Энциклопедия мобильной связи

Как расшифровать бинарный код онлайн. Что такое двоичный код? Двоичная система счисления

Двоичный переводчик - это инструмент для перевода двоичного кода в текст для чтения или печати. Вы можете перевести двоичный файл на английский, используя два метода; ASCII и Unicode.

Двоичная система счисления

Система двоичного декодера основана на числе 2 (основание). Он состоит только из двух чисел как системы счисления base-2: 0 и 1.

Хотя бинарная система применялась в различных целях в древнем Египте, Китае и Индии, она стала языком электроники и компьютеров современного мира. Это наиболее эффективная система для обнаружения выключенного (0) и включенного (1) состояния электрического сигнала. Это также основа двоичного кода в текст, который используется на компьютерах для составления данных. Даже цифровой текст, который вы сейчас читаете, состоит из двоичных чисел. Но вы можете прочитать этот текст, потому что мы расшифровали двоичный код перевод файл, используя двоичный код слова.

Что такое ASCII?

ASCII - это стандарт кодирования символов для электронной связи, сокращенный от Американского стандартного кода для обмена информацией. В компьютерах, телекоммуникационном оборудовании и других устройствах коды ASCII представляют текст. Хотя поддерживается много дополнительных символов, большинство современных схем кодирования символов основаны на ASCII.

ASCII - это традиционное название для системы кодирования; Управление по присвоению номеров в Интернете (IANA) предпочитает обновленное имя США-ASCII, которое поясняет, что эта система была разработана в США и основана на преимущественно используемых типографских символах. ASCII является одним из основных моментов IEEE.

Бинарный в ASCII

Первоначально основанный на английском алфавите, ASCII кодирует 128 указанных семибитных целочисленных символов. Можно печатать 95 кодированных символов, включая цифры от 0 до 9, строчные буквы от a до z, прописные буквы от A до Z и символы пунктуации. Кроме того, 33 непечатных контрольных кода, полученных с помощью машин Teletype, были включены в исходную спецификацию ASCII; большинство из них в настоящее время устарели, хотя некоторые все еще широко используются, такие как возврат каретки, перевод строки и коды табуляции.

Например, двоичное число 1101001 = шестнадцатеричное 69 (i - девятая буква) = десятичное число 105 будет представлять строчный I в кодировке ASCII.

Использование ASCII

Как уже упоминалось выше, используя ASCII, вы можете перевести компьютерный текст в человеческий текст. Проще говоря, это переводчик с бинарного на английский. Все компьютеры получают сообщения в двоичном, 0 и 1 серии. Тем не менее, так же, как английский и испанский могут использовать один и тот же алфавит, но для многих похожих слов у них совершенно разные слова, у компьютеров также есть своя языковая версия. ASCII используется как метод, который позволяет всем компьютерам обмениваться документами и файлами на одном языке.

ASCII важен, потому что при разработке компьютерам был дан общий язык.

В 1963 году ASCII впервые был коммерчески использован в качестве семибитного кода телепринтера для сети TWX (Teletype Writer eXchange) American Telephone & Telegraph. Первоначально TWX использовал предыдущую пятибитную ITA2, которую также использовала конкурирующая телепринтерная система Telex. Боб Бемер представил такие функции, как последовательность побега. По словам Бемера, его британский коллега Хью МакГрегор Росс помог популяризировать эту работу - «настолько, что код, который стал ASCII, впервые был назван Кодексом Бемера-Росса в Европе». Из-за его обширной работы ASCII, Бемер был назван "отцом ASCII".

До декабря 2007 года, когда кодировка UTF-8 превосходила ее, ASCII была наиболее распространенной кодировкой символов во Всемирной паутине; UTF-8 обратно совместим с ASCII.

UTF-8 (Юникод)

UTF-8 - это кодировка символов, которая может быть такой же компактной, как ASCII, но также может содержать любые символы Юникода (с некоторым увеличением размера файла). UTF - это формат преобразования Unicode. «8» означает представление символа с использованием 8-битных блоков. Количество блоков, которые должен представлять персонаж, варьируется от 1 до 4. Одной из действительно приятных особенностей UTF-8 является то, что он совместим со строками с нулевым символом в конце. При кодировании ни один символ не будет иметь байта nul (0).

