Энциклопедия мобильной связи

Двоичное кодирование графической информации. Двоичный код восьмицветной палитры

Биты в таком коде распределены по принципу «КЗС», т. е. первый бит отвечает за красную составляющую, второй - за зеленую, третий - за синюю. По этой теме ученики должны уметь отвечать на вопросы такого типа:

Смешиванием каких цветов получается розовый цвет?

Известно, что коричневый цвет получается смешиванием красного и зеленого цветов. Какой код у коричневого цвета?

При программировании цветных изображений принято каждому цвету ставить в соответствие десятичный номер. Получить номер цвета очень просто. Для этого его двоичный код, рассматривая как целое двоичное число, следует перевести в десятичную систему счисления. Тогда, согласно табл. 9.1, номер черного цвета - 0, синего - 1, зеленого - 2 и т.д. Белый цвет имеет номер 7. Полезными, с точки зрения закрепления знаний двоичной системы счисления, являются вопросы такого рода:

Не глядя в таблицу, назвать десятичный номер красного цвета.

Только после того, как ученики разобрались с 8-цветной палитрой, можно переходить к рассмотрению кодирования большего числа цветов. Таблица кодов 16-цветной палитры приведена в учебнике . Это те же восемь цветов, но имеющие два уровня яркости. Управляет яркостью дополнительный четвертый бит - бит интенсивности. В структуре 16-цветного кода «ИКЗС» И - бит интенсивности. Например, если в 8-цветной палитре код 100 обозначает красный цвет, то в 16-цветной палитре: 0100 - красный, 1100 - ярко-красный цвет; ОНО - коричневый, 1110 - ярко-коричневый (желтый).

Палитры большего размера получаются путем раздельного управления интенсивностью каждого из трех базовых цветов. Для этого в коде цвета под каждый базовый цвет выделяется более одного бита. Например, структура восьмибитового кода для палитры из 256 цветов такая: «КККЗЗЗСС», т.е. по 3 бита кодируют красную и зеленую составляющие и 2 бита - синюю. В результате полученная величина - это объем видеопамяти, необходимый для хранения одного кадра, одной страницы изображения. Практически всегда в современных компьютерах в видеопамяти помещается одновременно несколько страниц изображения.

При векторном подходе изображение рассматривается как совокупность простых элементов: прямых линий, дуг, окружностей, эллипсов, прямоугольников, закрасок и пр., которые называются графическими примитивами. Графическая информация - это данные, однозначно определяющие все графические примитивы, составляющие рисунок.

связанных с экраном. Обычно начало координат расположено в верхнем левом углу экрана. Сетка пикселей совпадает с координатной сеткой. Горизонтальная ось X направлена слева направо; вертикальная ось Y - сверху вниз.

Отрезок прямой линии однозначно определяется указанием координат его концов; окружность - координатами центра и радиусом; многоугольник - координатами его углов, закрашенная область - граничной линией и цветом закраски и пр. Подробнее о векторной графике см. учебник , а также .

Векторный формат изображения создается в результате использования графических редакторов векторного типа, например CorelDraw. Получаемая таким образом информация сохраняется в графических файлах векторного типа. Графические файлы растровых типов получаются при работе с растровыми графическими редакторами (Paint, Adobe Photoshop), а также в результате сканирования изображений. Следует понимать, что различие в представлении графической информации в растровом и векторном форматах существует лишь для графических файлов. При выводе красная и синяя составляющие имеют по 8 (2 3) уровней интенсивности, а синяя - 4 (2 2). Всего: 8x8x4 = 256 цветов.

Связь между разрядностью кода цвета - b и количеством цветов - ^(размером палитры) выражается формулой: К= 2 Ь. В литературе по компьютерной графике величину b принято называть битовой глубиной цвета. Так называемая естественная палитра цветов получается при b = 24. Для такой битовой глубины палитра включает более 16 миллионов цветов.

При изучении данной темы следует раскрыть связь между величинами битовой глубины, разрешающей способностью графической сетки (размером растра) и объемом видеопамяти. Если обозначить минимальный объем видеопамяти в битах через Vm, разрешающую способность дисплея - M´Nточек по горизонтали и N точек по вертикали), то связь между ними выразится формулой:

Полученная величина – это объм видеопамяти, необъодимый для хранения одного кадра, одной страницы изображения. Практически всегда в современных компьютерах в видеопамяти помещается одновременно несколько страниц изображения.

При векторном подходе изображение рассматривается как совокупность простых элементов: прямых линий, дуг, окружностей, эллипсов, прямоугольников, закрасок и т.д., которые называются графическими примитивами . Графическая информация – это данные, однозначно определяющие все графические примитивы, составляющие рисунок.

Положение и форма графических примитивов задаются в системе графических координат, связанных с экраном. Обычно начало координат расположено в верхнем левом углу экрана. Сетка пикселей совпадает с координатной сеткой. Горизонтальная ось Х направлена слева направо; вертикальная ось Y – сверху вниз.

