Энциклопедия мобильной связи

5.3 что означает принцип архитектуры фон неймана. Классическая архитектура эвм и принципы фон неймана

Архитектура фон Неймана (англ. von Neumann architecture ) - широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако, соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.

Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.

Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

Принципы фон Неймана

В 1946 году трое учёных - Артур Бёркс (англ. Arthur Burks ), Герман Голдстайн (англ. Herman Goldstine ) и Джон фон Нейман - опубликовали статью «Предварительное рассмотрение логического конструирования электронного вычислительного устройства» . В статье обосновывалось использование двоичной системы для представления данных в ЭВМ (преимущественно для технической реализации, простота выполнения арифметических и логических операций - до этого машины хранили данные в десятичном виде ), выдвигалась идея использования общей памяти для программы и данных. Имя фон Неймана было достаточно широко известно в науке того времени, что отодвинуло на второй план его соавторов, и данные идеи получили название «принципы фон Неймана».

  1. Принцип двоичного кодирования.

Для представления данных и команд используется двоичная система счисления.

  1. Принцип однородности памяти.

Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления - чаще всего двоичной ). Над командами можно выполнять такие же действия, как и над данными.

  1. Принцип адресуемости памяти.

Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка; память внутренняя.

  1. Принцип последовательного программного управления.

Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой, в последовательности, определяемой программой.

  1. Принцип жесткости архитектуры

Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Компьютеры, построенные на этих принципах, относят к типу фоннеймановских.

Компьютеры, построенные на принципах фон Неймана

В середине 1940-х проект компьютера, хранящего свои программы в общей памяти был разработан в Школе электрических разработок Мура (англ. The Moore School of Electrical Engineering ) в Университете штата Пенсильвания (англ . The University of Pennsylvania ). Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру «ЭНИАК », который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании «Эниака». По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC , однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти . Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми пятью компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

  • Манчестерский Марк I . Прототип - Манчестерская малая экспериментальная машина . Университет Манчестера (англ. The University of Manchester ), Великобритания , 21 июня 1948 года ;
  • EDSAC . Кембриджский университет (англ. The Cambridge University ), Великобритания, 6 мая 1949 года ;
  • BINAC . США , апрель или август 1949 года ;
  • CSIR Mk 1 . Австралия , ноябрь 1949 года ;
  • SEAC . США , 9 мая 1950 года .

1 Понятие архитектуры ЭВМ. Принципы фон Неймана

Архитектурой ПК называется его описание на некотором общем уровне включающее описание пользовательских возможностей программирования систем команд систем адресации организации памяти Архитектура определяет принцип действия, информационные связи взаимное соединение основных логических узлов компьютера: процессора; оперативного ЗУ, Внешних ЗУ и периферийных устройств.

Классические принципы построения архитектуры ЭВМ были предложены в 1946 году и известны как принципы фон Неймана".

Они таковы:

Использование двоичной системы представления данных

Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Принцип хранимой программы Нейман первым догадался, что программа может также храниться в виде нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений. Устройство управления (УУ) и арифметико-логическое устройство (АЛУ) в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств.

Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров "многоярусно" и включает оперативное запоминающее устройство (ОЗУ) и внешние запоминающие устройства(ВЗУ).

ОЗУ - это устройство, хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы).

ВЗУ - устройства гораздо большей емкости, чем ОЗУ, но существенно более медленны.

Принцип последовательного выполнения операций

Структурно основная память состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

Принцип произвольного доступа к ячейкам оперативной памяти
Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Право и ОСО

Урок 9. Магистрально-модульный принцип построения компьютера.

Задание: используя учебный текст ответить на следующие вопросы (записать в тетрадь).

1. Кто был основоположником магистрально-модульного принципа современной архитектуры ПК.

2. Архитектура компьютера – это…

3. Перечислите основные принципы положенные в основу магистрально-модульного построения архитектуры ПК.

4. Из каких частей состоит магистраль?

5. Для чего нужен интерфейс устройств?

6. Что используется для согласования интерфейсов? По какой схеме работает данное согласование (зарисуйте схему)?

7. Как происходит обработка данных на компьютере?

8. Изобразите схематично магистрально-модульный принцип ПК.

9. Магистраль-это …

10. Для чего служат шина управления, шина адреса, шина данных?

12. Что позволяет модульный принцип пользователю ПК? Перечислите основные достоинства модульно-магистрального принципа.

Д/з. Ответить на вопросы, подготовиться к ответу по учебному тексту.

