные серверами, и формируют таблицы доступных в настоящее время видов сервиса. Большинство сетей, использующих метод активного представления, определяют также конкретный период действия представлений сервиса. Например, если сетевой протокол определяет, что представления сервиса должны посылаться каждые пять минут, то клиенты будут удалять по тайм-ауту те виды сервиса, которые не были представлены в течение последних пяти минут. По истечении тайм-аута клиент удаляет сервис из своих таблиц.

Серверы осуществляют пассивное представление сервиса (Passive service advertisement) путем регистрации своего сервиса и адреса в каталоге. Когда клиенты хотят определить доступные виды сервиса, они просто запрашивают каталог о местоположении нужного сервиса и об его адресе.

Прежде чем сетевой сервис может быть использован, он должен стать доступным локальной операционной системе компьютера. Существует несколько методов решения этой задачи, однако каждый такой метод может быть определен положением или уровнем, на котором локальная операционная система распознает сетевую операционную систему. Предоставляемый сервис можно подразделить на три категории:

  • перехват вызовов операционной системы;
  • удаленный режим;
  • совместная обработка данных.

При использовании перехвата вызовов ОС (OC Call Interception) локальная операционная система совершенно не подозревает о существовании сетевого сервиса. Например, когда приложение DOS пытается читать файл с сетевого файл-сервера, оно считает, что данный файл находится на локальном накопителе. В действительности специальный фрагмент программного обеспечения перехватывает запрос на чтение файла прежде, чем он достигнет локальной операционной системы (DOS), и направляет запрос сетевому файловому сервису.

В другом крайнем случае, при удаленном режиме (Remote Operation) работы локальная операционная система знает о сети и ответственна за передачу запросов к сетевому сервису. Однако сервер ничего не знает о клиенте. Для операционной системы сервера все запросы к сервису выглядят одинаково, независимо от того, являются ли они внутренними или переданы по сети.

Наконец, существуют операционные системы, которые знают о существовании сети. И потребитель сервиса, и поставщик сервиса распознают существование друг друга и работают вместе, координируя использование сервиса. Этот тип использования сервиса обычно требуется для одноранговой совместной обработки данных. Совместная обработка данных подразумевает разделение возможностей обработки данных для выполнения единой задачи. Это означает, что операционная система должна знать о существовании и возможностях других и быть способной кооперироваться с ними для выполнения нужной задачи.

КомпьютерПресс 6"1999



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!