Отрезок прямой линии, однозначно определяется указанием координат его концов; окружность – координатами центра и радиусом; многоугольник – координатами его углов; закрашенная область – граничной линией и цветом закраси и пр. Подробнее о векторной графике см. учебник , а также .

Векторный формат изображения создается в рнезультате использования графических редакторов векторного типа, например, CorelDraw. Получаемая таким образом информация сохраняется в графических файлах векторного типа. Графические файлы растровых типов получаются при работе с растровыми графическими редакторами (Paint, Adobe Photoshop), а также в результате сканирования изображений. Следует понимать, что различие в представлении графической информации в растровом и векторном форматах существует лишь для графических файлов. При выводе на экран любого изображения, в видеопамяти формируется информация растрового типа, содержащая сведения о цвете каждого пикселя.

Представление звука. Современные компьютеры «умеют» сохранять и воспроизводить звук (речь, музыку и пр.). Звук, как и любая другая информация, представляется в памяти ЭВМ в форме двоичного кода.

В существующих учебниках по базовому курсу информатики тема представления звука в компьютере практически не освещена (этот материал имеется в некоторых пособиях для профильных курсов). В то же время в требования обязательного минимума стали включаться вопросы технологии мультимедиа. Как известно, звук является обязательной компонентой мультимедиа-продуктов. Поэтому дальнейшее развитие базового курса потребует включения в него темы представления звука. Кратко обсудим этот вопрос.

Основной принцип кодирования звука, как и кодирования изображения, выражается словом «дискретизация».

При кодировании изображения дискретизация - это разбиение рисунка на конечное число одноцветных элементов - пикселей. И чем меньше эти элементы, тем меньше наше зрение замечает дискретность рисунка.

Физическая природа звука - это колебания в определенном диапазоне частот, передаваемые звуковой волной через воздух (или другую упругую среду). Процесс преобразования звуковых волн в двоичный код в памяти компьютера:

Аудиоадаптер (звуковая плата) - специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера: частотой дискретизации и разрядностью.

Частота дискретизации - это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за 1 секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду - 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров: 11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра - число бит в регистре аудиоадаптера. Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16), то при измерении входного сигнала может быть получено 2 s = 256 (2 16 = 65536) различных значений. Очевидно, 16-разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный.

Звуковой файл - файл, хранящий звуковую информацию в числовой двоичной форме. Как правило, информация в звуковых файлах подвергается сжатию.

Пример. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен.

Решение. Формула для расчета размера (в байтах) цифрового аудиофайла (монофоническое звучание): (частота дискретизации в Гц) х (время записи в сек) х (разрешение в битах)/8.

Таким образом, размер файла вычисляется так: 22050´10´8/8 = 220500 байт.

Какие сложности у вас возникли? Как их можно преодолеть?

2. Постройте черно-белый рисунок шириной 8 пикселей, закодированный шестнадцатеричной последовательностью 2466FF6624 16 .

3. Постройте черно-белый рисунок шириной 5 пикселей, закодированный шестнадцатеричной последовательностью 3A53F88 16 .

4. Рисунок размером 10×15 см кодируется с разрешением 300 ppi. Оцените количество пикселей в этом рисунке. (Ответ: около 2 мегапикселей)

5. Постройте шестнадцатеричный код для цветов, имеющих RGB-коды (100,200,200), (30,50,200), (60,180, 20), (220, 150, 30). (Ответ: #64C8C8, #1E32C8, #3CB414, #DC961E)

6. Как бы вы назвали цвет, заданный на веб-странице в виде кода: #CCCCCC, #FFCCCC, #CCCCFF, #000066, #FF66FF, #CCFFFF, #992299, #999900, #99FF99? Найдите десятичные значения составляющих RGB- кода. (Ответ: (204,204,204), (255,204,204), (204,204,255), (0,0,102), (255.255,102), (104,255,255), (153,34,153), (153,153,0), (153,255,153))

7. Что такое глубина цвета? Как связаны глубина цвета и объем файла?

8. Какова глубина цвета, если в рисунке используется 65536 цветов? 256 цветов? 16 цветов? (Ответ: 16 бит; 8 бит; 4 бита)

9. Для желтого цвета найдите красную, зеленую и синюю составляющие при 12-битном кодировании. (Ответ: R=G=15, B=0)

10. Сколько места занимает палитра в файле, где используются 64 цвета? 128 цветов?

11. Сколько байт будет занимать код рисунка размером 40×50 пикселей в режиме истинного цвета? при кодировании с палитрой 256 цветов? при кодировании с палитрой 16 цветов? в черно-белом варианте (два цвета)? (Ответ: 6000, 2000, 1000, 250)

12. Сколько байт будет занимать код рисунка размером 80×100 пикселей в кодировании с глубиной цвета 12 бит на пиксель? (Ответ: 12000)

13. Для хранения растрового изображения размером 32×32 пикселя отвели 512 байтов памяти. Каково максимально возможное число цветов в палитре изображения? (Ответ: 16)

14. Для хранения растрового изображения размером 128 x 128 пикселей отвели 4 килобайта памяти. Каково максимально возможное число цветов в палитре изображения? (Ответ: 4)

