Энциклопедия мобильной связи

Современная аппаратная архитектура персональных компьютеров. Внутреняя архитектура пк

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.сайт/

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ

ЭКОНОМИЧЕСКОЙ ИНФОРМАЦИИ

по дисциплине

Информатика

Архитектура современного ПК

Введение

2. Структура современного ПК

4. Архитектура ПК в будущем

Заключение

Список использованной литературы

Введение

Темой моей курсовой работы является «Архитектура современного ПК». Персональный компьютер (ПК) - это настольная или переносная ЭВМ, удовлетворяющая требованиям общедоступности и универсальности применения. ПК стал обязательным атрибутом в любом современном офисе. Это основная техническая база информационной технологии. Профессионалы, работающие вне компьютерной сферы, считают непременной составляющей своей компетентности знание аппаратной части персонального компьютера, хотя бы его основных технических характеристик. Особенно велик интерес к компьютерам среди молодежи, широко использующей их для своих целей.

Актуальность выбранной темы связана с тем, что современный рынок компьютерной техники столь разнообразен, что довольно не просто определить конфигурацию ПК с требуемыми характеристиками. Без специальных знаний здесь практически не обойтись.

Цель данной курсовой работы - дать основное представление о структуре и функциях аппаратной части персонального компьютера. Другими словами определить архитектуру современного ПК, которая будет описана в теоретической части данной курсовой работы.

Архитектор, проектируя здание, обязан не только позаботиться о его красоте и форме, но и представить подробный план здания (структуры), предусмотреть надежность, безопасность, удобство его эксплуатации и использование эффективных технологий. Таким образом он решает вопросы взаимодействия проектируемого здания с окружающей средой, с людьми, для которых здание строится.

Подобное можно сказать и об архитектуре компьютера, которая связана с набором качеств, влияющих на ее взаимодействие с пользователем. Под архитектурой компьютера понимается его логическая организация, структура, совокупность его свойств и характеристик, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям машины, которые можно разделить на основные и дополнительные. Основные функции определяют назначение ЭВМ: обработка и хранение информации, обмен информацией с внешними объектами. Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают эффективные режимы ее работы, диалог с пользователем, высокую надежность и др. Названные функции ЭВМ реализуются с помощью ее компонентов: аппаратных и программных средств. компьютер процессор оперативная память

Одним из существенных достоинств современного ПК является гибкость архитектуры, обеспечивающая ее адаптивность к разнообразным применениям в сфере управления, науки, образования и в быту.

1. Основные принципы функционирования ПК

Исторически компьютер появился как машина для вычислений и назывался электронной вычислительной машиной - ЭВМ. Структура такого устройства была описана знаменитым математиком Джоном фон Нейманом в 1945 г. Современные компьютеры, базируясь на тех же принципах, имеют некоторые отличия, обусловленные развитием техники и служащие решению важных для пользователя задач (рис. 1).

Рис.1. Структурная схема современного ПК

Компьютер состоит из:

АЛУ - арифметическое логическое устройство. Преобразует информацию, выполняя сложение, вычитание и основные логические операции «И», «ИЛИ», «НЕ».

УУ - устройство управления. Организует процесс выполнения программ.

ОЗУ - оперативное запоминающее устройство, или память.

УВВ - устройства ввода и вывода. Получают информацию извне, выводят ее получателю.

Достижения микроэлектроники позволили объединить в одной сверхбольшой интегральной схеме, называемой микропроцессором (МП) или процессором, АЛУ и УУ. Уменьшение габаритов ОЗУ позволило разместить МП и ОЗУ на одной электронной плате, называемой системной, или материнской. Все связи между отдельными устройствами объединены в пучок параллельных проводов - локальную или системную шину. В состав этой шины входят шина данных, по которой передаются из ОЗУ в МП также и команды, шина адреса и шина управления. УВВ включают УВВ и управляющие ими контроллеры (карты), включаемые в системную плату или установленные прямо на ней.

В современных ПК возможна также параллельная работа нескольких процессоров. За счет распараллеливания выполнения одной задачи или параллельного выполнения многих задач достигается увеличение общей производительности компьютера. Для этого предусматривают цепи, связывающие между собой отдельные процессоры. Двухпроцессорные машины отличаются от однопроцессорных прежде всего именно более «мягкой» реакцией на действия пользователя, особенно если в системе одновременно запущено несколько задач.

Важным элементом структуры современного компьютера и принципа его действия являются сигналы и понятия прерываний. Если в микропроцессор извне поступает сигнал запроса на прерывание, выполнение текущей программы приостанавливается, в заранее определенной области ОЗУ сохраняются все промежуточные результаты и адрес останова в программе, и микропроцессор выполняет специальную программу обработки прерывания, в которой указано, что надо сделать в этом случае. После ее завершения восстанавливаются все промежуточные результаты, и микропроцессор продолжает выполнение текущей программы с запомненного ранее адреса.

В основу архитектуры современных ПК положен магистрально-модульный принцип. Этот принцип позволяет самим комплектовать нужную конфигурацию компьютера и при необходимости производить ее модернизацию. Модульная организация опирается на шинный метод обмена информацией между модулями (устройствами). Этот принцип также называют принципом открытой архитектуры.

2. Структура современного ПК

Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов (рис.2).

Рис. 2. Структурная схема ПК

Рассмотрим принципы взаимодействия основных устройств ПК.

Материнская (системная) плата - важнейший элемент ПК, к которому подключено всё то, что составляет сам компьютер (рис. 3). В нее устанавливается процессор, оперативная память, микропроцессорный комплект (чипсет), с ней связаны жесткий диск и CD-ROM, к ней подключаются различные дополнительные устройства.

Таким образом, материнская плата, центральный процессор, оперативная память составляют основу ПК, от их производительности зависит производительность компьютера в целом. На материнской плате находятся специальные перемычки - джамперы, позволяющие подстроить ее под тип процессора и других устройств, устанавливаемых на ней. На материнской плате устанавливаются разъемы для установки дополнительных устройств - слоты расширения. Все дополнительные устройства взаимодействуют с процессором и оперативной памятью через системную магистраль передачи данных - шину.

Виды слотов расширения различаются по типу шины.

Аппаратно-логические устройства, отвечающие за совместное функционирование различных компонентов, называют интерфейсами. (рис.4).

Современный компьютер заполнен разными интерфейсами, обеспечивающими всеобщее взаимодействие. В основе построения интерфейсов лежат унификация и стандартизация (использование единых способов кодирования данных, форматов данных, стандартизация соединительных элементов - разъемов и т.д.). Именно совокупность интерфейсов, реализованных в компьютере, образует архитектуру компьютера.

Центральной частью компьютера является системный блок с присоединенными к нему клавиатурой, монитором и мышью (рис. 5, а)). Системный блок и монитор независимо друг от друга подключаются к источнику питания - сети переменного тока. В современных компьютерах дисплей и системный блок иногда монтируются в едином корпусе (Рис. 5, б)).

В системном блоке располагаются все основные устройства компьютера: микропроцессор, оперативная память, контроллеры, накопители, дисководы для компакт-дисков, блок питания, счетчик времени и другие устройства.

Все компоненты ПК по их функциональному отношению к работе с информацией можно условно разделить на:

· устройства обработки информации (центральный процессор, специализированные процессоры);

· устройства хранения информации (жесткий диск, CD-ROM, оперативная память и др.)

· устройства ввода информации (клавиатура, мышь, микрофон, сканер и т.д.)

· устройства вывода информации (монитор, принтер, акустическая система и т.д.).

