Энциклопедия мобильной связи

Какие файловые системы поддерживает windows. Файловые системы ос

Файловая система семейства Windows .

Файловая система (file system) – функциональная часть операционной системы, которая отвечает за обмен данными с внешними запоминающими устройствами. Операционными системами Windows используется, разработанная еще для DOS файловая система FAT , в которой для каждого раздели и тома DOS имеется загрузочный сектор, а каждый раздел DOS содержит две копии таблицы размещения файлов (file allocation table – FAT). FAT представляет собой матрицу, которая устанавливает соотношение между файлами и папками раздела и их физическим местоположением на жестком диске. Перед каждым разделом жесткого диска последовательно расположены две копии FAT. Подобно загрузочным секторам, FAT располагается за пределами области диска, видимой для файловой системы. При записи на диск файлы не обязательно занимают пространство, эквивалентное их размеру. Обычно файлы разбиваются на кластеры определенного размера, которые могут быть разбросаны по всему разделу. В результате таблица FAT представляет собой не список файлов и их местоположения, а список кластеров раздела и их содержимого, а в конце каждого описания содержится ссылка на следующий занимаемый файлом кластер.

Элементы таблицы FAT представляют собой 12-, 16- и 32-битовые шестнадцатеричные числа, размер которых определяется программой FDISK, а значение непосредственно создается программой FORMAT. Все гибкие диски, а также жесткие диски размером до 16 Мбайт используют в FAT 12-битовые элементы. Жесткие и съемные диски, имеющие размер от 16 Мбайт и более, обычно используют 16-битовые элементы. В Windows98 для дисков объемом более 512 Мбайт может использоваться файловая система FAT32 с 32-битовым элементами таблицы FAT. Очевидно, чем меньше размер кластеров раздела, тем больше их будет содержаться в этом разделе и тем больше размер таблицы размещения файлов FAT, а, значит, дольше а ней выполняется поиск информации, необходимой для доступа к файлу. Зачем же тогда необходимо уменьшать размер кластера? Дело в том, что размер файла может быть произвольным, однако, при записи на диск, Windows разбивает файл на несколько кластеров. В итоге последний кластер почти никогда не бывает заполнен до конца. Оставшееся пустое пространство, называемое люфтом, существует до тех пор, пока файл находится на диске. Таким образом, размер потерянного пространства зависит от размера кластера. Помимо поддержки больших разделов и меньших кластеров FAT32 иначе использует саму таблицу размещения файлов. В FAT использовались две идентичные таблицы, одна из которых служила основной, вторая при выполнении обычных процедур постоянно обновлялась, заполняясь при этом возможными ошибками первой копии. FAT32, при невозможном считывании данных из основной таблицы, обращается ко второй копии, которая и становится основной.Основным недостатком FAT32 является несовместимость с более ранними файловыми системами, а также системой NTFS, применяемой в Windows NT.

Когда Windows NT впервые вышла в свет, в ней была предусмотрена поддержка трех файловых систем. Это таблица размещения файлов (FAT), обеспечивавшая совместимость с MS-DOS, файловая система повышенной производительности (HPFS), обеспечивавшая совместимость с LAN Manager, и новая файловая система, носившая название Файловой системы новых технологий (NTFS ). NTFS обладала рядом преимуществ в сравнении с использовавшимися на тот момент для большинства файловых серверов файловыми системами. Для обеспечения целостности данных в NTFS имеется журнал транзакций. Подобный подход не исключает вероятности утраты информации, однако, значительно увеличивает вероятность того, что доступ к файловой системе будет возможен даже в том случае, если будет нарушена целостность системы сервера. Это становится возможным при использовании журнала транзакций для отслеживания незавершенных попыток записи на диск при последующей загрузке Windows NT. Журнал транзакций также используется для проверки диска на наличие ошибок вместо проверки каждого файла, в случае использования таблицы размещения файлов. Одним из основных преимуществ NTFS является безопасность. NTFS предоставляет возможность вносить записи контроля доступа (Access Control Entries, ACE) в список контроля доступа (Access Control List, ACL). ACE содержит идентификационное имя группы или пользователя и маркер доступа, который может быть использован для ограничения доступа к определенному каталогу или файлу.

Этот доступ может предполагать возможность чтения, записи, удаления, выполнения и даже владения файлами. С другой стороны, ACL представляет собой контейнер, содержащий одну или более записей ACE. Это позволяет ограничить доступ отдельных пользователей или групп пользователей к определенным каталогам или файлам в сети. Кроме того NTFS поддерживает работу с длинными именами, имеющими длину до 255 символов и содержащими заглавные и строчные буквы в любой последовательности. Одной из главных характеристик NTFS является автоматическое создание эквивалентных имен, совместимых с MS-DOS. Также NTFS имеет функцию сжатия, впервые появившуюся в NT версии 3.51. Она обеспечивает возможность сжатия любого файла, каталога или диска NTFS. В отличии от программ сжатия MS-DOS, создающих виртуальный диск, имеющий вид скрытого файла и подвергающий сжатию все данные на этом диске, Windows NT использует дополнительный уровень файловой подсистемы для сжатия и разуплотнения требуемых файлов без создания виртуального диска. Это оказывается полезным при сжатии либо определенной части диска (например, пользовательского каталога), либо файлов, имеющих определенный тип (например, графических файлов). Единственным недостатком сжатия NTFS является невысокий, в сравнении со схемами сжатия MS-DOS, уровень компрессии. Зато NTFS отличается более высокой надежностью и производительностью.

Файловая система определяет то, как будут храниться данные на диске, и какие принципы доступа к хранимой информации могут быть использованы при её считывании.

Мы привыкли воспринимать информацию на нашем ПК в виде конкретных файлов, аккуратно (или не очень:)) разложенных по папкам. А, между тем, Ваш компьютер работает с данными совсем по иному принципу. На жёстком диске для него не существует цельных файлов. Он "видит" лишь чётко адресованные секторы с байт-кодом. Причём код одного файла не всегда хранится в соседних секторах (так называемая фрагментация данных).

Как же компьютер "понимает", где ему, например, искать наш текстовый документ, который лежит, скажем, на Рабочем столе? За это, оказывается, отвечает файловая система жёсткого диска. И сегодня мы с Вами узнаем, какие бывают файловые системы и каковы их особенности.

Что такое файловая система

Чтобы понять, что такое файловая система, лучше всего воспользоваться методом аналогий. Представим, что жёсткий диск - это некий ящик, в котором хранятся разноцветные кубики. Эти кубики - части разных файлов, хранящихся в ограниченных по размеру ячейках, называемых кластерами . Они могут быть просто навалены кучей или иметь определённый порядок размещения. Так вот, если эти условные кубики хранятся не хаотичной грудой, а в соответствии с какой-то логикой, мы и можем говорить о наличии некоего аналога файловой системы.

Файловая система определяет порядок хранения данных на диске и принципы доступа к ним, однако, во многом тип файловой системы зависит и от типа носителя. Например, очевидно, что для магнитной ленты, которая поддерживает запись только последовательных блоков данных, подойдёт лишь одноуровневая файловая система с последовательным доступом к кластерам с информацией, а для современного SSD-диска - любая многоуровневая с произвольным доступом:

По принципу последовательности хранения блоков данных файловые системы, как мы уже увидели, можно разделить на те, которые хранят кластеры с фрагментами файла последовательно или произвольно . Что касается уровней, то по ним ФС можно разделить на одноуровневые и древовидные (многоуровневые).