15. В процессе преобразования растрового графического файла количество цветов уменьшилось с 1024 до 32. Во сколько раз уменьшился информационный объем файла? (Ответ: в 2 раза)

16. В процессе преобразования растрового графического файла количество цветов уменьшилось с 512 до 8. Во сколько раз уменьшился информационный объем файла?(Ответ: в 3 раза)

17. Разрешение экрана монитора – 1024 х 768 точек, глубина цвета – 16 бит. Каков необходимый объем видеопамяти для данного графического режима? (Ответ: 1,5 Мбайт)

18. После преобразования растрового 256-цветного графического файла в черно- белый формат (2 цвета) его размер уменьшился на 70 байт. Каков был размер исходного файла? (Ответ: 80 байт)

19. Сколько памяти нужно для хранения 64-цветного растрового графического изображения размером 32 на 128 точек? (Ответ: 3 Кбайта)

20. Какова ширина (в пикселях) прямоугольного 64-цветного неупакованного растрового изображения, занимающего на диске 1,5 Мбайт, если его высота вдвое меньше ширины? (Ответ: 2048)

21. Какова ширина (в пикселях) прямоугольного 16-цветного неупакованного растрового изображения, занимающего на диске 1 Мбайт, если его высота вдвое больше ширины? (Ответ: 1024)

В этом параграфе обсудим способы компьютерного кодирования текстовой, графической и звуковой информации. С текстовой и графической информацией конструкторы «научили» работать ЭВМ, начиная с третьего поколения (1970-е годы). А работу со звуком «освоили» лишь машины четвертого поколения, современные персональные компьютеры. С этого момента началось распространение технологии мультимедиа.

Что принципиально нового появлялось в устройстве компьютеров с освоением ими новых видов информации? Главным образом, это периферийные устройства для ввода и вывода текстов, графики, видео, звука. Процессор же и оперативная память по своим функциям изменились мало. Существенно возросло их быстродействие, объем памяти. Но как это было на первых поколениях ЭВМ, так и осталось на современных ПК - основным навыком процессора в обработке данных является умение выполнять вычисления с двоичными числами. Обработка текста, графики и звука представляет собой тоже обработку числовых данных. Если сказать еще точнее, то это обработка целых чисел . По этой причине компьютерные технологии называют цифровыми технологиями .

О том, как текст, графика и звук сводятся к целым числам, будет рассказано дальше. Предварительно отметим, что здесь мы снова встретимся с главной формулой информатики:

Смысл входящих в нее величин здесь следующий: i - разрядность ячейки памяти (в битах), N - количество различных целых положительных чисел, которые можно записать в эту ячейку.

Текстовая информация

Принципиально важно, что текстовая информация уже дискретна - состоит из отдельных знаков. Поэтому возникает лишь технический вопрос - как разместить ее в памяти компьютера.

Напомним о байтовом принципе организации памяти компьютеров, обсуждавшемся в курсе информатики основной школы. Вернемся к рис. 1.5. Каждая клеточка на нем обозначает бит памяти. Восемь подряд расположенных битов образуют байт памяти. Байты пронумерованы. Порядковый номер байта определяет его адрес в памяти компьютера. Именно по адресам процессор обращается к данным, читая или записывая их в память (рис. 1.10).

Модель представления текста в памяти весьма проста. За каждой буквой алфавита, цифрой, знаком препинания и иным общепринятым при записи текста символом закрепляется определенный двоичный код, длина которого фиксирована. В популярных системах кодировки (Windows-1251, KOI8 и др.) каждый символ заменяется на 8-разрядное целое положительное двоичное число; оно хранится в одном байте памяти. Это число является порядковым номером символа в кодовой таблице. Согласно главной формуле информатики, определяем, что размер алфавита, который можно закодировать, равен: 2 8 = 256. Этого количества вполне достаточно для размещения двух алфавитов естественных языков (английского и русского) и всех необходимых дополнительных символов.

Поскольку в мире много языков и много алфавитов, постепенно совершается переход на международную систему кодировки Unicode, в которой используются многобайтовые коды. Например, если код символа занимает 2 байта, то с его помощью можно закодировать 2 16 = 65 536 различных символов.

При работе с электронной почтой почтовая программа иногда нас спрашивает, не хотим ли мы прибегнуть к кодировке Unicode для пересылаемых сообщений. Таким способом можно избежать проблемы несоответствия кодировок, из-за которой иногда не удается прочитать русский текст.

Текстовый документ, хранящийся в памяти компьютера, состоит не только из кодов символьного алфавита. В нем также содержатся коды, управляющие форматами текста при его отображении на мониторе или на печати: тип и размер шрифта, положение строк, поля и отступы и пр. Кроме того, текстовые процессоры (например, Microsoft Word) позволяют включать в документ и редактировать такие «нелинейные» объекты, как таблицы, оглавления, ссылки и гиперссылки, историю вносимых изменений и т. д. Всё это также представляется в виде последовательности байтовых кодов.