3. Характеристики основных компонентов современного ПК

Устройства обработки

Микропроцессор (центральный микропроцессор, CPU) - программно управляемое устройство, предназначенное для обработки информации под управлением программы, находящейся сейчас в оперативной памяти.

Физически микропроцессор представляет собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных сантиметров, на которой размещены схемы, реализующие все функции процессора (рис. 6). Микропроцессор установлен на материнской плате и связан с ней интерфейсом процессорного разъема (Socket). Следующие два года AMD готовят нам встречу с тремя новыми процессорными разъёмами: Socket AM2+, Socket AM3 и Socket F+. С ними будут выпускаться чипы, основанные на архитектуре, условно названной K8L.

В состав микропроцессора входят АЛУ, устройство управления, внутренние регистры. УУ вырабатывает управляющие сигналы для выполнения команд, АЛУ - арифметические и логические операции над данными. Оно может состоять из нескольких блоков, например блока обработки целых чисел и блока обработки чисел с плавающей запятой.

Директор по технологиям Intel Патрик Гелсингер, отметил, что процессоры Intel следующего поколения будут поддерживать новый набор векторных инструкций AVX (Advanced Vector Extensions), которые позволят ускорить выполнение операций с плавающей запятой.

В современных микропроцессорах в основу работы каждого блока положен принцип конвейера. Если в микропроцессоре имеется несколько блоков обработки, в основу работы которых положен принцип конвейера, то его архитектуру называют суперскалярной. Серия процессоров NVIDIA GeForce 6 имеет новую суперскалярную шейдерную архитектуру, которая удваивает количество операций на такт по сравнению с традиционными архитектурами. В результате производительность становится значительно выше одношейдерного нескалярного проектирования. Также, новая архитектура обеспечивает полноценную 32-битную точность операций с плавающей запятой, сохраняя при этом 16-битный режим сохранения в памяти.

Основными характеристиками процессора являются: быстродействие, тактовая чистота и разрядность. По результатам тестирования, проведенного журналом «Железо», неплохие характеристики имеет четырехъядерный процессор Intel Core 2 Extreme QX6700 (частота процессора 2,66 ГГц, кэш второго уровня L2 8192 Кб, частота шины 1066 Мгц).

Важным этапом в развитии аппаратных платформ Intel, по словам П. Гелсингера, станет появление новой архитектуры Nehalem. В Intel отмечают, что переход на архитектуру Nehalem позволит добиться значительного повышения производительности при одновременном снижении энергопотребления. Платформа Nehalem будет использовать новую системную архитектуру QuickPath Interconnect, включающую встроенный контроллер памяти и усовершенствованные каналы связи между компонентами. Процессоры на основе Nehalem получат от двух до восьми ядер и благодаря технологии Simultaneous Multi-threading смогут одновременно обрабатывать от четырех до шестнадцати потоков инструкций. Объем кэш-памяти третьего уровня сможет достигать 12 Мб. Процессоры Nehalem получат новый набор инструкций SSE4 и поддержку технологии Smart Cache для работы нескольких ядер с общим кэшем.

Гелсингер также заметил, что позднее Intel планирует показать чип, разрабатывающийся в рамках проекта Larrabee. Larrabee будет предназначен, прежде всего, для ускорения различных расчетов, а также повышения производительности вычислительных систем, обрабатывающих данные научного, финансового характера и пр. Инициатива Larrabee предполагает создание многоядерного процессора, построенного на основе усовершенствованной архитектуры х86. Первые версии чипа, предположительно, будут насчитывать от 16 до 24 ядер и работать на тактовой частоте около 2 ГГц. Производительность процессора теоретически будет достигать одного терафлопса (триллиона операций с плавающей запятой в секунду). Ожидать появления продуктов на основе Larrabee следует ближе к концу 2009 года или в 2010 году.

Связь между устройствами ПК осуществляется с помощью сопряжений, которые в вычислительной технике называются интерфейсами.

В персональном компьютере, как правило, используется структура с одним общим интерфейсом, называемым также системной шиной. При такой структуре все устройства компьютера обмениваются информацией и управляющими сигналами через системную шину. Физически она представляет собой систему функционально объединенных проводов, по которым передаются три потока данных: непосредственно информация, управляющие сигналы и адреса (рис. 7).

Несомненными достоинствами ПК с шинной структурой являются ее простота, а, следовательно, и невысокая стоимость; гибкость, так как нификация связи между устройствами позволяет достаточно легко включать в состав ПК новые модули, т.е. менять конфигурацию компьютера. К недостаткам следует отнести снижение производительности системы из-за задержек, связанных со временем ожидания устройствами возможности занять шину, пока осуществляется передача информации между устройствами с более высоким приоритетом. Для преодоления этого недостатка в персональных суперкомпьютерах используется архитектура с несколькими шинами.

Шинная структура ПК (ЦП - центральный процессор, ОП - оперативная память, ПП - постоянная память, К - контроллер, ПУ - периферийное устройство).

Максимальное количество одновременно передаваемой информации называется разрядностью шины. Чем больше разрядность шины, тем больше информации она может передать в единицу времени.

При работе с оперативной памятью шина проводит поиск нужного участка памяти и обменивается информацией с найденным участком. Эти задачи выполняют две части системной шины: адресная шина и шина данных.

Шина адреса предназначена для передачи адреса ячейки памяти или порта ввода-вывода. Разрядность адресной шины определяет адресное пространство процессора, т.е. количество ячеек памяти. У процессоров Intel Pentium (а именно они наиболее распространены в персональных компьютерах) адресная шина 32-разрядная.

Шина данных предназначена для передачи команд и данных, которые могут передаваться в любом направлении. В современных компьютерах разрядность шины данных составляет 64 бита.

Шина управления включает в себя все линии, которые обеспечивают работу общей шины. В большинстве современных процессоров шина управления 32-разрядная (например, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Шина работает циклами. Количество циклов срабатывания шины в единицу времени называется частотой шины. В современных компьютерах частота процессора может превышать частоту системной шины. Корпорация Intel официально представила новые серверные процессоры Itanium серии 9100 (кодовое название Montvale). Процессор Itanium 9110N имеет тактовую частоту

1,6 ГГц, частота системной шины - 533 МГц.

Для каждого устройства в компьютере имеется электронная схема, которая им управляет, - контроллер. Все контроллеры взаимодействуют с процессором и оперативной памятью через системную плату.

Устройства хранения

Центральный процессор (ЦП) взаимодействует с внутренним ЗУ, называемым оперативным запоминающим устройством (ОЗУ) или оперативной памятью (ОП). ОП предназначена для приема, хранения выдачи всей информации, необходимой для выполнения операций в ЦП. Кроме оперативной памяти во всех компьютерах обычно имеется внутренняя постоянная память, используемая для хранения постоянных данных и программ.

Оперативная память (ОП, англ. RAM - Random Access Memory - память с произвольным доступом) - это быстродействующее запоминающее устройство с прямым доступом процессора, которое предназначено для записи, считывания и временного хранения выполняемых программ и данных. Она ограничена по объему. ОП - электрическое устройство, и при выключении ПК все его содержимое пропадает.

В связи с этим на материнской плате есть микросхема «энергонезависимой памяти», так называемая СMOS-память (изготовленная по технологии CMOS - Comple Mentary Metal - oxide semiconductor), которая предназначена для длительного хранения данных о конфигурации и настройке компьютера. Для этого используют специальные электронные схемы со средним быстродействием, но очень малым энергопотреблением, питаемые от специального аккумулятора, установленного на материнской плате. Это полупостоянная память.

Данные записываются и считываются под управлением команд, содержащихся в другом виде памяти - BIOS (Basic Input-Output System), которая является базовой системой ввода-вывода - содержит наборы групп команд, называемых функциями, для непосредственного управления различными устройствами ПК.