В первом случае все файлы отображаются в виде единого плоского списка, а во втором - в виде иерархического. Уровень вложений при этом, как правило, неограничен, а ветвление идёт либо только от одного ("root" в UNIX), либо от нескольких корневых каталогов (логические диски в Windows):

К особенностям файловых систем можно также отнести наличие различных механизмов, защищающих структуру данных от сбоев. Одним из наиболее современных механизмов обеспечения отказоустойчивости ФС является журналирование . Оно позволяет записывать в специальные служебные файлы (их называют "журналами" или "логами") все действия, производимые с файлами.

Журналирование может быть полным , когда для каждой операции создаётся бэкап не только состояния кластеров, но и всех записанных данных. Такое журналирование часто применяют для различных баз данных, но оно существенно замедляет работу системы и увеличивает размер логов (фактически логи хранят полный бэкап всей файловой системы со всеми её данными).

Гораздо же более часто журналируются только логические операции и (опционально) состояние кластеров файловой системы. То есть, в журнал записывается только то, что, скажем, файл с именем "file.txt" размером 52 КБ был записан в такие-то кластеры. Содержимое же самого файла в логе никак не значится. Такой подход позволяет избежать дублирования данных, ускоряет процессы работы с файлами и уменьшает в разы размеры самого журнала. Единственный недостаток при таком способе журналирования - при сбое могут быть потеряны записываемые данные (поскольку их копии нет), но само состояние файловой системы останется работоспособным.

Форматирование

Поскольку мы говорим о файловых системах в контексте современных компьютеров с их жёсткими или SSD-дисками, то большее внимание мы уделим именно многоуровневым ФС с произвольным доступом к кластерам. Наиболее популярными в компьютерном мире сегодня являются: FAT32, NTFS, exFAT, ext3/ext4, ReiserFS и HFS+.

Изменение файловой системы на диске достигается его форматированием . Оно предусматривает создание на уровне жёсткого диска в начальном его секторе специальных служебных меток, определяющих принципы доступа к данным. При этом кластеры с имеющимися данными при форматировании, как правило, очищаются или помечаются как пустые и доступные для перезаписи. Исключением являются частные случаи конвертации файловой системы (например, из FAT32 в NTFS), при которой вся структура данных сохраняется.

Для форматирования можно воспользоваться штатными средствами операционной системы (например, консольными командами Linux или контекстным меню диска в Windows), функциями, доступными на подготовительном этапе установки ОС, или же специальными программами. Единственное, что следует учесть при программном решении, так это то, что Ваша операционная система может не поддерживать выбранную Вами файловую систему без установки дополнительных драйверов (например, ext3/4 в Windows):

Существует также понятие низкоуровневого форматирования . Изначально оно подразумевало очистку диска с записью в его кластеры специальной служебной информации для выравнивания считывающих головок. Для современных жёстких дисков такой функции на программном уровне уже не предусмотрено (сделать это можно лишь при помощи спецоборудования), однако понятие низкоуровневого форматирования сохранилось, правда немного трансформировалось.

Осуществляется оно сейчас при помощи специального софта (HDD Low Level Format Tool для Windows) или команд (DD для Linux). При его применении все кластеры жёсткого диска перезаписываются нулями и полностью уничтожается любая разметка. После этого файловая система фактически исчезает и в Windows отображается как RAW . Чтобы получить доступ к диску после такого форматирования, нужно отформатировать его в одной из доступных традиционных файловых систем более высокого уровня.

Особенности файловых систем

Ну а теперь рассмотрим некоторые особенности самых распространённых файловых систем.

FAT32

Одна из самых старых файловых систем для дисков, которая ещё широко используется в наши дни - FAT32 (сокр. англ. "File Allocation Table" - "таблица размещения файлов"). В силу своей распространённости, она поддерживается максимальным числом всевозможного оборудования, начиная с автомагнитол, кончая мощными современными компьютерами. Большинство флеш-накопителей, продаваемых сегодня, тоже отформатированы в FAT32.

Впервые данная ФС появилась в Windows 95 OSR2 в 1996 году, став логическим развитием ещё более ранней FAT16 (1983 год). Одной из основных причин перехода на новую файловую систему стало появление ёмких (по тем временам) жёстких дисков объёмом более 2 ГиБ (гибибайт - более точный вариант гигабайта (109 ) - 230 байт) (максимально возможный размер раздела в FAT16). FAT32 позволила использовать до 268 435 445 кластеров максимум по 32 КБ, что эквивалентно 8 ТиБ на том. Однако, если размер кластера будет стандартным (512 Б), то максимальный размер тома будет лишь чуть более 127 ГБ.

Основой FAT32, как следует из её названия, является файловая таблица. Она хранит в себе записи об имеющихся файлах, а также о времени их создания и последнего доступа к ним. Журналирование отсутствует, поэтому процессы чтения/записи в этой файловой системе происходят быстрее, нежели, например, в NTFS, которая ведёт более полные логи. Именно по причине хорошего быстродействия FAT32 всё ещё широко используется в наши дни.

Главным же недостатком FAT32 на данный момент является ограничение на максимальный размер файла - 4 ГиБ. Файлы, превышающие данный порог, должны быть разбиты на части, что в свою очередь, затрудняет доступ к ним. Кроме того, FAT32 имеет ещё некоторые ограничения в среде Windows. Например, штатными средствами Вы не сможете создать разделы более 32 ГБ. Поэтому флешки на 64 ГБ и более придётся форматировать либо при помощи специального софта, либо на Linux.

Однако, и в этом случае, хоть доступ к носителю и сохранится, но он будет затруднён "тормозами" как при чтении, так и при записи данных. Поэтому при использовании накопителей объёмом более 32 ГБ лучше отформатировать их в иных файловых системах, вроде exFAT или NTFS.

NTFS

Если линейка Windows 95/98 продолжала традиции уже на тот момент устаревающей операционной системы DOS, то новая линейка NT изначально была направлена на инновации. Поэтому с появлением Windows NT 3.1 в 1993 году специально под неё была создана новая файловая система NTFS (сокр. англ. "New Technology File System" - "файловая система новой технологии").

Эта файловая система до сих пор является основной для всех современных версий Windows, поскольку обеспечивает неплохую скорость работы, поддерживает накопители объёмом до 16 ЭиБ (эксбибайт - 260 ) (при максимальном размере кластера в 64 КБ) без ограничений по размерам файлов и имеет в своём арсенале довольно неплохой функционал. Например, NTFS является журналируемой файловой системой, а также поддерживает распределение ролей пользователей для доступа к отдельным данным, чего не было в той же FAT32.

Как и в FAT32, основой NTFS является таблица, но она являет собой более совершенную базу данных и называется MFT (сокр. англ. "Master File Table" - "главная файловая таблица"). Строки в этой таблице соответствуют файлам, хранящимся на конкретном разделе, а столбцы содержат атрибуты этих файлов (дата создания, размер, права доступа и т.п.).

Кроме того, для повышения отказоустойчивости в NTFS ведётся журнал USN (сокр. англ. "Update Sequence Number" - досл. "номер порядка обновления"). В этот журнал, аналогично таблице FAT32, записываются данные об изменениях того или иного файла. Однако, если в таблице FAT32 записывалось только время последнего доступа к данным, что не давало никаких особых практических выгод, то в USN может сохранятся предыдущее состояние файловой системы, что позволяет восстанавливать его в случае сбоев.

Ещё одной особенностью NTFS является поддержка альтернативных потоков данных (англ. "Alternate Data Streams" - ADS). Изначально они были задуманы для разграничения выполнения различных процессов. Потом (в Windows 2000) использовались для хранения некоторых атрибутов файлов (имя автора, иконка и т.п.), аналогично тому, как это делалось в HFS от MacOS. В современных Windows альтернативные потоки могут хранить практически любую информацию. Этим даже пользуются некоторые вирусы для скрытия своего присутствия в системе.