Графическая информация

Из курса информатики 7 - 9 классов вы знакомы с общими принципами компьютерной графики, с графическими технологиями. Здесь мы немного подробнее, чем это делалось раньше, рассмотрим способы представления графических изображений в памяти компьютера.

Принцип дискретности компьютерных данных справедлив и для графики. Здесь можно говорить о дискретном представлении изображения (рисунка, фотографии, видеокадров) и дискретности цвета.

Дискретное представление изображения

Изображение на экране монитора дискретно. Оно составляется из отдельных точек, которые называются пикселями (picture elements - элементы рисунка). Это связано с техническими особенностями устройства экрана, независимо от его физической реализации, будь то монитор на электронно-лучевой трубке, жидкокристаллический или плазменный. Эти «точки» столь близки друг другу, что глаз не различает промежутков между ними, поэтому изображение воспринимается как непрерывное, сплошное. Если выводимое из компьютера изображение формируется на бумаге (принтером или плоттером), то линии на нем также выглядят непрерывными. Однако в основе все равно лежит печать близких друг к другу точек.

В зависимости от того, на какое графическое разрешение экрана настроена операционная система компьютера, на экране могут размещаться изображения, имеющие размер 800 х 600, 1024 х 768 и более пикселей. Такая прямоугольная матрица пикселей на экране компьютера называется растром .

Качество изображения зависит не только от размера растра, но и от размера экрана монитора, который обычно характеризуется длиной диагонали. Существует параметр разрешения экрана. Этот параметр измеряется в точках на дюйм (по-английски dots per inch - dpi). У монитора с диагональю 15 дюймов размер изображения на экране составляет примерно 28 х 21 см. Зная, что в одном дюйме 25,4 мм, можно рассчитать, что при работе монитора в режиме 800 х 600 пикселей разрешение экранного изображения равно 72 dpi.

При печати на бумаге разрешение должно быть намного выше. Полиграфическая печать полноцветного изображения требует разрешения 200-300 dpi. Стандартный фотоснимок размером 10 х 15 см должен содержать примерно 1000 х 1500 пикселей.

Дискретное представление цвета

Восстановим ваши знания о кодировании цвета, полученные из курса информатики основной школы. Основное правило звучит так: любой цвет точки на экране компьютера получается путем смешивания трех базовых цветов: красного, зеленого, синего. Этот принцип называется цветовой моделью RGB (Red, Green, Blue).

Двоичный код цвета определяет, в каком соотношении находятся интенсивности трех базовых цветов. Если все они смешиваются в одинаковых долях, то в итоге получается белый цвет. Если все три компоненты «выключены», то цвет пикселя - черный. Все остальные цвета лежат между белым и черным.

Дискретность цвета состоит в том, что интенсивности базовых цветов могут принимать конечное число дискретных значений.

Пусть, например, размер кода цвета пикселя равен 8 битам - 1 байту. Между базовыми цветами они могут быть распределены так:

2 бита - под красный цвет, 3 бита - под зеленый и 3 бита - под синий.

Интенсивность красного цвета может принимать 2 2 = 4 значения, интенсивности зеленого и синего цветов - по 2 3 = 8 значений. Полное число цветов, которые кодируются 8-разрядными кодами, равно: 4 - 8 - 8 = 256 = 2 8 . Снова работает главная формула информатики.

Из описанного правила, в частности, следует:

Обобщение этих частных примеров приводит к следующему правилу. Если размер кода цвета равен b битов, то количество цветов (размер палитры) вычисляется по формуле:

Величину b в компьютерной графике называют битовой глубиной цвета .

Еще один пример. Битовая глубина цвета равна 24. Размер палитры будет равен:

К = 2 24 = 16 777 216.

В компьютерной графике используются разные цветовые модели для изображения на экране, получаемого путем излучения света, и изображения на бумаге, формируемого с помощью отражения света. Первую модель мы уже рассмотрели - это модель RGB. Вторая модель носит название CMYK.

Цвет, который мы видим на листе бумаги, - это отражение белого (солнечного) света. Нанесенная на бумагу краска поглощает часть палитры, составляющей белый цвет, а другую часть отражает. Таким образом, нужный цвет на бумаге получают путем «вычитания» из белого света «ненужных красок». Поэтому в цветной полиграфии действует не правило сложения цветов (как на экране компьютера), а правило вычитания. Мы не будем углубляться в механизм такого способа цветообразования.

Расшифруем лишь аббревиатуру CMYK: Cyan - голубой, Magenta - пурпурный, Yellow - желтый, blасk - черный.

Растровая и векторная графика

О двух технологиях компьютерной графики - растровой и векторной - вы знаете из курса информатики основной школы.

В растровой графике графическая информация - это совокупность данных о цвете каждого пикселя на экране. Это то, о чем говорилось выше. В векторной графике графическая информация - это данные, математически описывающие графические примитивы, составляющие рисунок: прямые, дуги, прямоугольники, овалы и пр. Положение и форма графических примитивов представляются в системе экранных координат.