Для ускорения доступа к оперативной памяти используется кэш-память (cache - запас). Это сверхбыстрая оперативная память, предназначенная для временного хранения текущих данных и помещенная между оперативной памятью и процессором. У современных микропроцессоров может быть кэш-память первого уровня, которая обычно встроена в тот же кристалл и работает на одинаковой с микропроцессором частоте. Для некоторых микропроцессоров предусмотрена еще кэш-память второго и третьего уровня (от 8Мб до 24Мб). Существуют два способа организации такой памяти: общая, когда команды и данные хранятся вместе, и разделенная, когда они хранятся в разных местах. Наличие разделенной кэш-памяти увеличивает производительность микропроцессора, сокращая среднее время доступа к используемым командам и данным.

Для хранения больших объемов информации, которые не используются в данный момент времени процессором, предназначаются внешние запоминающие устройства (ВЗУ). К ним относятся: винчестеры (жесткие магнитные диски), оптические диски, магнитно-оптические диски, флоппи диски, Zip and Jaz Iomega discs (относительно новые носители информации, которые призваны заменить гибкие магнитные диски. Они быстрые и большие по емкости (100 мегабайт - Zip, 1 гигабайт - Jaz)), магнитные ленты.

Ученые из Центра прикладной наноионики (CANi) при Университете штата Аризона (США) сообщили о создании нового типа памяти, позволяющей выпускать крошечные накопители емкостью до 1 Тб. Кроме столь впечатляющей емкости при малых размерах, чипы памяти на базе новой технологии смогут похвастаться низким энергопотреблением, превзойдя по этому показателю даже распространенную флэш-память.

В современных ПК реализована виртуальная память, которая предоставляет пользователю возможность работы с расширенным пространством оперативной памяти. Виртуальная память представляет собой совокупность оперативной памяти и внешних запоминающих устройств, а также комплекса программно-аппаратных средств, обеспечивающих динамическую переадресацию данных, в результате чего пользователь не должен заботиться о том, где располагаются необходимые ему данные (в ОЗУ или ВЗУ), а функции по требуемому перемещению данных берет на себя вычислительная система

Конструктивно элементы памяти выполнены в виде модулей, так что при желании можно сравнительно просто заменить их или установить дополнительные и тем самым изменить объем общей оперативной памяти компьютера. В настоящее время отдельные микросхемы памяти не устанавливаются на материнскую плату. Они объединяются в специальных печатных платах, образуя вместе с некоторыми дополнительными элементами модули памяти (SIMM- и DIMM-модули).

Для подключения к системной шине различных внешних устройств существуют устройства - порты. Различают несколько типов портов: внутренний (таймерный), клавиатурный, коммуникационный, игровой (джойстик).

Коммуникационные порты обеспечивают подключение таких внешних устройств, как мышь, принтер, сканер, внешний модем и др. Эти порты подразделяются на последовательные (COM1, COM2, СОМ3, СОМ4) и параллельные (LPT1, LPT2, LPT3). Последовательные порты обеспечивают двусторонний побайтовый обмен последовательными кодами, они обычно используются для подключения мыши и модема.

Параллельные порты могут реализовать либо однонаправленную побайтовую передачу параллельных кодов, либо двунаправленную. Параллельный порт имеет более высокую скорость передачи информации, чем последовательные порты, и используется для подключения принтера.

Широкое распространение получил порт USB (Universal Serial Bus - универсальная последовательная шина). Он обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств (сканера, цифровых камер и т.п.).

Также высокоскоростное подключение до 7 устройств (винчестеров, сканеров, СD-ROM и DVD-ROM дисководов и др.) к компьютеру реализует интерфейс малых вычислительных систем (Small Computer System Interface). SCSI-адаптеры размещаются в слотах расширения системной платы.

Устройства ввода и вывода

Совокупность ВЗУ и устройств ввода-вывода информации образует периферийную часть ЭВМ. Так как существует достаточно много разнообразных периферийных устройств, каждый ПК может быть укомплектован по-разному и иметь в своем составе те или иные периферийные устройства. Поэтому принято говорить о конфигурации ЭВМ, понимая под этим термином конкретный состав ее устройств с учетом их характеристик.

Передача информации из периферийных устройств в центральные называется операцией ввода , а передача информации из центральных устройств в периферийные - операцией вывода .

Производительность и эффективность использования ПК определяются не только возможностями его процессора и характеристиками ОП, но в большей степени составом его периферийных устройств, их техническими данными, а также способом организации их совместной работы с центральной частью ПК.

Внешними называются устройства, обеспечивающие ввод, вывод и накопление информации в ПК и взаимодействующие с процессором и оперативной памятью через системную шину, а также через порты ввода-вывода. К ним относятся как устройства, находящиеся вне системного блока (клавиатура, мышь, трекбол, тачпад, монитор, принтер, плоттер и другие), так и устройства, размещаемые внутри него (накопители на дисках, контроллеры устройств, внутренние факс-модемы и другие).

К устройствам вывода относятся: монитор, видеокарта, принтер, плоттер, сетевая карта.

Устройства ввода информации: клавиатура, мышь, трекбол, тачпад (TouchPad), сканер, цифровая камера, ТВ-тюнер, звуковая карта, микрофон и т.п.

4. Архитектура современного ПК

Современный ПК используется в таких приложениях, для которых первоначально и не предназначался. 3D графика, потоковое видео, многоканальное аудио и высокоскоростные коммуникации стали настолько привычными и обязательными, что компьютерные системы находятся под постоянным напором новых требований к их архитектуре. К сожалению, ПК, которые мы видим в настоящее время, с их древними форм-факторами и унаследованной из поколения в поколение уродливостью, не могут в полной мере соответствовать требованиям, предъявляемым к современным ПК. Новая архитектура от NVIDIA - nForce, разработана фактически с чистого листа на основе нескольких новейших технологий, в результате чего получилась воистину современная платформа XXI века.Архитектура NVIDIA nForce обладает самой производительной на сегодняшний день платформой; новой шиной AMD HyperTransport, связывающей обе части чипсета nForce - IGP и MCP, позволяющей добиться в шесть раз большей производительности, чем принятые в настоящие время внешние шинные соединения; многоканальным, высокопроизводительным аудио движком, позволяющим декодировать аудио по схеме Dolby Digital 5.1 в реальном времени. NVIDIA nForce составлена из двух "сопроцессоров": nForce Integrated Graphics Processor (IGP) и nForce Media and Communications Processor (MCP).

Продолжая совершенствовать концепции дизайна персональных компьютеров, компании Microsoft и Hewlett-Packard недавно познакомили нас с еще одним вариантом ПК будущего. Разработка носит кодовое название Athens и с виду напоминает Tablet PC, подключенный проводом к стоящей отдельно док-станции небольшого размера. Прототип, демонстрировавшийся на конференции WinHEC в Новом Орлеане, предстал перед аудиторией в виде сравнительно небольшого по размерам «системного блока», соединенного с плоскопанельным монитором с диагональю 23 дюйма. Этот дисплей оснащен телефонной гарнитурой и видеокамерой, размещенными с разных сторон, в дисплейном модуле могут также размещаться медиа-порты и приводы для оптических дисков. Все остальные компоненты ПК, в том числе процессор и системная плата,помещены в компактное шасси, соединенное с дисплеем одним кабелем. По этому кабелю, как поясняют разработчики, осуществляются и подача питания на экран, и передача различных данных. Устройство работает с беспроводными клавиатурой и мышью. Таким образом прототип Athens представляет настольную систему, которая дает пользователю также возможность участвовать в видеоконференциях и разговаривать по телефону наряду с выполнением привычной работы с Web и электронной почтой

Как подчеркнул Байрон Сэндз, директор по вопросам передовых технологий подразделения персональных компьютеров HP, Athens разрабатывается не как элитное устройство, а как стандарт для настольных систем будущего. В целях продвижения на рынок новой эталонной архитектуры Microsoft намерена оказывать активную помощь производителям аппаратного обеспечения.