Unicode и универсальный набор символов (UCS) ISO / IEC 10646 имеют гораздо более широкий диапазон символов, и их различные формы кодирования начали быстро заменять ISO / IEC 8859 и ASCII во многих ситуациях. Хотя ASCII ограничен 128 символами, Unicode и UCS поддерживают большее количество символов посредством разделения уникальных концепций идентификации (с использованием натуральных чисел, называемых кодовыми точками) и кодирования (до двоичных форматов UTF-8, UTF-16 и UTF-32-битных).).

Разница между ASCII и UTF-8

ASCII был включен как первые 128 символов в набор символов Unicode (1991), поэтому 7-разрядные символы ASCII в обоих наборах имеют одинаковые числовые коды. Это позволяет UTF-8 быть совместимым с 7-битным ASCII, поскольку файл UTF-8 с только символами ASCII идентичен файлу ASCII с той же последовательностью символов. Что еще более важно, прямая совместимость обеспечивается, поскольку программное обеспечение, которое распознает только 7-битные символы ASCII как специальные и не изменяет байты с самым высоким установленным битом (как это часто делается для поддержки 8-битных расширений ASCII, таких как ISO-8859-1), будет сохранить неизмененные данные UTF-8.

Приложения переводчика двоичного кода

Наиболее распространенное применение для этой системы счисления можно увидеть в компьютерных технологиях. В конце концов, основой всего компьютерного языка и программирования является двузначная система счисления, используемая в цифровом кодировании.

Это то, что составляет процесс цифрового кодирования, беря данные и затем изображая их с ограниченными битами информации. Ограниченная информация состоит из нулей и единиц двоичной системы. Изображения на экране вашего компьютера являются примером этого. Для кодирования этих изображений для каждого пикселя используется двоичная строка.

Если на экране используется 16-битный код, каждому пикселю будут даны инструкции, какой цвет отображать на основе того, какие биты равны 0 и 1. В результате получается более 65 000 цветов, представленных 2 ^ 16. В дополнение к этому вы найдете применение двоичной системы счисления в математической ветви, известной как булева алгебра.

Ценности логики и истины относятся к этой области математики. В этом приложении заявлениям присваивается 0 или 1 в зависимости от того, являются ли они истинными или ложными. Вы можете попробовать преобразование двоичного в текстовое, десятичное в двоичное, двоичное в десятичное преобразование, если вы ищете инструмент, который помогает в этом приложении.

Преимущество двоичной системы счисления

Система двоичных чисел полезна для ряда вещей. Например, компьютер щелкает переключателями для добавления чисел. Вы можете стимулировать добавление компьютера, добавляя двоичные числа в систему. В настоящее время есть две основные причины использования этой компьютерной системы счисления. Во-первых, это может обеспечить надежность диапазона безопасности. Вторично и самое главное, это помогает минимизировать необходимые схемы. Это уменьшает необходимое пространство, потребляемую энергию и расходы.

Вы можете кодировать или переводить двоичные сообщения, написанные двоичными числами. Например,

(01101001) (01101100011011110111011001100101) (011110010110111101110101) является декодированным сообщением. Когда вы скопируете и вставите эти цифры в наш бинарный переводчик, вы получите следующий текст на английском языке:

Я люблю тебя

Это означает

(01101001) (01101100011011110111011001100101) (011110010110111101110101) = Я тебя люблю

таблицы

двоичный

шестнадцатеричный

Все символы и буквы могут быть закодированы при помощи восьми двоичных бит. Наиболее распространенными таблицами представления букв в двоичном коде являются ASCII и ANSI, их можно использовать для записи текстов в микропроцессорах. В таблицах ASCII и ANSI первые 128 символов совпадают. В этой части таблицы содержатся коды цифр, знаков препинания, латинские буквы верхнего и нижнего регистров и управляющие символы. Национальные расширения символьных таблиц и символы псевдографики содержатся в последних 128 кодах этих таблиц, поэтому русские тексты в операционных системах DOS и WINDOWS не совпадают.