Растровую графику (редакторы растрового типа) применяют при разработке электронных (мультимедийных) и полиграфических изданий. Растровые иллюстрации редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют сканированные иллюстрации, подготовленные художником на бумаге, или фотографии. Для ввода растровых изображений в компьютер применяются цифровые фото- и видеокамеры. Большинство графических редакторов растрового типа в большей мере ориентированы не на создание изображений, а на их обработку.

Достоинство растровой графики - эффективное представление изображений фотографического качества. Основной недостаток растрового способа представления изображения - большой объем занимаемой памяти. Для его сокращения приходится применять различные способы сжатия данных. Другой недостаток растровых изображений связан с искажением изображения при его масштабировании. Поскольку изображение состоит из фиксированного числа точек, увеличение изображения приводит к тому, что эти точки становятся крупнее. Увеличение размера точек растра визуально искажает иллюстрацию и делает ее грубой.

Векторные графические редакторы предназначены в первую очередь для создания иллюстраций и в меньшей степени для их обработки.

Достоинства векторной графики - сравнительно небольшой объем памяти, занимаемой векторными файлами, масштабирование изображения без потери качества. Однако средствами векторной графики проблематично получить высококачественное художественное изображение. Обычно средства векторной графики используют не для создания художественных композиций, а для оформительских, чертежных и проектно-конструкторских работ.

Графическая информация сохраняется в файлах на диске. Существуют разнообразные форматы графических файлов. Они делятся на растровые и векторные. Растровые графические файлы (форматы JPEG, BMP, TIFF и другие) хранят информацию о цвете каждого пикселя изображения на экране. В графических файлах векторного формата (например, WMF, CGM) содержатся описания графических примитивов, составляющих рисунок.

Следует понимать, что графические данные, помещаемые в видеопамять и выводимые на экран, имеют растровый формат вне зависимости от того, с помощью каких программных средств (растровых или векторных) они получены.

Звуковая информация

Принципы дискретизации звука («оцифровки» звука) отражены на рис. 1.11.

Ввод звука в компьютер производится с помощью звукового устройства (микрофона, радио и др.), выход которого подключается к порту звуковой карты . Задача звуковой карты - с определенной частотой производить измерения уровня звукового сигнала (преобразованного в электрические колебания) и результаты измерения записывать в память компьютера. Этот процесс называют оцифровкой звука.

Промежуток времени между двумя измерениями называется периодом измерений - τ с. Обратная величина называется частотой дискретизации - 1/τ (герц). Чем выше частота измерений, тем выше качество цифрового звука.

Результаты таких измерений представляются целыми положительными числами с конечным количеством разрядов. Вы уже знаете, что в таком случае получается дискретное конечное множество значений в ограниченном диапазоне. Размер этого диапазона зависит от разрядности ячейки - регистра памяти звуковой карты. Снова работает формула 2 i , где i - разрядность регистра. Число i называют также разрядностью дискретизации. Записанные данные сохраняются в файлах специальных звуковых форматов.

Существуют программы обработки звука - редакторы звука, позволяющие создавать различные музыкальные эффекты, очищать звук от шумов, согласовывать с изображениями для создания мультимедийных продуктов и т. д. С помощью специальных устройств, генерирующих звук, звуковые файлы могут преобразовываться в звуковые волны, воспринимаемые слухом человека.

При хранении оцифрованного звука приходится решать проблему уменьшения объема звуковых файлов. Для этого кроме кодирования данных без потерь, позволяющего осуществлять стопроцентное восстановление данных из сжатого потока, используется кодирование данных с потерями. Цель такого кодирования - добиться схожести звучания восстановленного сигнала с оригиналом при максимальном сжатии данных. Это достигается путем использования различных алгоритмов, сжимающих оригинальный сигнал путем выкидывания из него слабослышимых элементов. Методов сжатия, а также программ, реализующих эти методы, существует много.

Для сохранения звука без потерь используется универсальный звуковой формат файлов WAV. Наиболее известный формат «сжатого» звука (с потерями) - MP3. Он обеспечивает сжатие данных в 10 раз и более.


Вопросы и задания

1. Когда компьютеры начали работать с текстом, с графикой, со звуком?
2. Что такое таблица кодировки? Какие существуют таблицы кодировки?
3. На чем основывается дискретное представление изображения?
4. Что такое модель цвета RGB?
5. Напишите 8-разрядный код ярко-синего цвета, ярко-желтого (смесь красного с зеленым), бледно-желтого.
6. Почему в полиграфии не используется модель RGB?
7. Что такое CMYK?
8. Какое устройство в компьютере производит оцифровку вводимого звукового сигнала?
9. Как (качественно) качество цифрового звука зависит от частоты дискретизации и разрядности дискретизации?
10. Чем удобен формат MP3?

Практикум

Практическая работа № 1.4 "Представление текстов. Сжатие текстов"

Цель работы: практическое закрепление знаний о представлении в компьютере текстовых данных.

Задание 1

Определить, какие символы кодируются таблицей ASCII (DOS) соответствуют всем прописным буквам русского алфавита в кодировочной таблице ANSI (Windows). Для выполнения задания создать текст с русским алфавитом в Блокноте, а затем открыть его в режиме просмотра (клавиша F3) в любом файловом менеджере (Windows Commander, Far, Total Commander, Norton Commander) и преобразовать в другую кодировку. После выполнения задания заполнить таблицу.