Создание качественно новых вычислительных систем с более высокой производительностью и некоторыми характеристиками искусственного интеллекта, например с возможностью самообучения,- очень актуальная тема. Последние десять лет такие разработки ведутся во многих направлениях - наиболее успешными и быстро развивающимися из них являются квантовые компьютеры, нейрокомпьютеры и оптические компьютеры, поскольку современная элементная и технологическая база имеет все необходимое для их создания.

Носителем информации в оптических компьютерах будет световой поток. Весь набор полностью оптических логических устройств для синтеза более сложных блоков оптических компьютеров реализуется на основе пассивных нелинейных резонаторов-интерферометров. Элементы памяти оптического компьютера представляют собой полупроводниковые нелинейные оптические интерферометры, в основном, созданными из арсенида галлия (GaAs). К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров - оптические процессоры, ячейки памяти, однако до полной сборки еще далеко.

Основной строительной единицей квантового компьютера является кубит (qubit, Quantum Bit). Классический бит имеет лишь два состояния - 0 и 1, тогда как состояний кубита значительно больше. Для описания состояния квантовой системы было введено понятие волновой функции , ее значение представляется в виде вектора с большим числом значений. Для того чтобы практически реализовать квантовый компьютер, существуют несколько важных правил, которые в 1996 г. привел Дивиченцо. Без их выполнения не может быть построена ни одна квантовая система: точно известное число частиц системы, возможность приведения системы в точно известное начальное состояние, высокая степень изоляции от внешней среды, умение менять состояние системы согласно заданной последовательности элементарных преобразований. Выполнение этих требований вполне реально с помощью существующих квантовых технологий.

Нейрокомпьютеры - это совершенно новый тип вычислительной техники, иногда их называют биокомпьютерами . Нейрокомпьютеры можно строить на базе нейрочипов, которые функционально ориентированы на конкретный алгоритм, на решение конкретной задачи. Возможна эмуляция нейрокомпьютеров (моделирование) - как программно на ПЭВМ и суперЭВМ, так и программно-аппаратно на цифровых супербольших интегральных схемах. Искусственная нейронная сеть построена на нейроноподобных элементах - искусственных нейронах и нейроноподобных связях. Один искусственный нейрон может использоваться в работе нескольких (приблизительно похожих) алгоритмов обработки информации в сети, и каждый алгоритм осуществляется при помощи некоторого количества искусственных нейронов.

Недавно американская фирма Nantero из Бостона, разработала технологию, позволяющую серийно производить чипы памяти на нанотрубках до 10Гб данных. Память нового поколения, использующая массив фуллереновых трубок на поверхности чипа кремния (NRAM, Nanoscale Random Access Memory) будет хранить данные даже после отключения питания устройства. Резко может измениться структура компьютера. Загрузка компьютеров, оснащенных такой памятью, при включении будет происходить мгновенно. Да и быстродействие компьютеров значительно возрастет, так как не будет обращения к винчестеру. Винчестеры как таковые будут не нужны! Можно будет отказаться от системного блока!

Компьютер недалекого будущего состоит из следующих частей: жидкокристаллический дисплей 19 дюймов на котором сзади располагается системная плата с процессором и памятью. Сейчас Intel выпустила наборы системной логики 865 и 875, с двухканальным контроллером памяти. Наверное, будет 4-х и 8-ми канальная организация памяти. Емкость памяти компьютера 100-200 Гб. От южного моста можно оставить 6-канальный звук. От CD и DVD приводов можно будет отказаться так, как данные удобней будет переносить на компактной флэш-памяти.

Заключение

Мировая индустрия персональных компьютеров основывается на достижениях микроэлектронной техники, промышленных стандартах и постоянных технологических инновациях. Компания Intel дала массу ярких примеров стратегического планирования будущих технологий (и нтерфейсы, стандартные разъемы, кооперативные программы, венчурные инициативы, developer.intel.com). Новые архитектурные решения, стандартные интерфейсы и передовые связные технологии персональных компьютеров ежедневно зарождаются в лабораториях и исследовательских центрах компании.

Гибкость архитектуры современных ПК позволяет организациям и компаниям различных типов достаточно быстро и без больших финансовых затрат приспосабливаться к любым изменениям, сохраняя вложения в предыдущие технологии. Модель системы на базе ПК обеспечивает оптимальное сочетание производительности, стоимости и гибкости в рамках организаций разных типов.

Прогресс компьютерных технологий идет семимильными шагами. Новая ситуация требует новой модели взаимодействия человека с компьютером - модели упреждающих вычислений. Эта модель предполагает, что компьютеры будут предугадывать наши потребности и даже заранее реагировать на них в наших интересах. С некоторыми компьютерами мы будем продолжать взаимодействовать непосредственно, но большинство будут встроены в окружающую нас физическую среду, где они будут собирать и обрабатывать информацию без какого-либо вмешательства человека. Реализация модели упреждающих вычислений повлечет за собой новый цикл повышения продуктивности и качества нашей жизни.

Литература

1. Энциклопедия технологий баз данных. Когаловский М.Р. -М: Финансы и статистика,2002

2. Информатика в экономике: Учебное пособие/под ред. Проф. Б.Е. Одинцова,проф. А.Н. оманова-М:Вузовский учебник,2008

3. Экономическая информатика / Под ред. В.П. Косарева и Л.В. Еремина. М.: Финансы и статистика, 2001. - 592 с.

4. Информатика и информационные технологии / Под ред. Ю.Д. Романовой. - М.: Эксмо, 2008. - 592 с.

Размещено на сайт

Подобные документы

    Архитектура современного персонального компьютера. Виды и характеристики центральных и внешних устройств ЭВМ. Структурная и функциональная схемы персонального компьютера. Устройства для ввода информации в системный блок и для отображения информации.

    курсовая работа , добавлен 18.01.2012

    Принципиальная схема устройства современного персонального компьютера. Краткая характеристика основных составляющих ПК: процессора, модулей оперативной (внутренней) и долговременной (внешней) памяти, устройств ввода и вывода информации для пользователя.

    презентация , добавлен 07.06.2015

    Конфигурация современного персонального компьютера. Назначение и типы монитора, модема, системного блока, принтера, клавиатуры. Материнская плата, процессор, оперативная память. Сборка компьютера, установка компонентов. Безопасность на рабочем месте.

    курсовая работа , добавлен 19.11.2009

    Функционально-структурная организация ЭВМ: архитектура, назначение основных блоков компьютера, принцип взаимодействия устройств. Физические характеристики компонентов ЭВМ: центральный процессор, память, шина; устройства ввода информации; периферия.

    реферат , добавлен 24.03.2011

    Основные части персонального компьютера: системный блок, устройства ввода и вывода информации. Основные элементы системного блока: материнская плата, процессор, оперативная память, кэш-память, накопители. Операционная система, объекты Windows, окна.

    реферат , добавлен 21.09.2009

    Основные принципы функционирования ПК. Определение конфигурации компьютера с требуемыми характеристиками. Характеристики основных компонентов современного ПК. Описание алгоритма решения задачи с использованием MS Excel. Блок-схема алгоритма решения задач.