Учебный текст

Магистрально-модульный принцип построения компьютера

Вспомним информацию, полученную на предыдущих занятиях:

Компьютер – это электронное устройство, предназначенное для работы с информацией, а именно введение, обработку, хранение, вывод и передачу информации. Кроме того, ПК представляет собой единое двух сущностей – аппаратной и программной частей.

Архитектура компьютера - это описание его логической организации, ресурсов и принципов функционирования его структурных элементов. Включает основные устройства ЭВМ и структуру связей между ними.

Обычно, описывая архитектуру ЭВМ, особое внимание уделяют тем принципам ее организации, которые характерны для большинства машин, относящихся к описываемому семейству, а также оказывающие влияние на возможности программирования.

В основу архитектуры современных компьютеров положены принципы Джона фон Неймана и магистрально-модульный принцип.

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

По сути, Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципиально новое.

Принципы фон Неймана

1. Использование двоичной системы счисления в вычислительных машинах . Преимущество перед десятичной системой счисления заключается в том, что устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.


2. Программное управление ЭВМ . Работа ЭВМ контролируется программой, состоящей из набора команд. Команды выполняются последовательно друг за другом. Созданием машины с хранимой в памяти программой было положено начало тому, что мы сегодня называем программированием.

3. Память компьютера используется не только для хранения данных, но и программ . При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.

4. Ячейки памяти ЭВМ имеют адреса, которые последовательно пронумерованы . В любой момент можно обратиться к любой ячейке памяти по ее адресу. Этот принцип открыл возможность использовать переменные в программировании.

5. Возможность условного перехода в процессе выполнения программы . Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода.

6. Наличие устройств ввода и вывода информации . Именно эти устройства являются базовыми и достаточными для работы компьютера на пользовательском уровне.

7. Принцип открытой архитектуры – правила построения компьютера, в соответствии с которыми каждый новый блок должен быть совместим со старым и легко устанавливаться в том же месте в компьютере. В компьютере столь же легко можно заменить старые блоки на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но и становится более производительной. Этот принцип позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а также приобретать и устанавливать новые блоки. Причем во всех разъемы для их подключения являются стандартными и не требуют никаких изменений в самой конструкции компьютера.

Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой.

Компьютер не является неделимым, цельным объектом. Он состоит из некоторого количества устройств – модулей. (Комплектовать свой компьютер из этих модулей пользователь может по собственному желанию). Для каждого устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером. некоторые контроллеры могут управлять сразу несколькими устройствами. Все контроллеры и адаптеры взаимодействуют с процессором и оперативной памятью через системную магистраль (набор электронных линий. Шина - это кабель, состоящий из множества проводов.

Магистраль обеспечивает обмен данными между устройствами компьютера.

Магистраль состоит из трех частей:

1. Шина адреса, на которой устанавливается адрес требуемой ячейки памяти или устройства, с которым будет происходить обмен информацией.

2. Шина данных , по которой будет передаваться необходимая информация.

3. Шина управления , регулирующая этот процесс. (по шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Эти сигналы показывают – какую операцию следует производить).

Для того, чтобы компьютер функционировал правильно, необходимо, чтобы все его устройства работали дружно, «понимали» друг друга и «не конфликтовали». Это обеспечивается благодаря одинаковому интерфейсу, который имеют все устройства компьютера.
Интерфейс – это средство сопряжения двух устройств, в котором все физические и логические параметры согласуются между собой.

Так как обмен данными между устройствами происходит через магистраль, то для согласования интерфейсов все внешние устройства подключаются в шине не напрямую, а через свои контроллеры (адаптеры) и порты.

Порты бывают последовательные и параллельные. К последовательным портам присоединяют медленно действующие или удаленные устройства (мышь, модем), а к параллельным более быстрые (сканер, принтер). Клавиатура и монитор подсоединяется к специализированным портам.

Для того, чтобы по ошибке или незнанию не подключить устройство к чужому порту, каждое устройство имеет индивидуальную форму штекера, не подходящую к «чужому» разъему.

Информация, представленная в цифровой форме и обрабатываемая на компьютере, называется данными .

Последовательность команд, которую выполняет компьютер в процессе обработки данных, называется программой .

Обработка данных на компьютере:

1. Пользователь запускает программу, хранящуюся в долговременной памяти, она загружается в оперативную и начинает выполняться.

2. Выполнение: процессор считывает команды и выполняет их. Необходимые данные загружаются в оперативную память из долговременной памяти или вводятся с помощью устройств ввода.