Задание 2

Закодировать текст Happy Birthday to you!! с помощью кодировочной таблицы ASCII

Записать двоичное и шестнадцатеричное представление кода (для записи шестнадцатеричного кода использовать средство для просмотра файлов любого файлового менеджера).

Задание 3

Декодировать текст, записанный в международной кодировочной таблице ASCII (дано десятичное представление).

72 101 108 108 111 44 32 109 121 32 102 114 105 101 110 100 33

Задание 4

Пользуясь таблицей кодировки ASCII, расшифровать текст, представленный в виде двоичных кодов символов.

01010000 01100101 01110010 01101101 00100000 01010101

01101110 01101001 01110110 01100101 01110010 01110011

01101001 01110100 01111001

Задание 5

Пользуясь кодовой страницей Windows-1251 таблицы кодировки ASCII, получить шестнадцатеричный код слова ИНФОРМАТИЗАЦИЯ.

Задание 6

Во сколько раз увеличится объём памяти, необходимый для хранения текста, если его преобразовать из кодировки KOI8-R в кодировку Unicode?

Задание 7

С помощью табличного процессора Excel построить кодировочную таблицу ASCII, в которой символы буду автоматически отображаться на экране в соответствии с их заданным десятичным номером (использовать соответствующую текстовую функцию).

Справочная информация

Алгоритм Хаффмена. Сжатием информации в памяти компьютера называют такое её преобразование, которое ведёт к сокращению объёма ханимаемой памяти при сохранении закодированного содержания. Рассмотрим один из способов сжатия текстовой информации - алгоритм Хаффмена. С помощью этого алгоритма строится двоичное дерево, которое позволяет однозначно декодировать двоичный код, состоящий из символьный кодов различной длины. Двоичным называется дерево, из каждой вершины которого выходят две ветви. На рисунке приведён пример такого дерева, построенный для алфавита английского языка с учётом частоты встречаемости его букв.

Закодируем с помощью данного дерева слово "hello":
0101 100 01111 01111 1110

При размещении этого кода в памяти побитово он примет вид:
010110001111011111110

Таким образом, текст, занимающий в кодировки ASCII 5 байтов, в кодировке Хаффмена займет 3 байта.

Задание 8

Используя метод сжатия Хаффмена, закодируйте следующие слова:
а) administrator
б) revolution
в) economy
г) department

Задание 9

Используя дерево Хаффмена, декодируйте следующие слова:
а) 01110011 11001001 10010110 10010111 100000
б) 00010110 01010110 10011001 01101101 01000100 000

Практическая работа № 1.5 "Представление изображения и звука"

Цель работы: практическое закрепление знаний о представлении в компьютере графических данных и звука.

Справочная информация

В некоторых заданиях используется модельный (учебный) вариант монитора с размером растра 10x10 пикселей.
При векторном подходе изображение рассматривается как совокупность простых элементов: прямых линий, дуг, окружностей, эллипсов,
прямоугольников, закрасок и пр., которые называются графическими примитивами. Графическая информация - это данные, однозначно
определяющие все графические примитивы, составляющие рисунок.
Положение и форма графических примитивов задаются в системе графических координату связанных с экраном. Обычно начало координат
расположено в верхнем левом углу экрана. Сетка пикселей совпадает с координатной сеткой. Горизонтальная ось X направлена слева направо; вертикальная ось У - сверху вниз.
Отрезок прямой линии однозначно определяется указанием координат его концов; окружность - координатами центра и радиусом; многоугольник - координатами его углов, закрашенная область - граничной линией и цветом закраски и пр.

Учебная система векторных команд представлена в таблице.

Например, требуется написать последовательность получения изображения буквы К:

Изображение буквы «К» на рисунке описывается тремя векторными командами:
Линия(4, 2, 4, 8)
Линия(5, 5, 8, 2)
Линия(5, 5, 8, 8)

Задание 1

Построить двоичный код приведенного черно-белого растрового изображения, полученного на мониторе с размером растра 10x10.

Задание 2

Определить, какой объем памяти требуется для хранения 1 бита изображения на вашем компьютере (для этого нужно через Свойства экрана определить битовую глубину цвета).

Задание 3

Битовая глубина цвета равна 24. Сколько различных оттенков серого цвета может быть отображено на экране (серый цвет получается, если уровни яркости всех трех базовых цветов одинаковы)?

Задание 4

Дан двоичный код 8-цветного изображения. Размер монитора - 10x10 пикселей. Что изображено на рисунке (зарисовать)?




110 011 111 111 110 110 111 111 011 110
111 011 111 111 111 111 111 111 011 111
111 111 011 111 111 111 111 011 111 111
111 111 111 011 011 011 011 111 111 111
001 111 111 111 010 010 111 111 111 001

Задание 5

Описать с помощью векторных команд следующие рисунки (цвет заливки произвольный).

Задание 6

Получить растровое и векторное представления всех цифр от 0 до 9.