    курсовая работа , добавлен 20.12.2010

    Структура персонального компьютера и принцип его работы. Состав и назначение основных блоков. Классификация компонентов: устройства ввода-вывода информации и ее хранения. Физические характеристики микропроцессора, оперативной памяти, жесткого диска.

    реферат , добавлен 02.06.2009

    Изучение внутренней и внешней архитектуры персонального компьютера. Логическая организация и структура аппаратных и программных ресурсов вычислительной системы. Описание различных компонентов ПК. Принципы их взаимодействия, функции и характеристики.

    контрольная работа , добавлен 15.06.2014

    Функциональные элементы в составе компьютера: основная (оперативная) и внешняя память, процессор, устройства ввода и вывода информации, коммуникационные устройства; их характеристики. Заполнение таблиц и построение формул в текстовом редакторе Word.

    контрольная работа , добавлен 27.02.2010

    Состав вычислительной системы - конфигурация компьютера, его аппаратные и программные средства. Устройства и приборы, образующие аппаратную конфигурацию персонального компьютера. Основная память, порты ввода-вывода, адаптер периферийного устройства.

ЛЕКЦИЯ 3

ПЕРСОНАЛЬНЫМ КОМПЬЮТЕРОМ (сокращенно ПК или РС, произносится "пи – си", англ. Реrsonal Сomputer) НАЗЫВАЮТ НЕБОЛЬШУЮ ЭВМ, ОРИЕНТИРОВАННУЮ НА НЕСПЕЦИАЛИСТА В ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКЕ . До появления персональных компьютеров инженеры, ученые, экономисты, представители других профессий общались с ЭВМ только с помощью посредников – инженеров – системотехников и программистов, поскольку работа на ЭВМ старых типов требовала специальной подготовки. С появлением персональных ЭВМ необходимость в таком посредничестве отпала, так как процесс общения с ЭВМ значительно упростился. Кроме того, произошло снижение их стоимости. В связи с этим, персональные компьютеры стали такими же привычными на рабочих местах нженеров, ученых, секретарей и менеджеров как, например, телефоны.

АРХИТЕКТУРА – ОПИСАНИЕ СЛОЖНОЙ СИСТЕМЫ, СОСТОЯЩЕЙ ИЗ МНОЖЕСТВА ЭЛЕМЕНТОВ, КАК ЕДИНОГО ЦЕЛОГО.

Модульная организация информационной системы основана на магист­ральном принципе обмена информацией. Устройства ПК представляют со­бой отдельные модули, которые подключаются к магистрали с помощью контроллеров и управление которыми на программном уровне обеспечива­ется специальными программами - драйверами устройств. Контроллеры одного или нескольких устройств монтируются на отдельных платах, кото­рые называются адаптерами. Именно контроллер принимает сигнал от про­цессора и дешифрует его для данного устройства. Таким образом, за работу конкретного устройства отвечает не процессор, а контроллер, что позволяет свободно менять внешние устройства ЭВМ. Модульный принцип позволяет подключить и заменить периферийные устройства, увеличить внутреннюю память, заменить микропроцессор, т.е. позволяет пользователю самому ком­плектовать нужную конфигурацию компьютера или проводить его модер­низацию.

ПК имеет две основные составляющие - аппаратное и программное обеспечение.

Аппаратное обеспечение персонального компьютера- оборудование, составляющее компьютер. Все устройства, составляющие аппаратное обеспечение персональ­ного компьютера, взаимосвязаны между собой, каждое из них выполняет свою функцию, а, в общем, обеспечивают полноценную обработку всех видов данных с помощью ПК.

Внешняя архитектура компьютера - это те устройства, которые видят люди, использующие компьютеры для своих целей. К основным устрой­ствам относятся:

§ системный блок;

§ монитор;

§ клавиатура;

§ манипуляторы; принтеры; сканеры; сетевое оборудование .

Внутренняя архитектура компьютера - это те устройства, которые обеспечивают процессы накопления, обработки, хранения, представления и передачи информации внутри машины. Большинство из них расположе­ны в системном блоке.Ниже приведена структурная схема внутренней архитектуры ПК.



Магистраль - это проводники, связывающие между собой все устрой­ства компьютера, По магистрали передаются как управляющие сигналы, так и данные от одних устройств к другим, что обеспечивает их взаимодей­ствие в процессе обработки информации.

Контроллеры - это электронные схе­мы, обеспечивающие управление устройствами компьютера.

Понятие архитектуры, как правило, ассоциируется с чем – то прекрасным. Это не совсем так. Архитектор направляет свои усилия на то, чтобы здание или комплекс зданий были не только красивыми, но и удобными в эксплуатации, надежными, экономичными, легко и быстро возводимыми, безопасными. В вычислительной технике архитектура определяет состав, назначение, логическую организацию и порядок взаимодействия всех аппаратных и программных средств, объединенных в единую вычислительную систему. Иными словами, архитектура описывает то, как ЭВМ представляется пользователю.

Впервые производство персональных компьютеров было поставлено на поток в 1975 году американской фирмой APPLE (произносится "эпл"). Ее основатель, Стив Джобс собрал свой первый персональный компьютер в гараже своего отца. Начальный капитал его фирмы не превышал тысячи долларов, но не прошло и десяти лет, как он перевалил за милиард долларов – настолько высок оказлся спрос на ее продукцию. В 1981 году появились первые персональные компьютеры фирмы IBM (произносится "ай – би – эм"). Они были более дешевыми и в них были использованы последние разработки сразу нескольких других фирм, в частности программное обеспечение фирмы MICROSOFT (произносится "Майкрософт"). Машины этого типа (они выпускались и выпускаются далеко не только фирмой IBM, более того эта компания с тех пор ничем особенным не выделялась среди тысяч других) в течение полутора – двух лет заняли лидирующее положение на рынке. В 1991 году на долю компьютеров APPLE (им присвоили имя "Мэкинтош") приходилось всего 4% продаж.

В СОВРЕМЕННЫХ ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРАХ, КАК ПРАВИЛО, ИСПОЛЬЗУЕТСЯ ПРИНЦИП ОТКРЫТОЙ АРХИТЕКТУРЫ. ОН ЗАКЛЮЧАЕТСЯ В ТОМ, ЧТО УСТРОЙСТВА, НЕПОСРЕДСТВЕННО УЧАСТВУЮЩИЕ В ОБРАБОТКЕ ИНФОРМАЦИИ (ПРОЦЕССОР. СОПРОЦЕССОР. ОПЕРАТИВНАЯ ПАМЯТЬ), СОЕДИНЯЮТСЯ С ОСТАЛЬНЫМИ УСТРОЙСТВАМИ ЕДИНОЙ МАГИСТРАЛЬЮ – ШИНОЙ. УСТРОЙСТВА, СВЯЗАННЫЕ С ПРОЦЕССОРОМ ЧЕРЕЗ ШИНУ, А НЕ НАПРЯМУЮ, НАЗЫВАЮТ ПЕРИФЕРИЙНЫМИ (обратите внимание как пишется это слово!) Шина представляет собой канал передачи данных в виде проводников на печатной плате или многожильного кабеля.

На этой схеме шина изображена в виде двунаправленной стрелки, чтобы указать на то, что информация по ней движется как от процессора к периферийным устройствам, так и в обратную сторону. Черными квадратиками обозначены разъемы. Схема носит условный характер, иллюстрирующий только основные принципы устройства современного компьютера, поэтому ряд устройств, в частности видеоадаптер, здесь не изображены.