При первом знакомстве с компьютерами и микропроцессорами может возникнуть вопрос — "как преобразовать текст в двоичный код?" Однако это преобразование является наиболее простым действием! Для этого нужно воспользоваться любым текстовым редактором. В том числе подойдет и простейшая программа notepad, входящая в состав операционной системы Windows. Подобные же редакторы присутствуют во всех средах программирования для языков, таких как СИ, Паскаль или Ява. Следует отметить, что наиболее распространенный текстовый редактор Word для простого преобразования текста в двоичный код не подходит. Этот тестовый редактор вводит огромное количество дополнительной информации, такой как цвет букв, наклон, подчеркивание, язык, на котором написана конкретная фраза, шрифт.

Следует отметить, что на самом деле комбинация нулей и единиц, при помощи которых кодируется текстовая информация двоичным кодом не является, т.к. биты в этом коде не подчиняются законам . Однако в Интернете поисковая фраза "представление букв в двоичном коде" является самой распространенной. В таблице 1 приведено соответствие двоичных кодов буквам латинского алфавита. Для краткости записи в этой таблице последовательность нулей и единиц представлена в десятичном и шестнадцатеричном кодах.

Таблица 1 Таблица представления латинских букв в двоичном коде (ASCII)

Десятичный код Шестнадцатеричный код Отображаемый символ Значение
0 00 NUL
1 01 (слово управления дисплеем)
2 02 (Первое передаваемое слово)
3 03 ETX (Последнее слово передачи)
4 04 EOT (конец передачи)
5 05 ENQ (инициализация)
6 06 ACK (подтверждение приема)
7 07 BEL
8 08 BS
9 09 HT (горизонтальная табуляция
10 0A LF (перевод строки)
11 0B VT (вертикальная табуляция)
12 FF (следующая страница)
13 0D CR (возврат каретки)
14 0E SO (двойная ширина)
15 0F SI (уплотненная печать)
16 10 DLE
17 11 DC1
18 12 DC2 (отмена уплотненной печати)
19 13 DC3 (готовность)
20 14 DC4 (отмена двойной ширины)
21 15 § NAC (неподтверждение приема)
22 16 SYN
23 17 ETB
24 18 CAN
25 19 EM
26 1A SUB
27 1B ESC (начало управл. послед.)
28 1C FS
29 1D GS
30 1E RS
31 1F US
32 20 Пробел
33 21 ! Восклицательный знак
34 22 « Угловая скобка
35 23 # Знак номера
36 24 $ Знак денежной единицы (доллар)
37 25 % Знак процента
38 26 & Амперсанд
39 27 " Апостроф
40 28 ( Открывающая скобка
41 29 ) Закрывающая скобка
42 2A * Звездочка
43 2B + Знак плюс
44 2C , Запятая
45 2D - Знак минус
46 2E . Точка
47 2F / Дробная черта
48 30 0 Цифра ноль
49 31 1 Цифра один