Дело в том, что альтернативные потоки не пеленгуются Проводником Windows и, по сути, невидимы для пользователей и большинства программ. Однако, Вы можете их просматривать и даже пользоваться ими, например, для скрытия каких-либо данных при помощи специального ПО. Смотреть данные в альтернативных потоках удобно при помощи программы NTFS Stream Explorer , а использовать их для сокрытия файлов при помощи Xp-lore :

Из дополнительных особенностей, которые заслуживают упоминания для NTFS, являются поддержка шифрования, сжатия данных, "мягких" и "жёстких" ссылок на файлы (для папок такой возможности, увы, нет), дисковых квот для разных пользователей системы, а также, естественно, разграничения прав на доступ к файлам.

NTFS изначально была создана исключительно для Windows, однако, сегодня поддерживается большинством медиаплееров (флешки могут быть тоже отформатированы в ней), операционными системами Linux и MacOS (правда, с некоторыми ограничениями на запись). Стоит, однако, отметить слабую поддержку NTFS на популярных игровых консолях. Из них поддержка её есть только у Xbox One.

exFAT

С увеличением во второй половине 2000-х годов объёмов флеш-накопителей стало ясно, что повсеместно используемая файловая система FAT32 скоро исчерпает свой потенциал. Использовать журналируемую NTFS для флешек с их ограниченным количеством циклов перезаписи и более медленной работой оказалось не совсем целесообразно. Поэтому в 2006 году всё та же корпорация Microsoft выпустила в свет новую файловую систему exFAT (сокр. англ. "Extended FAT" - "расширенная FAT") в комплекте с операционной системой Windows Embedded CE 6.0:

Она стала логическим продолжением развития FAT32, поэтому иногда её называют также FAT64. Главным козырем новой файловой системы стало снятие ограничения на размеры файлов и увеличение теоретического предела для дискового раздела до 16 ЭиБ (как в NTFS). При этом, в силу отсутствия журналирования, exFAT сохранила высокую скорость доступа к данным и компактность.

Ещё одним преимуществом exFAT стала возможность увеличения размера кластера до 32 МБ, что существенно позволило оптимизировать хранение больших файлов (например, видео). Кроме того, хранение данных в exFAT организовано таким образом, чтобы максимально минимизировать процессы фрагментации и перезаписи одних и тех же кластеров. Всё это сделано, опять же, в угоду оптимизации работы флеш-накопителей, для которых и была изначально разработана файловая система.

В силу того, что exFAT - относительно новая ФС, имеются некоторые ограничения по её использованию. В Windows полная её поддержка появилась лишь в Vista SP1 (хотя есть обновление для Windows XP SP2 - ). MacOS поддерживает exFAT с версии 10.6.5, а для Linux требуется устанавливать отдельный драйвер (в некоторых дистрибутивах он встроен, а в некоторых поддерживается только чтение).

ext2, ext3 и ext4

Если в среде Windows уже не первое десятилетие "правит бал" NTFS, то в лагере Linux традиционно царит очень большое разнообразие, в том числе и среди применяемых файловых систем. Правда, есть одна их линейка, которая используется большинством дистрибутивов по умолчанию. Это файловые системы семейства ext (англ. сокр. "Extended File System" - "расширенная файловая система"), которые с 1992 года изначально создавались именно под Linux.

Наибольшее распространение получила вторая версия ext2 , которая, как и NTFS, появилась ещё в 1993 году. Правда, в отличии от NTFS, ext2 не является журналируемой файловой системой. Это одновременно и её плюс, и минус. Плюс в том, что она является одной из самых быстрых ФС на запись данных. Также отсутствие журналирования делает предпочтительным её использование на флеш-накопителях и SSD-дисках. Платой же за быстродействие является низкая отказоустойчивость.

С целью улучшить стабильность ext2 в 2001 году была разработана её улучшенная версия ext3 . В ней появилось журналирование, которое может работать в трёх режимах: "writeback" (записываются только метаданные файловой системы), "ordered" (запись в журнал производится всегда ПЕРЕД изменением ФС) и "journal" (полный бэкап метаданных и самих изменяемых файлов).

В остальном особых новшеств не появилось. Да и скорость работы, по сравнению с предыдущей версией, существенно снизилась, поэтому уже в 2006 году появился прототип следующей стадии развития файловой системы ext4 , окончательный релиз которой состоялся в 2008 году. Четвёртая расширенная файловая система сохранила журналирование, но существенно повысила скорость чтения данных, которая стала даже выше, чем в ext2!

Из других новшеств стоит отметить увеличение максимального объёма раздела диска до 1 ЭиБ (с 32 ТиБ в ext2 и ext3), увеличение максимального размера файла до 16 ТиБ (с 2 ТиБ в более ранних версиях) и появление механизма экстентов (от англ. "extent" - "пространство"). Последний позволяет обращаться не к одиночным блокам, как это реализовано в других ФС (и в ext3 в частности), а к объединённым пространствам диска из последовательно идущих кластеров, общим объёмом до 128 МБ, что существенно повышает производительность и уменьшает фрагментацию данных.

На сегодняшний день поддержка файловых систем семейства ext той или иной версии присутствует по умолчанию почти во всех Linux"ах. Из них, практически все системы 2010 года выпуска и старше поддерживают ext4. Для доступа к ext-разделам в Windows и MacOS требуется устанавливать специальное ПО и/или драйверы.

ReiserFS

Ещё одной молодой и перспективной файловой системой "родом" из мира Linux является ReiserFS . Стараниями команды американского разработчика Ганса Райзера она стала первой журналируемой ФС, которая была добавлена в ядро Linux версии 2.4.1 в 2001 году, как раз перед добавлением поддержки ext3.

Фактически, как и появившаяся вслед за ней ext3, ReiserFS дала возможность использовать в Linux полное или частичное журналирование. Однако, в отличие от ext3, имела больший допустимый размер файла (до 8 ТиБ против 2) и максимальную длину имени файла равную 255 символам, а не байтам (4032 байт).

Также одной из особенностей ReiserFS, за которую она полюбилась пользователям стала возможность менять размер раздела без его размонтирования. Подобной функции не было у ext2, но позднее она появилась в ext3, хотя ReiserFS в этом плане тоже была первой.

Несмотря на ряд преимуществ перед альтернативными файловыми системами своего времени, ReiserFS также не была лишена недостатков. К наиболее существенным из них стоит отнести довольно слабую отказоустойчивость при повреждении структуры метаданных и неэффективный алгоритм дефрагментации. Поэтому с 2004 года началась работа по улучшению файловой системы, которая стала известна под названием Reiser4 .

Правда, несмотря на ряд нововведений, улучшений и исправлений, новая файловая система осталась уделом немногих энтузиастов. Дело в том, что в 2006 году Ганс Райзер совершил убийство собственной жены и был взят под стражу, а позднее и заключён в тюрьму. Соответственно, его компания Namesys, которая занималась разработкой Reiser4, была расформирована. С тех пор поддержку и доработку файловой системы осуществляет группа разработчиков под курированием русского разработчика Эдуарда Шишкина.

В конечном итоге поддержка Reiser4 в ядро Linux до сих пор так и не добавлена, но ReiserFS имеется. Поэтому многие продолжают использовать её в различных сборках как файловую систему по умолчанию.