3. Выходные (полученные) данные записываются процессором в оперативную или долговременную память, а также предоставляются пользователю с помощью устройств вывода информации.

Для обеспечения информационного обмена между различными устройствами должна быть предусмотрена какая-то магистраль для перемещения потоков информации.

Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии. К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины данных можно отнести следующие: запись/чтение данных из оперативной памяти, запись/чтение данных из внешней памяти, чтение данных с устройства ввода, пересылка данных на устройство вывода.

Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении - от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса.

Количество адресуемых ячеек памяти можно рассчитать по формуле:

N=2 I , где I – разрядность шины адреса.

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

2 16 = 64 Кб

2 20 = 1 Мб

2 24 = 16 Мб

2 32 = 4 Гб

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Каждая отдельная функция компьютера реализуется одним или несколькими модулями – конструктивно и функционально законченных электронных блоков в стандартном исполнении. Организация структуры компьютера на модульной основе аналогична строительству блочного дома.

Магистрально-модульный принцип имеет ряд достоинств:

1. для работы с внешними устройствами используются те же команды процессора, что и для работы с памятью.

2. подключение к магистрали дополнительных устройств не требует изменений в уже существующих устройствах, процессоре, памяти.

3. меняя состав модулей можно изменять мощность и назначение компьютера в процессе его эксплуатации.

Такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти.

Энциклопедичный YouTube

  • 1 / 5

    Основы учения об архитектуре вычислительных машин заложил фон Нейман в 1944 году, когда подключился к созданию первого в мире лампового компьютера ЭНИАК . В процессе работы над ЭНИАКом в в Пенсильванском Университете во время многочисленных дискуссий со своими коллегами Джоном Уильямом Мокли , Джоном Экертом , Германом Голдстайном и Артуром Бёрксом, возникла идея более совершенной машины под названием EDVAC . Исследовательская работа над EDVAC продолжалась параллельно с конструированием ЭНИАКа.

    В марте 1945 года принципы логической архитектуры были оформлены в документе, который назывался «Первый проект отчёта о EDVAC » - отчет для Баллистической Лаборатории Армии США, на чьи деньги осуществлялась постройка ЭНИАКа и разработка EDVACа . Отчет, поскольку он являлся всего лишь наброском, не предназначался для публикации, а только для распространения внутри группы, однако Герман Голдстайн - куратор проекта со стороны Армии США - размножил эту научную работу и разослал её широкому кругу ученых для ознакомления. Так как на первой странице документа стояло только имя фон Неймана , у читавших документ сложилось ложное впечатление, что автором всех идей, изложенных в работе, является именно он. Документ давал достаточно информации для того, чтобы читавшие его могли построить свои компьютеры, подобные EDVACу на тех же принципах и с той же архитектурой, которая в результате стала называться «архитектурой фон Неймана».

    После завершения Второй Мировой войны и окончания работ над ЭНИАКом в феврале 1946 года команда инженеров и ученых распалась, Джон Мокли , Джон Экерт решили обратиться в бизнес и создавать компьютеры на коммерческой основе. Фон Нейман, Голдстайн и Бёркс перешли в , где решили создать свой компьютер «IAS-машина », подобный EDVACу , и использовать его для научно-исследовательской работы. В июне 1946 года они изложили свои принципы построения вычислительных машин в ставшей классической статье «Предварительное рассмотрение логической конструкции электронно-вычислительного устройства» . С тех пор прошло более полувека, но выдвинутые в ней положения сохраняют свою актуальность и сегодня. В статье убедительно обосновывается использование двоичной системы для представления чисел, а ведь ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде. Авторы продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

    Помимо машин, работавших с двоичным кодом, существовали и существуют троичные машины . Троичные компьютеры имеют ряд преимуществ и недостатков перед двоичными. Среди преимуществ можно выделить быстродействие (операции сложения выполняются примерно в полтора раза быстрее), наличие двоичной и троичной логики, симметричное представление целых чисел со знаком (в двоичной логике либо будут иметь место два нуля (положительный и отрицательный), либо будет иметь место число, которому нет пары с противоположным знаком). К недостаткам - более сложная реализация по сравнению с двоичными машинами.

    Ещё одной революционной идеей, значение которой трудно переоценить, является принцип «хранимой программы». Первоначально программа задавалась путём установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ЭНИАК требовалось несколько дней, в то время как собственно расчет не мог продолжаться более нескольких минут - выходили из строя лампы, которых было огромное количество. Однако программа может также храниться в виде набора нулей и единиц, причём в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

    Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы , в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но почти невозможно применить для обработки текста и компьютерных игр , для просмотра графических изображений или видео . Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации , перекоммутации и перестройки блоков и устройств и т. п.

    Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций , и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

    Принципы фон Неймана

    Принцип однородности памяти Принципиальное отличие архитектуры "фон Неймана" (принстонской) от "Гарвардской ". Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования; то есть одно и то же значение в ячейке памяти может использоваться и как данные, и как команда, и как адрес в зависимости лишь от способа обращения к нему. Это позволяет производить над командами те же операции, что и над числами, и, соответственно, открывает ряд возможностей. Так, циклически изменяя адресную часть команды, можно обеспечить обращение к последовательным элементам массива данных. Такой прием носит название модификации команд и с позиций современного программирования не приветствуется. Более полезным является другое следствие принципа однородности, когда команды одной программы могут быть получены как результат исполнения другой программы. Эта возможность лежит в основе трансляции - перевода текста программы с языка высокого уровня на язык конкретной вычислительной машины. Принцип адресности Структурно основная память состоит из пронумерованных ячеек, причём процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек - адреса. Принцип программного управления Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов - команд. Каждая команда предписывает некоторую операцию из набора операций, реализуемых вычислительной машиной. Команды программы хранятся в последовательных ячейках памяти вычислительной машины и выполняются в естественной последовательности, то есть в порядке их положения в программе. При необходимости, с помощью специальных команд, эта последовательность может быть изменена. Решение об изменении порядка выполнения команд программы принимается либо на основании анализа результатов предшествующих вычислений, либо безусловно. Принцип двоичного кодирования Согласно этому принципу, вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. Каждый тип информации представляется двоичной последовательностью и имеет свой формат. Последовательность битов в формате, имеющая определенный смысл, называется полем. В числовой информации обычно выделяют поле знака и поле значащих разрядов. В формате команды в простейшем случае можно выделить два поля: поле кода операции и поле адресов.

    Компьютеры, построенные на принципах фон Неймана

    По плану, первым компьютером, построенным по архитектуре фон Неймана, должен был стать EDVAC (Electronic Discrete Variable Automatic Computer) - одна из первых электронных вычислительных машин. В отличие от своего предшественника ЭНИАКа, это был компьютер на двоичной, а не десятичной основе. Как и ЭНИАК, EDVAC был разработан в Институте Мура Пенсильванского Университета для Лаборатории баллистических исследований (англ.) Армии США командой инженеров и учёных во главе с Джоном Преспером Экертом (англ.) и Джоном Уильямом Мокли при активной помощи математика], однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, ознакомившись с ЭНИАКом и проектом EDVAC, сумели решить эти проблемы гораздо раньше. Первыми компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

    1. прототип - Манчестерская малая экспериментальная машина - Манчестерский университет , Великобритания, 21 июня 1948 года;
    2. EDSAC - Кембриджский университет , Великобритания, 6 мая 1949 года;
    3. Манчестерский Марк I - Манчестерский университет , Великобритания, 1949 год;
    4. BINAC - США, апрель или август 1949 года;
    5. CSIR Mk 1
    6. EDVAC - США, август 1949 года - фактически запущен в 1952 году;
    7. CSIRAC - Австралия, ноябрь 1949 года;
    8. SEAC - США, 9 мая 1950 года;
    9. ORDVAC - США, ноябрь 1951 года;
    10. IAS-машина - США, 10 июня 1952 года;
    11. MANIAC I - США, март 1952 года;
    12. AVIDAC - США, 28 января 1953 года;
    13. ORACLE - США, конец 1953 года;
    14. WEIZAC - Израиль, 1955 год;
    15. SILLIAC - Австралия, 4 июля 1956 года.

    В СССР первой полностью электронной вычислительной машиной, близкой к принципам фон Неймана, стала МЭСМ , построенная Лебедевым (на базе киевского Института электротехники АН УССР), прошедшая государственные приемочные испытания в декабре 1951 года.

    Узкое место архитектуры фон Неймана

    Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти. Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность канала "процессор-память" и скорость работы памяти существенно ограничивают скорость работы процессора - гораздо сильнее, чем если бы программы и данные хранились в разных местах. Так как скорость процессора и объём памяти увеличивались гораздо быстрее, чем пропускная способность между ними, узкое место стало большой проблемой, серьёзность которой возрастает с каждым новым поколением процессоров [ ] ; данная проблема решается совершенствованием систем кэширования, а это порождает множество новых проблем [каких? ] .