Задание 7

По приведенному ниже набору векторных команд определить, что изображено на рисунке (зарисовать).

Цвет рисования Голубой
Прямоугольник 12, 2, 18, 8
Прямоугольник 10, 1, 20, 21
Прямоугольник 20, 6, 50, 21
Цвет рисования Желтый
Цвет закраски Зеленый
Окружность 20, 24, 3
Окружность 40, 24, 3
Закрасить 20, 24, Желтый
Закрасить 40, 24, Желтый
Цвет закраски Голубой
Закрасить 30, 10, Голубой
Закрасить 15, 15, Голубой
Цвет закраски Розовый
Закрасить 16, 6, Голубой

Задание 8

Определить, какой объем имеет 1 страница видеопамяти на вашем компьютере (узнать для этого, какое у компьютера разрешение и битовая глубина цвета). Ответ записать в мегабайтах.

Задание 9

Нарисовать в редакторе Paint изображение солнца, сохранить его в формате BMP, а затем с помощью Photoshop преобразовать его в форматы JPEG (с наивысшим качеством), JPEG (с наименьшим качеством), GIF, TIFF.
Сравнить эффективность сжатия каждого формата, заполнив таблицу.

Задание 10

Битовая глубина цвета равна 32. Видеопамять делится на две страницы. Разрешающая способность дисплея 800x600. Вычислить объем видеопамяти.

Задание 11

На компьютере установлена видеокарта объемом 2 Мбайт. Какое максимально возможное количество цветов теоретически допустимо в палитре при работе с монитором, имеющим разрешение 1280x1024?

Задание 12

Какой объем видеопамяти в килобайтах нужен для хранения изображения размером 600x350 пикселей, использующего 8-цветную палитру?

Задание 13

Зеленый цвет на компьютере с объемом страницы видеопамяти 125 Кбайт кодируется кодом 0010. Какова может быть разрешающая способность монитора?

Задание 14

Монитор работает с 16-цветной палитрой в режиме 640x400 пикселей. Для кодирования изображения требуется 1250 Кбайт. Сколько страниц видеопамяти оно занимает?

Задание 15

Сколько цветов можно максимально использовать для хранения изображения размером 350x200 пикселей, если объем страницы видеопамяти - 65 Кбайт?

Задание 16

Определить объем памяти для хранения цифрового аудиофайла, время звучания которого 5 минут при частоте дискретизации 44,1 КГц и глубине кодирования 16 битов.

Задание 17

Записать с помощью стандартного приложения «Звукозапись» звук длительностью 1 минута с частотой дискретизации 22,050 КГц и глубиной кодирования 8 битов (моно), а затем тот же самый звук с частотой дискретизации 44,1 КГц и глубиной кодирования 16 битов (моно). Сравнить объемы полученных файлов.

Задание 18

Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мбайт, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

Задание 19

Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мбайт. Частота дискретизации - 22 050 Гц. Какова разрядность аудиоадаптера?

Задание 20

Объем свободной памяти на диске - 0,01 Гбайт, разрядность звуковой платы - 16. Какова будет длительность звучания цифрового аудиофайла, если его записать с частотой дискретизации 44 100 Гц?

Существует 2 подхода к представлению (оцифровке) графических данных:

- растровый;

- векторный.

Графическая информация на экране монитора представляется в виде растрового изображения . Экран монитора можно представить в виде ячеек матрицы или элементов растра .

Ячейка растра состоит из определенного количества точек – пикселей .

Размер пикселя варьируется в зависимости от выбранного экранного разрешения или разрешающей способности (максимального количества пикселей по вертикали и горизонтали монитора).

Примеры стандартных разрешений современных мониторов: 800×600, 1024 × 768, 1280 × 1024 и т.п.

Цветные изображения на экране формируются в соответствии с двоичным кодом цвета каждого пикселя, информация о которых хранится в видеопамяти. Глубина цвета изображения определяется количеством битов, необходимым для кодирования цвета пикселя.

Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита. Если каждый цвет пикселя рассматривать как возможное состояние, то количество цветов, может быть вычислено по формуле

где К – глубина цвета в битах.

Например, для получения черно-белого изображения (без полутонов) пиксель может принимать только два состояния: светится (белый) – не светится (черный). Для его кодировки достаточно одного бита, например, 1 – белый, 0 – черный (2 1 = 2).

Для кодировки 4-цветного изображения требуется два бита на пиксель, например: 00 – черный, 01 – красный, 10 – зеленый, 11 – коричневый (2 2 = 4).

Недостатком растровой графики является большой объем памяти, требуемый для хранения изображения.

При векторном представлении графических данных задается и сохраняется математическое описание каждого графического примитива – геометрического объекта, из которых формируется изображение.

Недостатком векторной графики является невозможность работы с высококачественными художественными изображениями, фотографиями и фильмами. Поэтому основной сферой применения является представление в электронном виде чертежей, схем, диаграмм и т. д.

Программы для работы с графическими данными подразделяются:

Растровые графические редакторы – Paint, Photoshop;

Векторные графические редакторы - Visio, Corel Draw.