ПРОЦЕССОР, СОПРОЦЕССОР, ПАМЯТЬ И ШИНА С РАЗЪЕМАМИ ДЛЯ ПОДКЛЮЧЕНИЯ ПЕРИФЕРИЙНЫХ УСТРОЙСТВ РАЗМЕЩАЮТСЯ НА ЕДИНОЙ ПЛАТЕ, НАЗЫВАЕМОЙ МАТЕРИНСКОЙ ИЛИ ОСНОВНОЙ (англ. motherboard или mainboard):

Если открыть корпус компьютера, то можно увидеть большую плату, на которой размещаются микросхемы, другие электронные устройства и разъемы (слоты), в которые вставлены другие платы и к которым посредством кабелей подключены другие устройства. Это и есть материнская плата.

КОНФИГУРАЦИЯ – СОСТАВ УСТРОЙСТВ, ПОДКЛЮЧЕННЫХ К КОМПЬЮТЕРУ.

ПОРТ – ТОЧКА ПОДКЛЮЧЕНИЯ ВНЕШНЕГО УСТРОЙСТВА К КОМПЬЮТЕРУ.

Почему именно так устроен компьютер? Потому что в таком случае он превращается в подобие детского конструктора – его можно собрать из любых устройств, имеющихся на рынке (в том числе и произведенных различными фирмами).

ПРЕИМУЩЕСТВА ОТКРЫТОЙ АРХИТЕКТУРЫ ЗАКЛЮЧАЮТСЯ В ТОМ, ЧТО ПОЛЬЗОВАТЕЛЬ ПОЛУЧАЕТ ВОЗМОЖНОСТЬ:

1) ВЫБРАТЬ КОНФИГУРАЦИЮ КОМПЬЮТЕРА. Действительно, если Вам не нужен принтер, или не хватает средств на его приобретение, никто не заставляет Вас его покупать вместе с новым компьютером. Раньше было не так, – все устройства продавались единым комплектом, причем какого – то определенного типа, так, что выбрать или заменить что – то было невозможно.

2) РАСШИРИТЬ СИСТЕМУ, ПОДКЛЮЧИВ К НЕЙ НОВЫЕ УСТРОЙСТВА. Например, накопив денег и купив принтер, Вы легко сможете подклють его к Вашему компьютеру.

3) МОДЕРНИЗИРОВАТЬ СИСТЕМУ, ЗАМЕНИВ ЛЮБОЕ ИЗ УСТРОЙСТВ БОЛЕЕ НОВЫМ. Действительно, не нужно для этого выбрасывать весь компьютер! Достаточно вместо одного устройства подключить другое. В частности, можно заменить материнскую плату, чтобы из компьютера на базе процессора старого типа получить компьютер на базе процессора нового типа.

Архитектура персонального компьютера определяется в первую очередь его внутренним устройством: центральным процессором и подсистемами памяти, внутримашинным интерфейсом, а также подсистемами ввода-вывода информации (рис. 3.3).

Центральным блоком персонального компьютера является микропроцессор, управляющий всеми другими устройствами компьютера и выполняющий арифметические и логические операции с данными. В состав микропроцессора входят:

устройство управления (УУ), формирующее па основе опорных сигналов тактового генератора сигналы управле-

Рис. 3.3.

ния, а также адреса ячеек памяти, используемых выполняемой операцией, и передающее их в соответствующие блоки;

  • арифметико-логическое устройство (АЛУ), предназначенное для выполнения всех арифметических и логических операций над данными;
  • микропроцессорная память (МПП), служащая для кратковременного хранения, записи и выдачи данных, непосредственно используемых в вычислениях в ближайшие такты машины. Микропроцессорная память реализована в виде регистров – быстродействующих устройств, предназначенных для временного хранения данных ограниченного размера. Как правило, регистры имеют ту же разрядность, что и машинное слово (двоичное число, обрабатываемое за один такт);
  • интерфейсная система микропроцессора (ИСМ), реализующая сопряжение (связь) микропроцессора с другими устройствами компьютера. Включает внутренний интерфейс микропроцессора, буферные запоминающие регистры и схемы управления портами ввода-вывода и системной шиной.

Основной интерфейсной системой компьютера, обеспечивающей сопряжение и связь всех его устройств между собой, является системная шина (магистраль), в состав которой входят следующие компоненты:

  • шина данных для параллельной передачи всех разрядов машинного слова данных;
  • шина адреса из проводов и схем сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;
  • шина управления для передачи управляющих сигналов во все блоки компьютера.

Системная шина обеспечивает три направления передачи информации:

  • между микропроцессором и основной памятью;
  • микропроцессором и портами ввода-вывода внешних устройств;
  • основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Все блоки компьютера (их порты ввода-вывода) через соответствующие унифицированные разъемы (стыки) подключаются к шине непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется, как правило, контроллером шины , формирующим основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Основная память компьютера предназначена для хранения и оперативного обмена информацией между блоками компьютера. Содержит два вида запоминающих устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ):

  • ПЗУ хранит неизменяемую (постоянную) программную информацию и позволяет только считывать хранящуюся в нем информацию. Здесь хранятся программы тестирования оборудования ПК, обслуживания ввода/вывода, некоторые данные и др. При выключении электропитания компьютера содержимое постоянной памяти сохраняется;
  • ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в процессе работы ПК. Главное достоинство оперативной памяти – ее высокое быстродействие и возможность прямого обращения к каждой адресуемой группе из восьми ячеек памяти отдельно (прямой адресный доступ к ячейке). Память называется оперативной потому, что работает так быстро, что процессору почти не приходится ждать при чтении данных из памяти и записи в нее. При выключении питания ПК вся информация ОЗУ стирается. Объем установленной в компьютере оперативной памяти определяет, с каким программным обеспечением можно на нем работать. При недостаточном объеме оперативной памяти многие программы либо не работают, либо работают медленно.

Внешняя память ПК относится к внешним устройствам и используется для долговременного хранения информации. Устанавливаемое и все прикладное программное обеспечение компьютера хранится во внешней памяти. К внешней памяти компьютера относятся разнообразные запоминающие устройства, но основными являются накопители на жестких магнитных дисках (НЖМД). Назначение этих дисков – хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство. В качестве устройств внешней памяти используются также запоминающие устройства на кассетной магнитной ленте (стримеры), накопители на оптических дисках, флеш-карты и др.

Генератор тактовых импульсов (ГТИ) генерирует последовательность электрических импульсов. Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы компьютера. Частота ГТИ – одна из основных характеристик персонального компьютера и во многом определяет скорость его работы, так как каждая операция в машине выполняется за определенное количество тактов.

Источник питания (ИП) компьютера представляет собой блок, содержащий системы энергопитания узлов ПК.

К внешним устройствам персонального компьютера кроме внешней памяти относятся разнообразные устройства ввода/вывода информации, и основными здесь являются видеомонитор, клавиатура, мышь.

Компьютерная архитектура (computer architecture) – это разработанный Джоном фон Нейманом набор правил и методов описания функций, которые участвуют в организации работы компьютерных систем. Впервые документальное упоминание данного термина найдено в переписке английского ученого Чарльза Бэббиджа с писательницей и математиком Адой Лавлейс в первой половине ХХ века.

Понятие архитектуры персонального компьютера (ПК) дает нам представление о том, как он устроен, как разные устройства взаимодействуют друг с другом. Они подсоединяются по определенной схеме, а ее вариации и будут разновидностями архитектурных систем.

Любой современный персональный компьютер или ноутбук – это сложное многофункциональное устройство, а не просто мультиплатформенная игровая приставка. Всего можно выделить пять уровней архитектуры электронно вычислительных машин (ЭВМ):

  • нулевой уровень;
  • первый уровень – микроархитектура компьютера;
  • второй – системные команды;
  • третий – операционная система;
  • четвертый – прикладные и системные программы;
  • пятый – уровень высокого языка.