    Термин «узкое место архитектуры фон Неймана» ввел Джон Бэкус в 1977 в своей лекции «Можно ли освободить программирование от стиля фон Неймана?», которую он прочитал при вручении ему Премии Тьюринга

    Ученые из США и Италии в 2015 заявили о создании прототипа мем-процессора (английское memprocessor) с отличной от фон-неймановской архитектурой и возможности его использования для решения -полных задач .

    См. также

    Литература

    • Herman H. Goldstine. The Computer from Pascal to von Neumann . - Princeton University Press, 1980. - 365 p. - ISBN 9780691023670 . (англ.)
    • William Aspray. John von Neumann and the Origins of Modern Computing . - MIT Press, 1990. - 394 p. - ISBN 0262011212 . (англ.)
    • Scott McCartney. ENIAC: The Triumphs and Tragedies of the World"s First Computer . - Berkley Books, 2001. - 262 p. -

    В каждой области науки и техники существуют некоторые фундаментальные идеи или принципы, которые определяют ее содержание и развитие. В компьютерной науке роль таких фундаментальных идей сыграли принципы, сформулированные независимо друг от друга - американским математиком и физиком Джоном фон Нейманом(1903-1957) и советским ученым Сергеем Лебедевым(1902-1974). Эти принципы определяют основные организации компьютера.

    Считается, что первый электронный компьютер ЭНИАК был изготовлен в США в 1946 году. ЭНИАК состоял из 18000 электронных ламп и 1500 реле и весил 30 тонн. Он и мел 20 регистров, каждый из которых мог содержать 10-разрядное десятичное число.Блестящий анализ сильных и слабых сторон проекта ЭНИАК был дан в отчете Принстонского института перспективных исследований «Предварительное обсуждение логического конструирование электронного вычислительного устройства» (июнь 1946 года). Этот отчет, составленный выдающимся американским математиком Джоном фон Нейманом и его коллегами по Принстонскому институту Г.Голдстайном и А.Берксом, представлял проект нового электронного компьютера. Идеи, высказанные в этом отчете, известны под названием «Неймановских Принципов».

    Говоря об основоположниках теоретической информатики, нельзя не упомянуть о двух научных достижениях: алгебре логики и теории алгоритмов. Алгебра логики была разработана в середине 19-го века английским математиком Джорджем Булем и рассматривалась им в качестве метода математизации формальной логики. Разработка электронных компьютеров на двухпозиционных электронных элементах создала возможным широкое использование «булевой логики» для проектирования компьютерных схем. В первой половине 30-х годов 20-гостолетия появились математические работы, в которых была доказана принципиальная возможность решения с помощью автоматов любой проблемы, поддающейся алгоритмический обработке. Данное доказательство содержалось в опубликованных в 1936 году работах английского математика Э.Поста. (Джордж Буль (1815-1864), Алан Тьюринг (1912-1954)).

    В Советском Союзе работы по созданию электронных компьютеров были начаты несколько позже. Первый советский электронный компьютер был изготовлен в Киеве в 1953 году. Он назывался МЭСМ (малая электронная вычислительная машина), а его главным конструктором был академик Сергей Лебедев, автор проектов компьютеров серии БЭСМ (большая электронная счетная машина). В проекте МЭСМ Сергей Лебедев независимо от Неймана пришел к тем же идеям конструирования электронных компьютеров, что и Нейман.

    Сущность «Неймановских Принципов» состояла в следующем:

    1.Компьютер включает связанные между собой Процессор (арифметическое устройство т устройство управления), Память и Устройство ввода-вывода.

    2.Компьютеры на электронных элементах должны работать не в десятичной, а в двоичной системе счисления.

    3.Программа, так же как и числа, с которыми оперирует компьютер, записываются в двоичном коде, то есть по форме представления команды и числа однотипны.

    4.Программа должна размещаться в одном из блоков компьютера - в запоминающем устройстве, которое имеет произвольный доступ. Программа и данные могут находиться в общей памяти (принстонская архитектура).

    5.Трудности физической реализации запоминающего устройства большого быстродействия, энергонезависимого и большой памяти требуют иерархической организации памяти. Программа выполняется из основной памяти, а сохраняется в энергонезависимой вторичной памяти (магнитных дисках). Файл - идентификационная совокупность экземпляровполностью описанного в конкретной программе типа данных, находящихся вне программыво внешней памяти и доступных программе посредством специальных операций.