50 32 2 Цифра два
51 33 3 Цифра три
52 34 4 Цифра четыре
53 35 5 Цифра пять
54 36 6 Цифра шесть
55 37 7 Цифра семь
56 38 8 Цифра восемь
57 39 9 Цифра девять
58 3A : Двоеточие
59 3B ; Точка с запятой
60 3C < Знак меньше
61 3D = Знак равно
62 3E > Знак больше
63 3F ? Знак вопрос
64 40 @ Коммерческое эт
65 41 A Прописная латинская буква А
66 42 B Прописная латинская буква B
67 43 C Прописная латинская буква C
68 44 D Прописная латинская буква D
69 45 E Прописная латинская буква E
70 46 F Прописная латинская буква F
71 47 G Прописная латинская буква G
72 48 H Прописная латинская буква H
73 49 I Прописная латинская буква I
74 4A J Прописная латинская буква J
75 4B K Прописная латинская буква K
76 4C L Прописная латинская буква L
77 4D M Прописная латинская буква
78 4E N Прописная латинская буква N
79 4F O Прописная латинская буква O
80 50 P Прописная латинская буква P
81 51 Q Прописная латинская буква
82 52 R Прописная латинская буква R
83 53 S Прописная латинская буква S
84 54 T Прописная латинская буква T
85 55 U Прописная латинская буква U
86 56 V Прописная латинская буква V
87 57 W Прописная латинская буква W
88 58 X Прописная латинская буква X
89 59 Y Прописная латинская буква Y
90 5A Z Прописная латинская буква Z
91 5B [ Открывающая квадратная скобка
92 5C \ Обратная черта
93 5D ] Закрывающая квадратная скобка
94 5E ^ "Крышечка"
95 5 _ Символ подчеркивания
96 60 ` Апостроф
97 61 a Строчная латинская буква a
98 62 b Строчная латинская буква b
99 63 c Строчная латинская буква c
100 64 d Строчная латинская буква d
101 65 e Строчная латинская буква e
102 66 f Строчная латинская буква f
103 67 g Строчная латинская буква g
104 68 h Строчная латинская буква h
105 69 i Строчная латинская буква i
106 6A j Строчная латинская буква j
107 6B k Строчная латинская буква k
108 6C l Строчная латинская буква l
109 6D m Строчная латинская буква m
110 6E n Строчная латинская буква n
111 6F o Строчная латинская буква o
112 70 p Строчная латинская буква p
113 71 q Строчная латинская буква q
114 72 r Строчная латинская буква r
115 73 s Строчная латинская буква s
116 74 t Строчная латинская буква t
117 75 u Строчная латинская буква u
118 76 v Строчная латинская буква v
119 77 w Строчная латинская буква w
120 78 x Строчная латинская буква x
121 79 y Строчная латинская буква y
122 7A z Строчная латинская буква z
123 7B { Открывающая фигурная скобка
124 | Вертикальная черта
125 7D } Закрывающая фигурная скобка
126 7E ~ Тильда
127 7F