HFS

Говоря о файловых системах, характерных для различных операционок, нельзя не упомянуть о MacOS с её HFS (сокр. англ. "Hierarchical File System" - "иерархическая файловая система"). Первые версии данной системы появились ещё в 1985 году вместе с операционной системой Macintosh System 1.0:

По современным меркам данная файловая система была весьма малоэффективной, поэтому в 1998 года вместе с MacOS 8.1 появилась её улучшенная версия под названием HFS+ или Mac OS Extended , которая поддерживается до сегодняшнего дня.

Как и предшественница, HFS+ делит диск на блоки по 512 КБ (по умолчанию), которые объединяет в кластеры, ответственные за хранение тех или иных файлов. Однако, новая ФС имеет 32-битную адресацию (вместо 16-битной). Это позволяет избежать ограничений на размер записываемого файла и обеспечивает поддержку максимального размера тома до 8 ЭиБ (а в последних ревизиях до 16 ЭиБ).

Из других преимуществ HFS+ нужно отметить журналирование (под него выделяется целый скрытый том под названием HFSJ), а также многопоточность. Причём, если в NTFS альтернативные потоки не имеют особо чёткой регламентации на типы хранимой информации, то в HFS+ конкретно выделяется два потока: поток данных (хранит основные данные файлов) и поток с ресурсами (хранит метаданные файлов).

HFS+ практически идеальна для традиционных HDD, однако, как и рассмотренная выше ReiserFS, имеет не самые эффективные алгоритмы борьбы с фрагментацией данных. Поэтому с распространением SSD-накопителей и внедрением их в технику Apple всё чаще на смену ей приходит файловая система, разработанная в 2016 году APFS (сокр. англ. "Apple File System" - "Файловая система Apple"), появившаяся в настольной macOS High Sierra (10.13) и мобильной iOS 10.3.

Во многом APFS сходна с exFAT в плане оптимизации процессов чтения/записи, однако, в отличие от неё, имеет журналирование, поддерживает распределение прав доступа к данным, имеет улучшенные алгоритмы шифрования и сжатия данных, а также может работать с томами размером аж до 9 ЙиБ (не смейтесь - "йобибайт ") за счёт 64-битной адресации!

Единственным минусом APFS является то, что она поддерживается лишь современной техникой Apple и пока недоступна на других платформах.

Сравнение файловых систем

Сегодня мы рассмотрели много различных популярных файловых систем, поэтому не мешало бы свести все данные о них в единую таблицу:

Характеристики / ФС FAT32 NTFS exFAT ext2 ext4 ReiserFS HFS+ APFS
Год внедрения 1996 1993 2008 1993 2006 2001 1998 2016
Сфера применения Windows, съёмные накопители, Linux съёмные накопители, Windows Vista+, Linux Linux, съёмные накопители Linux Linux MacOS MacOS
Максимальный размер файла 4 ГиБ 16 ЭиБ 16 ЭиБ 2 ТиБ 16 ТиБ 8 ТиБ 16 ЭиБ 9 ЙиБ
Максимальный размер тома 8 ТиБ 16 ЭиБ 64 ЗиБ (зебибайт) 32 ТиБ 1 ЭиБ 16 ТиБ 16 ЭиБ 9 ЙиБ
Журналирование - + - - + + + +
Управление правами доступа - + - - + + + +

Выводы

Как видим, для каждой операционной системы существует своя оптимальная файловая система, которая позволяет наиболее эффективно работать с данными. Например, для Windows - это NTFS, для MacOS - HFS+ или APFS. Исключением из правила можно считать лишь многочисленные дистрибутивы Linux. Здесь имеется не один десяток файловых систем, каждая со своими преимуществами и недостатками.

Большинству же пользователей Windows стоит запомнить лишь три наиболее распространённые ФС: FAT32 - для небольших флешек и старого оборудования, NTFS - для большинства компьютеров и exFAT - для ёмких флеш-накопителей и внешних SSD-дисков (об актуальности форматирования системного диска в exFAT до сих пор спорят в виду отсутствия журналирования и большей подверженности сбоям).

P.S. Разрешается свободно копировать и цитировать данную статью при условии указания открытой активной ссылки на источник и сохранения авторства Руслана Тертышного.

Файлы на компьютере создаются и размещаются на базе системных принципов. Благодаря их реализации, пользователь получает возможность комфортно обращаться к нужной информации, не задумываясь о сложных алгоритмах доступа к ней. Каким образом организована работа файловых систем? Какие из них самые популярные сегодня? Каковы различия между файловыми системами, адаптированными для ПК? И теми, что используются в мобильных устройствах - смартфонах или планшетах?

Файловые системы: определение

Согласно распространенному определению, файловая система - это совокупность алгоритмов и стандартов, задействуемых с целью организации эффективного доступа пользователя ПК к данным, размещенным на компьютере. Некоторые специалисты считают ее частью Другие IT-эксперты, признавая тот факт, что она непосредственно связана с ОС, полагают, что файловая система - независимый компонент управления компьютерными данными.

Каким образом использовались компьютеры до того, как была изобретена файловая система? Информатика - как научная дисциплина - зафиксировала тот факт, что долгое время управление данными осуществлялось посредством структурирования в рамках алгоритмов, заложенных в конкретных программах. Таким образом, один из критериев файловой системы - это наличие стандартов, одинаковых для большинства программ, использующих доступ к данным.

Принципы работы файловых систем

Файловая система - это, прежде всего, механизм, предполагающий задействование аппаратных ресурсов компьютера. Как правило, речь здесь идет о магнитных или лазерных носителях - жестких дисках, CD, DVD, флешках, еще не успевших устареть дискетах. Для того чтобы понять, как соответствующая система работает, определимся с тем, что же такое собственно сам файл.

Согласно общепринятому в среде IT-экспертов определению, это область данных фиксированной величины, выражаемая в базовых единицах измерения информации - байтах. Располагается файл на дисковом носителе, как правило, в виде нескольких связанных между собой блоков, имеющих конкретный "адрес" доступа. Файловая система определяет эти самые координаты и "сообщает" их, в свою очередь, ОС. Которая понятным образом транслирует соответствующие данные пользователю. Происходит обращение к данным с целью считывания их, модифицирования, создания новых. Конкретный алгоритм работы с "координатами" файлов может быть разным. Он зависит от типа компьютера, ОС, специфики хранящихся данных и прочих условий. Потому, есть различные виды файловых систем. Каждая из них оптимизирована для использования в конкретной ОС или для работы с определенными типами данных.

Адаптирование дискового носителя к использованию посредством алгоритмов конкретной файловой системы называется форматированием. Соответствующие аппаратные элементы диска - кластеры - подготавливаются к последующей записи на них файлов, а также чтения их в соответствии со стандартами, заложенными в той или иной системе управления данными. Как поменять файловую систему? В большинстве случаев это можно сделать, только переформатировав носитель данных. Как правило, файлы при этом стираются. Однако есть вариант, при котором, задействуя специальные программы, все же можно, хотя это, как правило, требует большого количества времени, поменять систему управления данными, оставив последние нетронутыми.

Файловые системы работают не без ошибок. Возможны некоторые сбои в организации работы с блоками данных. Но они в большинстве случаев не критичны. Как правило, нет проблем с тем, как исправить файловую систему, устранить ошибки. В ОС Windows для этого, в частности, предусмотрены встроенные программные решения, доступные для любого пользователя. Такие как, например, программа "Проверка диска".

Разновидности

Какие виды файловых систем можно назвать самыми распространенными? Вероятно, в первую очередь те, что используются самой популярной ОС для ПК в мире - Windows. Основные файловые системы Windows - это FAT, FAT32, NTFS и их различные модификации. Наряду с компьютерами популярность обрели смартфоны и планшеты. Большинство из них, если говорить о глобальном рынке и не рассматривать различия в технологических платформах, управляется ОС Android и iOS. Эти ОС задействуют свои алгоритмы работы с данными, отличные от тех, которыми характеризуются файловые системы Windows.