Основные узлы компьютера

Комплекс нескольких логических схем и элементов памяти, создающих выходные сигналы, является узлом ПК. Абсолютно все компьютерные программы или игры имеют требования к основным характеристикам для корректной работы. Все узлы компьютера должны быть максимально совместимы друг с другом. В противном случае работать в программах будет некомфортно.

К перечню подобных узлов системного блока обычно относят:

  1. Процессор – основополагающий элемент всего функционала компьютера;
  2. Системная плата, ее еще называют «материнской»;
  3. Блок питания – необходим для энергоснабжения ПК;
  4. Жесткий диск – хранилище информации на ПК или ноутбуке;
  5. Оптический привод – устройство для чтения с внешних носителей, который редко встречается на новейших системах;
  6. Разъемы для подключаемых устройств.

Классическая архитектура

Классическую концепцию построения компьютера по готовой логической схеме предложил математик Нейман в 1945 году. В ходе обсуждений и в рамках проектирования компьютера EDVAC было решено использовать память для хранения ряда инструкций и данных. Принципиально новая концепция Джона фон Неймана стала общепринятым стандартом и основой не для одного поколения персональных компьютеров. Главный ее принцип заключен в наличии пяти важных компонентов :


В условиях данной схемы функционирования, должен прослеживаться определенный алгоритм. Если в память ПК направляются данные для обработки из какой-либо программы, то потом они должны выводиться при помощи наружного устройства. После, управляющее устройство должно проанализировать полученную информацию и отправить на дальнейшее выполнение. Возможно придется задействовать другие составляющие ПК.

Современные тенденции развития архитектуры персонального компьютера

В современных персональных компьютерах архитектура характеризуется наличием контроллеров. Их появление – это итог пересмотра классической концепции. Теперь микропроцессор берет на себя функцию обмена данными с внешними устройствами. Производители смогли отделить микропроцессор от многофункционального компонента при помощи обнаруженных особенностей интегральных схем. Так возникли разные каналы обмена , в том числе и периферийные микросхемы, позднее их стали называть контроллерами. Сегодня подобные аппаратные компоненты в компьютерах научились управлять практически любым оборудованием.

Новейшие архитектуры ПК преимущественно используют шины. Эти каналы связи обеспечивают взаимодействие всех аппаратных элементов и обычно выглядят как электрическое соединение с проводниками. В ее структуру могут включаться специализированные модули, которые отвечают за различные функции.

Графически архитектура современного компьютера выглядит так:

Архитектура IBM

Такой тип как открытая архитектура позволяет свободно подключать любую периферию к компьютеру. Достигнуто это благодаря использовании информационной шины (ее объем можно узнать из характеристик материнской платы). Она позволила производителям периферийного оборудования разработать контроллеры для любых стандартов.

Управление системой осуществляется непосредственно процессором. Под его же управлением находятся информационная шина. Современный принцип открытой архитектуры ПК подразумевает наличие функциональных и центральных контроллеров.

Функциональные контроллеры обеспечивают подключение модема, мыши, клавиатуры и принтера.

Архитектура IBM предоставляет собой набор инструкции по созданию приложений в облаке. Эталоном считается базовый шаблон в то время как реализация – это определенные технологии, методы и выбор инструмента для создания и развертывания этого шаблона.

Многопроцессорная архитектура

Архитектура по типу МВС (многопроцессорных вычислительных систем) включает в себя несколько самостоятельных ЭВМ, каждая из которых имеет свой собственный набор периферийных устройств, оперативную память, процессор и управляется своей операционной системой. Различают три вида связи между ними: слабую (косвенную), прямую и сателлитную.

В косвенно-связанных системах машины связаны только внешним запоминающим устройством. При этом каждая ЭВМ, согласно своим программам, помещает информацию на внешнее запоминающее устройство, а другая, руководствуясь собственной программой, извлекает ее. Такая связь используется для повышения надежности комплекса путем создания резервных вычислительных машин, которые при необходимости возьмут на себя задачи основной ЭВМ.

Прямосвязанные МВС обладают особенной гибкостью поскольку могут связываться между собой через общее запоминающее устройство, напрямую от процессора к процессору и через адаптер. Связь осуществляется на информационно-командном уровне, но более эффективно.

Для сателлитных систем свойственно опираться не на способ связи, а на принцип взаимодействия ЭВМ. Но в тоже время структура связи не отличается от предыдущих.

ЭВМ с несколькими процессорами способны организовать множество потоков данных и команд, а несколько фрагментов одной задачи выполнять параллельно.

Таким образом создание различных архитектур вызвано растущими потребностями человека – скоростью, эффективностью и мобильностью.

Архитектура – состав устройств, включаемых в ПК, и организация их вза­и­мо­­действия. Основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой называется общей шиной. Иначе говоря, общая шина это интерфейс объединения модулей в вычислительную систему. А фактически Общая шина или системная магистраль (ОШ, СМ) – пучок проводов, к которому подключются все блоки ПК .(интерфейс- стандарты свя­­зи и вза­и­мо­­дей­ст­вия устройств между собой ).

Минимальная (базовая) конфигурация ПКвключает в себя : 1)системный блок; 2)видео­мо­ни­тор (дисплей); 3)клавиатуру; 4) и как правило, ручной манипулятор (ча­­­ще всего мышь). При расширенной конфигурации к ПК могут подключаться и другие внешние устройства: принтер, модем, сканер, зву­ковые колонки и т.д.

ПК строятся на основе принципа открытой архитектуры : не единая, жест­кая конструкция, а возможность гибкого подключения разных устройств и за­ме­ны этих устройств на новые модификации (upgrade ). Например, можно уста­нав­ли­­вать дополнительные блоки оперативной памяти и жесткие диски. В част­нос­ти, можно ис­поль­­­зо­вать блоки разных производителей (с едиными стандартами свя­­зи и вза­и­мо­­дей­ст­вия – интерфейсом ).

Основной частью ПК является системный блок (Рисунок 3). В системном блоке размещаются основные элементы: 1)системная (ма­те­­ринская) плата (СП); 2)жесткий диск (винчестер); 3)порты – разъемы для подключения внешних устройств; 4)дисководы; 5)блок питания с вен­ти­ля­то­ром (пре­­образует переменный ток в постоянный).

На системной (материнской) плате устанавливаются: 1)микропроцессор (МП); 2)основная (внутренняя) память (=ОЗУ+ПЗУ+Полупостоянная(CMOS)); 3)тай­­мер (с аккумулятором) ведущий отсчет времени (и при выключенном ПК); 4)ге­нератор тактовых импульсов(ГТИ); 5)контроллер прерываний; 6)пучки про­­­­водов (шины, информационные магистрали), обеспечивающие связь между этими бло­ками.

МП (центральный процессор ПК) – основа ПК – обеспечивает собственно об­­ра­ботку информации (данных, чисел). Состоит из управляющего устройства (что и в каком порядке делать) и арифметико-логического устройства , выпол­ня­ющего сами операции.

1)Все операции выполняются над машинными словами двоичными числами (из 0 и 1) расположенными в специ­аль­ных ячейках процессора – регистрах .

2)Из ОЗУ берется машинная команда. В трехадресной команде (бывают одно и двухадресные):

3)Операнд – число из ячейки ОЗУ (или, иногда, указанное в самой МК).

4)Операции – элементарные: сложение, умножение и т.п. двоичных чисел. Все возможности ЭВМ сводятся к ним.

5)В результате выполнения команды определяется по какому адресу ОЗУ брать следующую команду (подряд или БуП или УП).