    6. Арифметико-логическое устройство (АЛУ) компьютера конструируется на основе схем, выполняющих операцию сложения, сдвига, логическую операцию. Помимо результата операции, АЛУ формирует ряд признаков результата (флагов) , которые могут анализироваться при выполнении команда условной передачи управления.

    Архитектура ЭВМ и принципы фон Неймана

    Термин «архитектура» используется для описания принципа действия, конфигурации и взаимного соединения основных логических узлов ЭВМ. Архитектура – это многоуровневая иерархия аппаратно-программных средств, из которых строится ЭВМ.

    Основы учения об архитектуре ЭВМ заложил выдающийся американский математик Джон фон Нейман. Первая ЭВМ "Эниак" была создана в США в 1946 г. В группу создателей входил фон Нейман , который и предложил основные принципы построения ЭВМ : переход к двоичной системе счисления для представления информации и принцип хранимой программы.

    Программу вычислений предлагалось помещать в запоминающем устройстве ЭВМ, что обеспечивало бы автоматический режим выполнения команд и, как следствие, увеличение быстродействия ЭВМ. (Напомним, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде, а программы задавались путём установки перемычек на специальной коммутационной панели.) Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причём в той же памяти, что и обрабатываемые ею числа.

    Основные принципы построения ЭВМ :

    1. Любую ЭВМ образуют три основных компонента: процессор, память и устр. ввода-вывода (УВВ).

    2. Информация, с которой работает ЭВМ, делится на два типа:

      набор команд по обработке (программы); данные подлежащие обработке.

    3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы .

    4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

    5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

    Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил структуру, которая воспроизводилась в течение первых двух поколений ЭВМ.

    Внешнее запоминающее устройство (ВЗУ)

    Рис. 1. Архитектура ЭВМ Конец формы,

    Оперативное запоминающее устройство (ОЗУ)

    построенной на принципах

    фон Неймана

    - направление потоков информации; - направление управляющих сигналов от процессора к остальным узлам ЭВМ

    Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон Неймановской архитектуры». Подавляющее большинство ВМ на сегодняшний день – фон-неймановские машины .

    Появление третьего поколения ЭВМ было обусловлено переходом от транзисторов к интегральным микросхемам, что привело к росту быстродействия процессора. Теперь процессор был вынужден простаивать, ожидая информации от более медленных устройств ввода-вывода, и это снижало эффективность работы всей ЭВМ в целом. Для решения этой проблемы были созданы специальные схемы управления работой внешних устройств, или просто контроллеры .

    Архитектура современных персональных компьютеров основана на магистрально-модульном принципе . Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль).

    Шина - это кабель, состоящий из множества проводников. По одной группе проводников - шине данных передаётся обрабатываемая информация, по другой - шине адреса - адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали - шина управления , по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

    Как работает системная шина? Мы уже говорили, что единичные и нулевые биты существуют только в головах программистов. Для процессора реальны только напряжения на его контактах. Каждый контакт соответствует одному биту, и процессору нужно различать только две градации напряжения: есть-нет, высокое-низкое. Поэтому адрес для процессора – это последовательность напряжений на специальных контактах, называемых шиной адреса. Можно представить себе, то после того, как на контактах шины адреса выставляются напряжения, на контактах шины данных появляются напряжения, кодирующие хранящееся по указанному адресу число. Эта картина очень грубая, потому что для извлечения данных из памяти необходимо время. Чтобы не запутаться, работой процессора управляет специальный тактовый генератор. Он вырабатывает импульсы, которые делят работу процессора на отдельные шажки. Единицей времени процессора служит один такт, т. е. промежуток между двумя импульсами тактового генератора.

    Напряжения, появляющиеся на шине адреса процессора, называются физическим адресом. В реальном режиме процессор работает только с физическими адресами. Наоборот, защищённый режим процессора интересен тем, что программа работает с логическими адресами, а процессор незримо преобразует их в физические. Система Windows использует защищённый режим работы процессора. Современные ОС и программы требуют столько памяти, что защищённый режим работы процессора стал гораздо «реальнее» его реального режима.

    Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины . Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

    Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом , передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

    Рис. 2. Схема устройства компьютера, построенного по магистральному принципу

    В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию.

    Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться другими.

    Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок - контроллер (другие названия - адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы - слоты .

    Программное управление работой периферийного устройства производится через программу - драйвер , которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

    Связь компьютера с внешними устройствами осуществляется через порты – специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM – порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT - порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!