Стандарты, открытые для всех

Отметим, что в последнее время на мировом рынке электроники наблюдается некоторая унификация стандартов в аспекте работы ОС с различными типами данных. Это прослеживается в двух аспектах. Во-первых, на разных устройствах под управлением двух несхожих типов ОС часто используется одна и та же файловая система, в одинаковой степени совместимая с каждой ОС. Во-вторых, современные версии ОС, как правило, способны распознавать не только типичные для себя файловые системы, но и те, что традиционно используются в других ОС - как посредством встроенных алгоритмов, так и с помощью стороннего программного обеспечения. Например, современные версии Linux, как правило, без проблем распознают отмеченные файловые системы для Windows.

Структура файловой системы

Несмотря на то что виды файловых систем представлены в достаточно большом количестве, работают они в целом по очень схожим принципам (общую схему мы изложили выше) и в рамках сходных структурных элементов или объектов. Рассмотрим их. Каковы основные объекты файловой системы?

Один из ключевых - Он являет собой изолированную область данных, в которой могут размещаться файлы. Структура каталогов - иерархическая. Что это значит? Один или несколько каталогов могут размещаться в другом. Который, в свою очередь, входит в состав "вышестоящего". Самым "главным" считается корневой каталог. Если говорить о принципах, на базе которых работает файловая система Windows - 7, 8, XP или же другой версии, - корневым каталогом считается логический диск, обозначаемый буквой - как правило, C, D, E (но можно настроить любую, что есть в английском алфавите). Что касается, к примеру, ОС Linux, то там корневым каталогом выступает магнитный носитель в целом. В этой и других ОС, основанных на ее принципах - к таковым относится Android - логические диски не используются. Можно ли хранить файлы без каталогов? Да. Но это не очень удобно. Собственно, комфорт в пользовании ПК - одна из причин внедрения в файловых системах принципа распределения данных по каталогам. Называться, кстати, они могут по-разному. В Windows каталоги именуются папками, в Linux - в основном так же. Но традиционное, используемое в течение многих лет название каталогов в этой ОС - "директории". Как и в предшествующих Windows и Linux ОС - DOS, Unix.

В среде IT-специалистов нет однозначного мнения касательно того, считать ли файл структурным элементом соответствующей системы. Те, кто полагает, что это не совсем корректно, аргументируют свою точку зрения тем, что система вполне может существовать и без файлов. Пусть это с практической точки зрения и бесполезное явление. Даже если на диске никаких файлов не записано, соответствующая система все равно может присутствовать. Как правило, магнитные носители, продаваемые в магазинах, не содержат каких-либо файлов. Но на них уже присутствует соответствующая система. Согласно другой точке зрения, файлы нужно считать неотъемлемой составляющей систем, которыми они управляются. Почему? А потому, что, как считают эксперты, алгоритмы их задействования адаптированы прежде всего под работу именно с файлами в рамках тех или иных стандартов. Ни для чего другого рассматриваемые системы не предназначены.

Еще один элемент, присутствующий в большинстве файловых систем - Он представляет собой область данных, содержащих сведения о размещении конкретного файла в определенном месте. То есть разместить ярлык можно в одном месте диска, однако при этом возможно обеспечение доступа к нужной области данных, которая располагается в другой части носителя. Считать, что ярлыки - это полноценные объекты файловой системы, можно, если условиться, что таковыми являются также и файлы.

Так или иначе не будет ошибкой сказать, что все три типа данных - файлы, ярлыки и каталоги - являются элементами соответствующих систем. По крайней мере, этот тезис будет соответствовать одной из распространенных точек зрения. Важнейший аспект, характеризующий то, как работает файловая система - это принципы именования файлов и каталогов.

Имена файлов и каталогов в разных системах

Если условиться, что файлы - это все же составные элементы соответствующих им систем, то стоит рассмотреть их базовую структуру. Что можно отметить в первую очередь? Для удобства организации доступа к ним в большинстве современных систем управления данными предусмотрена двухуровневая структура именования файлов. Первый уровень - это название. Второй - расширение. Возьмем для примера музыкальный файл Dance.mp3. Dance - это название. Mp3 - расширение. Первое призвано раскрывать для пользователя суть содержания файла (а для программы быть ориентиром для быстрого доступа). Второе обозначает тип файла. Если он Mp3, то нетрудно догадаться, что речь идет о музыке. Файлы с расширением Doc - это, как правило, документы, Jpg - картинки, Html - веб-страницы.

Каталоги, в свою очередь, имеют одноуровневую структуру. У них есть только название, расширения нет. Если говорить о различиях между разными видами систем управления данными, то первое, на что следует обратить внимание - это как раз-таки реализуемые в них принципы именования файлов и каталогов. Касательно ОС Windows специфика следующая. В самой популярной в мире операционной системе файлы могут иметь название на любом языке. Максимальная длина, правда, при этом ограничена. Конкретный ее интервал зависит от используемой системы управления данными. Обычно это значения в пределах 200-260 символов.

Общее правило для всех ОС и соответствующих им систем управления данными - в одном каталоге не могут находиться файлы с одинаковыми наименованиями. В Linux при этом присутствует некая "либерализация" этого правила. В одном каталоге могут быть файлы с одинаковыми буквами, но в разном регистре. Например, Dance.mp3 и DANCE.mp3. В ОС Windows это невозможно. Эти же правила установлены также и в аспекте размещения каталогов внутри других.

Адресация файлов и каталогов

Адресация файлов и каталогов - важнейший элемент соответствующей системы. В ОС Windows ее пользовательский формат может выглядеть так: C:/Documents/Music/ - это доступ к каталогу Music. Если нас интересует какой-то конкретный файл, то адрес может выглядеть так: C:/Documents/Music/Dance.mp3. Почему "пользовательский"? Дело в том, что на уровне программно-аппаратного взаимодействия компонентов компьютера структура доступа к файлам гораздо более сложная. Файловая система определяет местоположение файловых блоков и взаимодействует с ОС по большей части в рамках скрытых от пользователя операций. Однако у пользователя ПК крайне редко возникает необходимость пользоваться иными форматами "адресов". Практически всегда доступ к файлам осуществляется в указанном стандарте.

Сравнение файловых систем для Windows

Мы изучили общие принципы функционирования файловых систем. Рассмотрим теперь особенности самых распространенных их видов. В Windows чаще всего используются такие файловые системы, как FAT, FAT32, NTFS, а также exFAT. Первая в этом ряду считается устаревшей. Она, вместе с тем, долгое время была неким флагманом индустрии, но по мере роста технологичности ПК ее возможности перестали удовлетворять запросам пользователей и потребностям в ресурсах со стороны программного обеспечения.

Призванная заменить FAT файловая система - это FAT32. Как считают многие IT-эксперты, сейчас она самая популярная, если говорить о рынке ПК под управлением Windows. Она чаще всего используется при хранении файлов на жестких дисках и флешках. Также можно отметить, что эта система управления данными достаточно регулярно используется в модулях памяти различных цифровых устройств - телефонах, фотоаппаратах. Основное преимущество FAT32, которое выделяют IT-эксперты, таким образом, Несмотря на то что создана была данная файловая система компанией Microsoft, работать с данными в рамках заложенных в ней алгоритмов могут большинство современных ОС, включая те, что инсталлированы на указанные типы цифровой техники.

Есть у системы FAT32 и ряд недостатков. Прежде всего можно отметить ограничение на размер одного взятого файла - он не может быть больше 4 Гб. Также в системе FAT32 нельзя встроенными средствами Windows задать логический диск, размер которого был бы больше 32 Гб. Но это можно сделать, установив дополнительное специализированное ПО.