Каждая операция выполняются за несколько шагов (тактов ), которые производятся сра­зу над несколькими числами. Шаги должны быть синхронизированны .

Рисунок 3 – Структура системного блока персонального компьютера

Для синхронизации операций используется генератор тактовых импульсов (ГТИ) – специальная ми­­к­­ро­схема на СП, которая выдает строго определенное число импульсов в секунду – так­­товая частота процессора . Любая операция (например, ариф­­метическая) выполняется за 1 или несколько (3–4) тактов. У ГТИ – та же роль, что у маятника в механических ча­сах. Быстродействие МП, кроме тактовой частоты, зависит от разрядности про­­цес­сора – числа бит в регистрах, которые обрабатываются параллельно за 1 шаг (такт). Самые большие затраты времени МП получаются при обмене данными с ОЗУ, поэтому про­­цессор снаб­жают «промежуточной», сверхоперативной – кэш-па­мя­тью (действующим хранилищем копий блоков основной памяти, с которыми про­цессор работает в дан­ный момент). Это позволяет быстро обращаться к содержимому отдельных ячеек. Кэш-память первого уровня (самая маленькая и быстрая) в одном кристалле с МП, второго на отдельном кристалле в одном узле с МП, третьего – быс­тро­дей­ст­вующие микросхемы на СП вблизи МП.

Для ускорения работы к МП подключаются сопроцессоры – вспо­мо­га­тель­ные специализированные процессоры, которые могут выполнять только опе­ра­ции определенного типа, но очень быстро: математический, графический, вво­да-вывода . Например, математический сопроцессор реализует в виде специальных электрон­ных схем вычисление стандартных функций (логарифм, корень), каждую из которых иначе приш­лось бы считать большим количеством элементарных сложений, умножений и т.п.

Быстродействие процесора – число операций в секунду (флопсы) из­ме­ря­ет­ся на стандартных тестовых задачах. Величина условная, зависит от состава тес­­та – у од­них быстрее сложение, у других обмен с ОЗУ и т.п. (аналогия с про­жи­точ­ным ми­нимумом и инфляцией). У современных ПК составляет десятки – сотни Ме­гафлопс (миллионов оп/сек). На суперкомпьютерах достигнуты рекордные значения 50 Терафлопс – 50 триллионов оп/сек, планируется 10 Петафлопс – 10*1000 триллионов оп/сек.

Таким образом, быстродействие МП зависит от его характеристик :

1)Тактовая частота – сейчас до нескольких миллиардов тактов в сек (ГГц);

2)Разрядность процессора – обычно 32 или 64 бита;

3)Объемы кэш-памяти – сейчас 1 уровень десятки Кб, 2 – до 2 Мб, 3 – нес­коль­ко Мб. Считается, что кэш-память 256 КБ увеличивает производительность ПК на 20%.

Основные фирмы, которые производят центральные процессоры для ПК это Intel, AMD, IBM

ПК параллельно выполняет несколько задач (программ, процессов). В лю­бой момент может поступить сигнал от внешних устройств (принтер – кон­­­чи­лась бумага, клавиатура – прекратить расчет, переключиться в другое ок­но). Нужно выполнить прерывание – остановить одни задачи (за­пом­нив сос­то­я­ние и про­­межуточные результаты), запустить новые программы (вы­дать со­об­ще­ние о бу­маге на экран). Всё это координируется специальным уп­рав­­­ляющим уст­рой­ст­вом на СП – контроллером прерываний (КП).

Различные устройства подключаются к СП через специальные разъемы (гнезда или слоты) . В них встав­ляются конкретные платы, называемые контроллером или адаптером , обес­пе­чи­вающие управление эти­ми устройствами (монитором, принтером, мышью, дис­ко­водами и т.д.). Конт­рол­лер клавиатуры обычно устанавливается не­посредственно на СП. (Cont­rol – уп­равление, а не только контроль.) Для управления каждым внешним устройством кроме контроллера нужна своя программа – драйвер , которая хранится либо в памяти ПК, либо в специальной па­мя­ти контроллера. Для обеспечения связи между устройствами на СП, а также их связи с под­ключенными через слоты и контроллеры другими устройствами могут использоваться: многосвязный интерфейс – каждая связь двух устройств отдельная линия или односвязный интерфейс – все устройства подключаются к единой линии.

СМ включает 4 основные линии (шины) :

1)Шина данных для передачи операндов.

2)Шина адреса для передачи кодов ячеек памяти и портов.

3)Шина управления для передачи управляющих сигналов всем блокам.

4)Шина питания для передачи всем устройствам напряжения от блока питания.

Некоторые устройства осуществляют интенсивный обмен данными между собой (МП – Основная память, МП – Видеотерминал). Поэтому кро­ме СМ (ОШ) используют локальные шины , напрямую связывающие от­дель­ные устройства. Например, USB шина - интерфейсная шина системного уровня. Позволяет подключать до 256 внешних устройств к од­ному каналу. Обеспечивает «горячее» подключение и отключение устройств к работающему ком­пьютеру. Ско­рость передачи до 800 Мб/сек.

Применяют разные типы (конструкции, стандарты) шин, которые делят на:

1)Шины расширения – универсальные, можно подключать разные устройства.

2)Локальные шины , предназначенные для соединения конкретных типов уст­ройств.

Реально все сложнее – первоначально локальные конструкции шин разви­ва­лись и появлялась возможность подключения к ним других устройств.

Характеристики шин : 1)Рабочая частота – количество тактов передачи в секунду; 2)Скорость передачи данных (Мбайт/сек); 3)Разрядность шины данных –сколько бит может передаваться од­но­вре­мен­но; 4)Разрядность адресной шины , от которой зависит адресное пространство – с ка­­кой емкостью ОЗУ можно работать: а) 24 разряда –> 2 24 байт = 16 Мбайт; б) 32 разряда –> 2 32 байт = 4 Гбайт.

Наиболее распространенные типы (стандарты) шин:

    ISA (IndustryStandardArchitecture), использовалась в ранних ПК сейчас устарела. Ра­­бочая час­тота 8 МГц, скорость передачи 5,5 Мб/сек, шина данных 16 разрядов, адресная – 24.

    EISA (ExtendedISA) – усовершенствованный вариант. Ра­бочая частота 10–20 МГц, ско­рость передачи до 32 Мб/сек, шины данных и адресная по 32 разряда.

    VLB (VESALocalBus– локальная шина стандартаVESA–VideoElec­tro­nicsStandardsAs­­sociation– Ассоциация стандартов видеооборудования) – ло­каль­ная шина для связи МП и ОП, к которой потом стали подключать монитор. Ра­бочая частота до 50 МГц, ско­рость передачи до 50 Мб/сек, есть варианты с 32 и с 64 разрядами обеих шин.

    PCI (PeripherialComponentIterconnect) – создана как ло­каль­ная, но возможности рас­ши­ре­ны и теперь можно подключать разные устройства, в т.ч. шиныEISA. Ра­бочая частота до 66 МГц. Варианты: 33МГц – 264 Мб/сек – 32 разряда; 66МГц – 528 Мб/сек – 64 разряда.

    AGP (Advanced Graphic Port) – ло­каль­ная для подключения монитора (видеоадаптера). Ра­­­бочие частоты 33 и 66 МГц, скорость передачи до 1066 Мб/сек.

    USB (Universal Serial Bus – универсальная последовательная магистраль). Используется для подключения внешних устройств к СМ. Позволяет подключать до 256 внешних устройств к од­ному каналу. Обеспечивает «горячее» подключение и отключение устройств к работающему ком­пьютеру. Ско­рость передачи до 800 Мб/сек.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!