2.6. Кодирование звуковой информации

Звук представляет собой волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем звук громче для человека. Высота тона определяется частотой сигнала.

Для компьютерной обработки непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов, т.е. закодирован. В процессе кодирования производится временная дискретизация звукового сигнала, т. е. разбиение продолжительности звуковой волны на отдельные временные участки. Для каждого такого участка устанавливается определенная величина амплитуды, которой присваивается код уровня громкости.

Уровни громкости звука можно рассматривать как набор возможных состояний. Следовательно, с ростом кодированного количества уровней громкости воспроизводимое звучание будет более качественным.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней (состояний) сигнала можно рассчитать по формуле:

где I – глубина звука.

Качество кодирования изображения зависит от двух параметров. Во-первых, качество кодирования изображения тем выше, чем меньше размер точки и соответственно большее количество точек составляет изображение.

Во-вторых, чем большее количество цветов, то есть большее количество возможных состояний точки изображения, используется, тем более качественно кодируется изображение (каждая точка несет большее количество информации). Совокупность используемых в наборе цветов образует палитру цветов .

Формирование растрового изображения. Графическая информация на экране монитора представляется в виде растрового изображения , которое формируется из определенного количества строк, которые в свою очередь содержат определенное количество точек (пикселей).

Качество изображения определяется разрешающей способностью монитора, т.е. количеством точек, из которых оно складывается. Чем болыпе разрешающая способность, то есть чем больше количество строк растра и точек в строке, тем выше качество изображения. В современных персональных компьютерах обычно используются три основные разрешающие способности экрана: 800 × 600, 1024 × 768 и 1280 × 1024 точки.

Рассмотрим формирование на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего 480 000 точек). В простейшем случае (черно-белое изображение без градаций серого цвета) каждая точка экрана может иметь одно из двух состояний - "черная" или "белая", то есть для хранения ее состояния необходим 1 бит.

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти (рис. 1.8). Цветные изображения могут иметь различную глубину цвета , которая задается количеством битов, используемым для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.


Рис. 1.8. Формирование растрового изображения

Качество двоичного кодирования изображения определяется разрешающей способностью экрана и глубиной цвета .

Каждый цвет можно рассматривать как возможное состояние точки, тогда количество цветов, отображаемых на экране монитора, может быть вычислено по формуле (2.1):

N = 2 I , где I - глубина цвета (табл. 1.4).

Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого и синего. Такая цветовая модель называется RGB-моделью по первым буквам английских названий цветов (Red, Green, Blue).

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Например, при глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, то есть для каждого из цветов возможны N = 2 8 = 256 уровней интенсивности, заданные двоичными кодами (от минимальной - 00000000 до максимальной - 11111111) - табл. 1.5.

Таблица 1.5. Формирование цветов при глубине цвета 24 бита
Название цвета Интенсивность
Красный Зеленый Синий
Черный 00000000 00000000 00000000
Красный 11111111 00000000 00000000
Зеленый 00000000 11111111 00000000
Синий 00000000 00000000 11111111
Голубой 00000000 11111111 11111111
Желтый 11111111 11111111 00000000
Белый 11111111 11111111 11111111

Графический режим. Графический режим вывода изображения на экран монитора определяется величиной разрешающей способности и глубиной цвета. Для того чтобы на экране монитора формировалось изображение, информация о каждой его точке (код цвета точки) должна храниться в видеопамяти компьютера. Рассчитаем необходимый объем видеопамяти для одного из графических режимов, например, с разрешением 800 х 600 точек и глубиной цвета 24 бита на точку.

Всего точек на экране: 800 × 600 = 480 000.

Необходимый объем видеопамяти:

24 бит × 480 000 = 11 520 000 бит = 1 440 000 байт = 1406,25 Кбайт = 1,37 Мбайт.

Аналогично рассчитывается необходимый объем видеопамяти для других графических режимов.

В Windows предусмотрена возможность выбора графического режима и настройки параметров видеосистемы компьютера, включающей монитор и видеоадаптер.

Установка графического режима

1. Щелкнуть по индикатору Экран на Панели задач , появится диалоговая панель Свойства: Экран . Выбрать вкладку Настройка , которая информирует нас о марке установленных монитора и видеоадаптера и предоставляет возможность установить графический режим экрана (глубину цвета и разрешающую способность).

2. Щелкнуть по кнопке Дополнительно , появится диалоговая панель, на которой выбрать вкладку Адаптер . На вкладке имеется информация о фирме-производителе, марке видеоадаптера, объеме видеопамяти и др. С помощью раскрывающегося списка можно выбрать оптимальную частоту обновления экрана.

Вопросы для размышления

1. В чем состоит суть метода пространственной дискретизации?

2. Объясните принцип формирования растрового изображения.

3. Какими параметрами задается графический режим, в котором изображения выводятся на экран монитора?

Задания

1.32. Используются графические режимы с глубинами цвета 8, 16, 24 и 32 бита. Вычислить объемы видеопамяти, необходимые для реализации данных глубин цвета при различных разрешающих способностях экрана.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!