Другая популярная система управления файлами, что разработана Microsoft - это NTFS. Как считают некоторые IT-эксперты, по большинству параметров она превосходит FAT32. Но этот тезис справедлив, если речь идет о работе компьютера под управлением Windows. Система NTFS не настолько универсальна, как FAT32. Особенности ее функционирования делают использование данной файловой системы не всегда комфортным, в частности, в мобильных устройствах. Одно из ключевых преимуществ NFTS - надежность. Например, в тех случаях, когда у жесткого диска внезапно отключается питание, вероятность того, что файлы повредятся, сводится к минимуму, благодаря предусмотренным в NTFS алгоритмам дублирования доступа к данным.

Одна из новейших файловых систем от Microsoft - exFAT. Наилучшим образом она адаптирована для флешек. Базовые принципы работы в ней те же, что и в FAT32, но присутствует также и значимая модернизация в некоторых аспектах: например, нет никаких ограничений по размеру единичного файла. Вместе с тем система exFAT, как отмечают многие IT-эксперты, в числе тех, что обладают низкой универсальностью. На компьютерах под управлением ОС, отличных от Windows, работа с файлами при использовании exFAT может быть затруднена. Более того, даже в некоторых версиях самой Windows, таких как XP, данные на дисках, отформатированных по алгоритмам exFAT, могут не читаться. Потребуется установка дополнительного драйвера.

Отметим, что по причине задействования достаточно широкого спектра файловых систем в ОС Windows у пользователя могут возникать периодические сложности в аспекте совместимости различных устройств с компьютером. В ряде случаев, например, требуется установить драйвер файловой системы WPD (Windows Portable Devices - технологии, используемой при работе с переносными устройствами). Иногда его может не оказаться под рукой у пользователя, вследствие чего внешний носитель ОС может не распознать. Файловая система WPD может потребовать дополнительных программных средств адаптации к операционной среде на конкретном компьютере. В ряде случаев пользователь будет вынужден обращаться к IT-специалистам для решения проблемы.

Как определить, какая именно файловая система - exFAT или NTFS, а может быть, FAT32 - оптимальна для использования в конкретных случаях? Рекомендации IT-специалистов в целом следующие. Можно задействовать два основных подхода. Согласно первому следует разграничивать типичные файловые системы жестких дисков, а также те, что лучше адаптированы к флеш-накопителям. FAT и FAT32, как считают многие специалисты, лучше подходят для "флешек", NTFS - для винчестеров (в силу технологических особенностей работы с данными).

В рамках второго подхода значение имеет величина носителя. Если речь идет об использовании сравнительно небольшого объема диска или флешки, отформатировать их можно в системе FAT32. Если диск большего размера, то можно попробовать exFAT. Но только в том случае, если не предполагается использование носителей на других компьютерах, особенно тех, где стоят не самые свежие версии Windows. Если речь идет о больших жестких дисках, в том числе и внешних, то их целесообразно форматировать в NTFS. Примерно таковы критерии, по которым может быть выбрана оптимальная файловая система - exFAT или NTFS, FAT32. То есть использовать какую-либо из них следует, учитывая размер носителя, его тип, а также версию ОС, на котором накопитель преимущественно используется.

Файловые системы для Mac

Другая популярная программно-аппаратная платформа на мировом рынке компьютерной техники - Macintosh от Apple. ПК данной линейки работают под управлением операционной системы Mac OS. Каковы особенности организации работы с файлами в компьютерах Mac? В самых современных ПК от Apple используется файловая система Mac OS Extended. Ранее в компьютерах Mac работа с данными управлялась в соответствии со стандартами HFS.

Главное, что можно отметить в аспекте ее характеристик: на диске, которым управляет файловая система Mac OS Extended, могут размещаться файлы очень большого объема - речь может идти о нескольких миллионах терабайт.

Файловая система в Android-устройствах

Самая популярная ОС для мобильных устройств - виде электронной техники, не уступающей по популярности ПК, - это Android. Каким образом осуществляется управление файлами на девайсах соответствующего типа? Отметим прежде всего, что данная операционная система - фактически "мобильная" адаптация ОС Linux, которая, благодаря открытому программному коду, может быть модифицирована с перспективой использования на самом широком спектре устройств. Поэтому управление файлами в мобильных девайсах под управлением Android осуществляется в целом по тем же принципам, что и в Linux. Некоторые из них мы отметили выше. В частности, управление файлами в Linux осуществляется без деления носителя на логические диски, как это происходит в Windows. Что еще интересного заключает в себе файловая система Android?

Корневым каталогом в Android, как правило, выступает область данных, именуемая /mnt. Соответственно, адрес нужного файла может выглядеть примерно так: /mnt/sd/photo.jpg. Кроме того, есть еще одна особенность системы управления данными, что реализована в данной мобильной ОС. Дело в том, что флеш-память девайса, как правило, классифицирована на несколько разделов, таких как, например, System или Data. При этом, изначально заданный размер каждого из них изменить нельзя. Приблизительную аналогию касательно данного технологического аспекта можно обнаружить, вспомнив, что нельзя (если не использовать специального ПО) менять размер логических дисков в Windows. Он должен быть фиксированным.

Еще одна интересная особенность организации работы с файлами в Android - соответствующая операционная система, как правило, записывает новые данные в конкретную область диска - Data. Работа, к примеру, с разделом System при этом не осуществляется. Поэтому, когда пользователь задействует функцию сброса программных настроек смартфона или планшета до уровня "заводских", то на практике это означает, что те файлы, что записаны в область Data, попросту стираются. Раздел System же, как правило, остается неизменным. Более того, какие-либо корректировки содержимого в System пользователь, не обладая специализированным ПО, осуществлять не может. Процедура, связанная с обновлением системной области носителя в Android-устройстве, называется перепрошивкой. Это не форматирование, хотя обе операции часто осуществляются одновременно. Как правило, перепрошивка применяется с целью установки на мобильное устройство более новой версии ОС Android.

Таким образом, ключевые принципы, на базе которых работает файловая система Android - отсутствие логических дисков, а также жесткое разграничение доступа к системным и пользовательским данным. Нельзя сказать, что данный подход принципиально отличается от того, что реализован в Windows, однако, как считают многие IT-эксперты, в ОС от Microsoft для пользователей присутствует несколько большая свобода в работе с файлами. Впрочем, как полагают некоторые специалисты, это нельзя считать однозначным преимуществом Windows. "Либеральный" режим в аспекте управления файлами задействуют, конечно же, не только пользователи, но и компьютерные вирусы, к которым Windows очень восприимчива (в отличие от Linux и ее "мобильной" реализации в виде Android). В этом, как считают эксперты, заключается одна из причин того, что вирусов для Android-устройств столь немного - чисто с технологической точки зрения они не могут в полной мере функционировать в операционной среде, работающей по принципам строгого контроля доступа к файлам.

Вы знаете, что Windows Phone использует NTFS? Почему большинство карт памяти и почти все USB-накопители по-прежнему используют старый-добрый FAT? Почему вы можете хранить полноразмерные HD-фильмы на некоторых флеш-накопителях и не можете на других? Почему некоторые устройства поддерживают только карты памяти SDHC до 32 ГБ, и что можно сделать, чтобы заставить их использовать 64 ГБ SDXC? Эти и многие другие вопросы связаны с типом файловой системы, используемой конкретным устройством хранения. Но как это связано с Windows?

В начале истории персональных компьютеров (думаю, в эпоху текстовых DOS-боксов и дискет) единственной используемой файловой системой была FAT12. С появлением жестких дисков, способных хранить несколько мегабайт данных (да, именно мегабайт, а не гигабайт!) была разработана новая версия FAT под названием FAT16. Под эту файловую систему и разрабатывался Windows 95, получив лишь «апгрейд» в виде поддержки более длинных имен файлов. В Windows 98 Microsoft добавили поддержку еще одной новой версии FAT под названием FAT32 для поддержки больших жестких дисков (да, к тому времени мы уже начали измерять дисковое пространство в гигабайтах).

В параллельной вселенной Windows NT Microsoft все время использовала файловую систему новых технологий, или NTFS. Windows NT 4, Windows 2000, а затем Windows XP, Vista, Windows 7, 8, 8.1 и новые Windows 10 используют NTFS.

В еще одной параллельной вселенной – вселенной съемного хранилища вы можете выбирать между универсальным FAT32 (при этом столкнувшись с его ограничением в размерах файлов в 4 ГБ) и более новым, но не так широко поддерживаемым (из-за ограничений по лицензированию) exFAT. Кстати, exFAT используется в качестве файловой системы по выбору на всех картах SDXC емкостью 64 ГБ и более.

Итак, в настоящее время у нас есть три различных семейства файловых систем: древняя, но все же широко применяемая FAT32, новая NTFS и свежеразработанная, оптимизированная на основе Solid ExFAT. Какую из этих файловых систем использовать, и когда? И каковы различия между ними?

FAT32: Очевидный выбор

FAT32 по-прежнему остается единственной файловой системой, используемой в Windows 98 или Windows ME. FAT32 фактически является файловой системой выбора для карт памяти SD до 32ГБ включительно. Наконец, FAT32 часто используется для форматирования USB-накопителей, в том числе емкостью 64ГБ и выше.

Старичок FAT32… Его основные ограничения хорошо известны. FAT32 поддерживает работу с файлами размером не более 4 ГБ. Если кажется, что для одного файла это много, вспомните о том, что один видеоролик в формате HD занимает от 4,5 до 10 ГБ, и сразу станет понятно, насколько данное ограничение существенно в современных реалиях. Его другие ограничения включают в себя отсутствие надежной поддержки, абсолютное отсутствие контроля доступа, отсутствия шифрования, сжатия или отказоустойчивости.

Иначе говоря, это совершенно простая и легкая файловая система, которая подходит практически для любой портативной электроники с низкой производительностью, такой как цифровые камеры и видеокамеры, простые смартфоны, MP3-плееры и аналогичные устройства. Из-за его почтенного возраста и широкой популярности в Windows с 1997 года FAT32 поддерживается практически всей техникой, включая холодильник и кофеварку. Другими словами, если вы хотите носить с собой одно съемное запоминающее устройство и быть уверенным, что его можно использовать с любым подключаемым модулем, FAT32 – то, что вам нужно.

NTFS: системный диск

Однако ограничения FAT32 не позволят эффективно использовать ее в современных вычислительных средах. Отсутствие контроля доступа – это одно, абсолютное отсутствие ведения журнала и каких-либо намеков на отказоустойчивость – это другое. Ограниченный размер файла также является огромным минусом. В результате Microsoft представила новую файловую систему, которую они назвали файловой системой новых технологий, или NTFS.

В NTFS есть все, чего не хватает FAT. Мощные параметры контроля доступа? Пожалуйста. Отказоустойчивость и ведение журнала? Получите. Мгновенное сжатие и шифрование отдельных файлов, папок и целых томов диска? Конечно. Альтернативные потоки данных, повышенные меры безопасности, резервное копирование самой файловой системы и важных системных файлов и многие другие функции… Начиная с его первоначального выпуска в 1994 году, NTFS получала все новые обновления, в том числе, повышающие ее совместимость. Ее великолепный дизайн и простая реализация по-прежнему не имеют аналогов среди других файловых систем даже сегодня. Она достаточно универсальна для использования даже на смартфонах начального уровня под управлением Windows Phone 8 и 8.1. Но, если это такая отличная файловая система, почему ее не используют все и везде?

Как вы могли ожидать, NTFS не лишена недостатков. Разработанная еще в 1994 году для серверных операций, эта файловая система всегда требовала большой вычислительной мощности для поддержания своих многочисленных структур. Ее системные записи быстро растут, занимают драгоценное пространство и добавляют дополнительную нагрузку на эти устройства хранения, использующие флэш-память NAND. Наконец, если использовать что-либо, кроме больших жестких дисков, ее накладные расходы окажутся слишком велики, поэтому всеобщее признание система пока так и не завоевала. И последнее, но не менее важное: NTFS запатентована Microsoft, которые не желают открывать лицензии на эту файловую систему конкурентам.

exFAT: лучшее, если поддерживается…

Чтобы преодолеть ограничения FAT32 и уменьшить дополнительную нагрузку, оказываемую NTFS на носители на основе NAND, Microsoft разработала еще одну файловую систему под названием Extended FAT или exFAT. Эта файловая система в значительной степени основана на той же концепции, что и оригинальный FAT, только теперь она является настоящей 64-битной файловой системой без ограничения размера файла, существующего в FAT32. Именно поэтому exFAT используется как стандарт для больших SD-карт (стандарт SDXC требует, чтобы все SD-карты размером 64 ГБ и более были отформатированы с помощью exFAT). Поэтому, если вы покупаете 64-гигабайтную карту microSDXC, она будет работать на основе exFAT … и по этой причине она может не распознаваться вашим смартфоном или планшетом.

Причина, по которой exFAT не заменила древний FAT32 повсюду – платное лицензирование. В отличие от FAT32, которая бесплатна для всех без роялти, с производителей, которые хотят использовать exFAT на своих устройствах Microsoft взимает плату за лицензирование. В результате создатели телефонов Android, низкоуровневых Android-планшетов и дешевых камеры предпочитают сэкономить несколько центов стоимости устройств (в пересчете на единицу выпущенной техники) на лицензировании, предпочитая исключить exFAT из списка поддерживаемых файловых систем. В результате, если вы вставляете новую 64-гигабайтную микро SD-карту в такое устройство, карта, скорее всего, не будет распознана.

Можете ли вы самолично преодолеть это ограничение? В большинстве случаев да, и довольно легко. Просто подключите свою SD-карту к ПК через устройство чтения карт и отформатируйте ее с помощью … вы догадались… FAT32! Таким образом, вы потеряете возможность хранить на ней файлы размером более 4 ГБ, но ваша карта памяти, скорее всего, будет распознана и будет бесперебойно работать на устройстве Android, которое по техническим характеристикам вроде как и не должно поддерживать SD-карты емкостью более 32 ГБ.

(Обратите внимание, что некоторые устройства могут быть слишком старыми, чтобы распознавать карты памяти SDXC чисто физически. Да, таковые не производятся вот уже несколько лет, но выпущенные ранее устройства могут по-прежнему не поддерживать карту SDXC независимо от того, с какой файловой системой она поставляются)

Однако минуточку… Windows Phone – это ОС Microsoft, так не будут ли устройства Windows Phone поддерживать exFAT по умолчанию? Так и есть! Windows Phone 8 и 8.1 действительно поставляются со встроенной поддержкой exFAT, бесплатной для производителей, которые хотят выпускать устройства для платформы Windows Phone. Microsoft предлагает бесплатную лицензию exFAT в рамках своего «пакета стимулирования», призванного побудить большее число производителей присоединиться к платформе Windows Phone.

Наконец, все или почти все планшеты с операционной системой Windows RT и полной версией Windows 8 или 8.1 поддерживают exFAT и распознают 64-ГБ и более крупные SD-карты без труда.

Восстановление файловых систем Windows

Практически каждый инструмент восстановления данных на базе Windows предлагает поддержку FAT32 и NTFS. Инструменты, поддерживающие exFAT, гораздо менее доступны из-за ограничений лицензирования Microsoft. Одним из инструментов поддержки всех трех файловых систем Windows является RS Partition Recovery .

Наконец, если вам нужна только поддержка одной из файловых систем, вы можете сэкономить, выбрав

Ядром операционной системы является модуль, который обеспечивает управление файлами - файловая система .

Основная задача файловой системы - обеспечение взаимодействия программ и физических устройств ввода/вывода (различных накопителей). Она также определяет структуру хранения файлов и каталогов на диске, правила задания имен файлов, допустимые атрибуты файлов, права доступа и др.

Обычно файловую систему воспринимают и как средство управления файлами, и как общее хранилище файлов.

Файл - это поименованная последовательность любых данных, стандартная структура которой обеспечивает ее размещение в памяти машины. Файл может содержать программу, числовые данные, текст, закодированное изображение или звук и др. Для каждого файла на диске выделяется поименованная область, причем файл не требует для своего размещения непрерывное пространство, так как может занимать свободные кластеры в разных частях диска.

Имя файла - это символьная строка, правила построения которой зависят от конкретной файловой системы. Максимальная длина имени файла в Windows составляет 255 символов. Имена могут содержать любые символы, включая пробелы, кроме следующих: прямой и обратный слэш (\ и /), двоеточие (:), звездочка (*), знак вопроса (?), двойная кавычка ("), знаков меньше и больше (< и >), знака «трубопровода» (|). Система сохраняет использованные в длинных именах строчные буквы.

Помимо имени, файл имеет расширение (тип) длиной до 3 символов, которое отделяется от имени точкой. К свойствам файла также относятся: реальный размер и объем занимаемого дискового пространства; время создания, последнего изменения и доступа; имя создателя файла; пароль для доступа, атрибуты и др.

Файл может иметь следующие атрибуты:

R (Read-Only) - «только для чтения». При попытке модифицировать или удалить файл с этим атрибутом будет выдано соответствующее сообщение.

H (Hidden) - «скрытый файл». При просмотре содержимого папки (без специальных установок или ключа) сведения о файлах с таким атрибутом не выдаются.

A (Archive) - «неархивированный файл». Этот атрибут устанавливается при создании каждого файла и снимается средствами архивации и резервирования файлов.

Для удобства работы с файлами и их систематизации на диске создаются папки (каталоги), структура которых определяет логическую организацию данных.

Папка (каталог) - это специальное место на диске, в котором хранятся имена файлов, сведения об их размерах, времени последнего обновления и т.д. Имена папок образуются по тем же правилам, что и имена файлов.

Структура папок в Windows иерархическая (древовидная). Папка самого верхнего уровня - главная (корневая) - создается автоматически и не имеет имени. В ней находятся сведения не только файлов, но и о папках первого уровня (папки первого и последующих уровней создаются пользователем). Папка, с которой в данный момент работает пользователь, называется текущей .

С папками и файлами могут выполняться операции создания, удаления, копирования и перемещения, а также изменение их свойств и управление доступом.

Физическая организация данных на носителе зависит от файловой системы, которая предусматривает выделение в процессе форматирования диска специальных областей: системной области иобласти данных . Основными компонентами системной области являются: загрузочная запись, таблицы размещения файлов и корневой каталог (папка). Область данных содержит файлы и папки.

Вся область данных диска делится на кластеры ,которые представляют собой неделимые блоки данных одного размера на диске. Все кластеры пронумерованы. В самом начале диска размещается таблица размещения файлов, содержащая столько записей, сколько кластеров доступно на диске. В ней содержатся сведения о номерах кластеров, в которых размещается файл, отмечены неиспользуемые кластеры, а также поврежденные кластеры, которые помечаются определенным значением, после чего уже никогда не употребляются.

Каждый кластер файла содержит номер следующего в цепочке его кластеров. Таким образом, достаточно знать номер первого кластера в цепочке, который хранится в оглавлении диска, чтобы определить номера всех кластеров, содержащих данный файл. Занимаемый файлом объем кратен количеству кластеров. Наличие у каждого кластера индивидуального номера позволяет найти область расположения файла, причем необязательно, чтобы его кластеры располагались рядом. Если разные фрагменты файла располагаются в несмежных кластерах, то говорят о фрагментации файла.

Каждый диск на компьютере имеет уникальное имя. Диски именуются буквами латинского алфавита. Обычно накопителю на гибком магнитном диске (НГМД) присваивается имя А:, а винчестеру (НЖМД) - С:.

Жесткий диск представляет собой физическое устройство. Для организации эффективной работы с дисковым пространством жесткого магнитного диска с помощью специальной программы его разбивают на ряд разделов - логических дисков , каждый из которых рассматривается системой как отдельный диск и именуется последующими буквами латинского алфавита (D, E и т.д.).

Windows XP позволяет форматировать жесткий диск в файловой системе FAT или NTFS.

Система FAT (File Allocation Table) - представляет собой таблицу размещения файлов MS-DOS и Windows 9x и Me, поэтому понимается этими ОС. Но она имеет низкую отказоустойчивость, и при аварийном отключении питания велика вероятность потери данных.

Система NTFS (New Technology File System) - была разработана Microsoft специально для Windows NT. Она гарантирует сохранность данных в случае копирования даже при программно-аппаратном сбое или отключении электропитания, превосходит FAT по эффективности использования ресурсов (например, работает с файлами размером более 4 Гб), предоставляет возможность создавать «динамические» жесткие диски, объединяющие несколько папок, предоставляет средства для разграничения доступа и защиты информации и др.

Перевод логического диска из FAT в NTFS осуществляется штатной программой Windows или специальными программами без потери информации. Также существуют специальные программы, которые могут производить конвертацию из NTFS в FAT, однако в большинстве случаев такой перевод требует форматирования диска.

На диске может храниться огромное количество разнообразных файлов. Для удобства работы с файлами, их систематизации по назначению, содержанию, авторству или другим признакам на диске создаются каталоги, структура которых определяет логическую организацию данных. Каталог - это специальное место на диске, в котором хранятся имена файлов, сведения об их размерах, времени последнего обновления, свойствах и т.д. Каталог самого верхнего уровня - корневой (главный) каталог диска создается автоматически и не имеет имени. В нем находятся имена не только файлов, но и подкаталогов первого уровня (каталоги первого и последующих уровней создаются пользователем). Подкаталог первого уровня может содержать имена файлов и подкаталогов второго уровня и т.д. Каталог, с которым в данный момент работает пользователь, называется текущим.

Имена файлов и их атрибуты хранятся в каталоге. Если в каталоге хранится имя файла, то говорят, что этот файл находится в данном каталоге. Обращение к каталогу, если он не корневой, осуществляется по имени 3 .

На каждом диске может быть несколько каталогов. В каждом каталоге могут присутствовать файлы и другие каталоги. В зависимости от файловой системы структура каталогов может быть древовидной, когда каталог может входить только в один каталог более высокого уровня (рис. 3.2, а), и сетевой, когда каталог может входить в различные каталоги (рис. 3.2,6). Сетевая структура реализована в Unix, древовидная - в ОС семейства Windows.

Рис. 3.2. Структура каталога: а - древовидная; б - сетевая

В Windows каталог называется папкой. С папками (каталогами) и файлами могут выполняться операции создания, удаления, копирования и перемещения, а также изменение их свойств и управление доступом.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!