В классическом варианте таблицы символов ASCII нет русских букв и она состоит из 7 бит. Однако в дальнейшем эта таблица была расширена до 8 бит и в старших 128 строках появились русские буквы в двоичном коде и символы псевдографики. В общем случае во второй части размещены национальные алфавиты разных стран и русские буквы там просто один из возможных наборов (855) там может быть французская (863), немецкая (1141) или греческая (737) таблица. В таблице 2 приведен пример представления русских букв в двоичном коде.

Таблица 2. Таблица представления русских букв в двоичном коде (ASCII)

Десятичный код Шестнадцатеричный код Отображаемый символ Значение
128 80 А Прописная русская буква А
129 81 Б Прописная русская буква Б
130 82 В Прописная русская буква В
131 83 Г Прописная русская буква Г
132 84 Д Прописная русская буква Д
133 85 Е Прописная русская буква Е
134 86 Ж Прописная русская буква Ж
135 87 З Прописная русская буква З
136 88 И Прописная русская буква И
137 89 Й Прописная русская буква Й
138 8A К Прописная русская буква К
139 8B Л Прописная русская буква Л
140 8C М Прописная русская буква М
141 8D Н Прописная русская буква Н
142 8E О Прописная русская буква О
143 8F П Прописная русская буква П
144 90 Р Прописная русская буква Р
145 91 С Прописная русская буква С
146 92 Т Прописная русская буква Т
147 93 У Прописная русская буква У
148 94 Ф Прописная русская буква Ф
149 95 Х Прописная русская буква Х
150 96 Ц Прописная русская буква Ц
151 97 Ч Прописная русская буква Ч
152 98 Ш Прописная русская буква Ш
153 99 Щ Прописная русская буква Щ
154 9A Ъ Прописная русская буква Ъ
155 9B Ы Прописная русская буква Ы
156 9C Ь Прописная русская буква Ь
157 9D Э Прописная русская буква Э
158 9E Ю Прописная русская буква Ю
159 9F Я Прописная русская буква Я
160 A0 а Строчная русская буква а
161 A1 б Строчная русская буква б
162 A2 в Строчная русская буква в
163 A3 г Строчная русская буква г
164 A4 д Строчная русская буква д
165 A5 е Строчная русская буква е
166 A6 ж Строчная русская буква ж
167 A7 з Строчная русская буква з
168 A8 и Строчная русская буква и
169 A9 й Строчная русская буква й
170 AA к Строчная русская буква к
171 AB л Строчная русская буква л
172 AC м Строчная русская буква м
173 AD н Строчная русская буква н
174 AE о Строчная русская буква о
175 AF п Строчная русская буква п
176 B0
177 B1
178 B2
179 B3 Символ псевдографики
180 B4 Символ псевдографики
181 B5 Символ псевдографики
182 B6 Символ псевдографики
183 B7 Символ псевдографики
184 B8 Символ псевдографики
185 B9 Символ псевдографики
186 BA Символ псевдографики
187 BB Символ псевдографики
188 BC Символ псевдографики
189 BD Символ псевдографики
190 BE Символ псевдографики
191 BF Символ псевдографики
192 C0 Символ псевдографики
193 C1 Символ псевдографики
194 C2 Символ псевдографики
195 C3 Символ псевдографики
196 C4 Символ псевдографики
197 C5 Символ псевдографики
198 C6 Символ псевдографики
199 C7 Символ псевдографики
200 C8 Символ псевдографики
201 C9 Символ псевдографики
202 CA Символ псевдографики
203 CB Символ псевдографики
204 CC Символ псевдографики
205 CD Символ псевдографики
206 CE Символ псевдографики
207 CF Символ псевдографики
208 D0 Символ псевдографики
209 D1 Символ псевдографики
210 D2 Символ псевдографики
211 D3 Символ псевдографики
212 D4 Символ псевдографики
213 D5 Символ псевдографики
214 D6 Символ псевдографики
215 D7 Символ псевдографики
216 D8 Символ псевдографики
217 D9 Символ псевдографики
218 DA Символ псевдографики
219 DB
220 DC
221 DD
222 DE
223 DF
224 E0 р Строчная русская буква р
225 E1 с Строчная русская буква с
226 E2 т Строчная русская буква т
227 E3 у Строчная русская буква у
228 E4 ф Строчная русская буква ф
229 E5 х Строчная русская буква х
230 E6 ц Строчная русская буква ц
231 E7 ч Строчная русская буква ч
232 E8 ш Строчная русская буква ш
233 E9 щ Строчная русская буква щ
234 EA ъ Строчная русская буква ъ
235 EB ы Строчная русская буква ы
236 EC ь Строчная русская буква ь
237 ED э Строчная русская буква э
238 EE ю Строчная русская буква ю
239 EF я Строчная русская буква я
240 F0 Ё Прописная русская буква Ё
241 F1 ё Строчная русская буква ё
242 F2 Є
243 F3 є
244 F4 Ї
245 F5 Ї
246 F6 Ў
247 F7 ў
248 F8 ° Знак градуса
249 F9 Знак умножения (точка)
250 FA ·
251 FB Радикал (взятие корня)
252 FC Знак номера
253 FD ¤ Знак денежной единицы (рубль)
254 FE
255 FF

При записи текстов кроме двоичных кодов, непосредственно отображающих буквы, применяются коды, обозначающие переход на новую строку и возврат курсора (возврат каретки) на нулевую позицию строки. Эти символы обычно применяются вместе. Их двоичные коды соответствуют десятичным числам — 10 (0A) и 13 (0D). В качестве примера ниже приведен участок текста данной страницы (дамп памяти). На этом участке записан ее первый абзац. Для отображения информации в дампе памяти применен следующий формат:

  • в первой колонке записан двоичный адрес первого байта строки
  • в следующи шестнадцати колонках записаны байты, содержащиеся в текстовом файле. Для более удобного определения номера байта после восьмой колонки проведена вертикальная линия. Байты, для краткости записи, представлены в шестнадцатеричном коде.
  • в последней колонке эти же байты представлены в виде отображаемых буквенных символов
00000000: 82 E1 A5 20 E1 A8 AC A2 ¦ AE AB EB 20 A8 20 A1 E3 Все символы и бу 00000010: AA A2 EB 20 AC AE A3 E3 ¦ E2 20 A1 EB E2 EC 20 A7 квы могут быть з 00000020: A0 AA AE A4 A8 E0 AE A2 ¦ A0 AD EB 20 AF E0 A8 20 акодированы при 00000030: AF AE AC AE E9 A8 20 A2 ¦ AE E1 EC AC A8 20 A4 A2 помощи восьми дв 00000040: AE A8 E7 AD EB E5 20 E1 ¦ A8 AC A2 AE AB AE A2 2E оичных символов. 00000050: 0D 0A 8D A0 A8 A1 AE AB ¦ A5 A5 20 E0 A0 E1 AF E0 ♪◙Наиболее распр 00000060: AE E1 E2 E0 A0 AD A5 AD ¦ AD EB AC A8 20 E2 A0 A1 остраненными таб 00000070: AB A8 E6 A0 AC A8 20 EF ¦ A2 AB EF EE E2 E1 EF 20 лицами являются 00000080: E2 A0 A1 AB A8 E6 EB 20 ¦ 41 53 43 49 49 20 E1 20 таблицы ASCII с 00000090: AD A0 E6 A8 AE AD A0 AB ¦ EC AD EB AC A8 0D 0A E0 национальными♪◙р 000000A0: A0 E1 E8 A8 E0 A5 AD A8 ¦ EF AC A8 2C 20 AF E0 A8 асширениями, при 000000B0: AC A5 AD EF EE E9 A8 A5 ¦ E1 EF 20 A2 20 44 4F 53 меняющиеся в DOS 000000C0: 20 28 A8 20 AA AE E2 AE ¦ E0 EB A5 20 AC AE A6 AD (и которые можн 000000D0: AE 20 A8 E1 AF AE AB EC ¦ A7 AE A2 A0 E2 EC 20 A4 о использовать д 000000E0: AB EF 20 A7 A0 AF A8 E1 ¦ A8 0D 0A E2 A5 AA E1 E2 ля записи♪◙текст 000000F0: AE A2 20 A2 20 AC A8 AA ¦ E0 AE AF E0 AE E6 A5 E1 ов в микропроцес 00000100: E1 AE E0 A0 E5 29 2C 20 ¦ A8 20 E2 A0 A1 AB A8 E6 сорах),и таблиц 00000110: EB 20 41 4E 53 49 2C 20 ¦ AF E0 A8 AC A5 AD EF EE ы ANSI, применяю 00000120: E9 A8 A5 E1 EF 20 A2 20 ¦ 57 49 4E 44 4F 57 53 2E щиеся в WINDOWS. 00000130: 20 82 20 E2 A0 A1 AB A8 ¦ E6 A0 E5 0D 0A 41 53 43 В таблицах♪◙ASC 00000140: 49 49 20 A8 20 41 4E 53 ¦ 49 20 AF A5 E0 A2 EB A5 II и ANSI первые 00000150: 20 31 32 38 20 E1 A8 AC ¦ A2 AE AB AE A2 20 E1 AE 128 символов со 00000160: A2 AF A0 A4 A0 EE E2 2E ¦ 20 82 20 ED E2 AE A9 20 впадают. В этой 00000170: E7 A0 E1 E2 A8 20 E2 A0 ¦ A1 AB A8 E6 EB 20 E1 AE части таблицы со 00000180: A4 A5 E0 A6 A0 E2 E1 EF ¦ 0D 0A E1 A8 AC A2 AE AB держатся♪◙символ 00000190: EB 20 E6 A8 E4 E0 2C 20 ¦ A7 AD A0 AA AE A2 20 AF ы цифр, знаков п 000001A0: E0 A5 AF A8 AD A0 AD A8 ¦ EF 2C 20 AB A0 E2 A8 AD репинания, латин 000001B0: E1 AA A8 A5 20 A1 E3 AA ¦ A2 EB 20 A2 A5 E0 E5 AD ские буквы верхн 000001C0: A5 A3 AE 20 A8 20 AD A8 ¦ A6 AD A5 A3 AE 20 E0 A5 его инижнего ре 000001D0: A3 A8 E1 E2 E0 AE A2 20 ¦ A8 0D 0A E3 AF E0 A0 A2 гистров и♪◙управ 000001E0: AB EF EE E9 A8 A5 20 E1 ¦ A8 AC A2 AE AB EB 2E 20 ляющие символы. 000001F0: 8D A0 E6 A8 AE AD A0 AB ¦ EC AD EB A5 20 E0 A0 E1 Национальные рас 00000200: E8 A8 E0 A5 AD A8 EF 20 ¦ E1 A8 AC A2 AE AB EC AD ширения символьн 00000210: EB E5 20 E2 A0 A1 AB A8 ¦ E6 20 A8 20 E1 A8 AC A2 ыхтаблиц и симв 00000220: AE AB EB 0D 0A AF E1 A5 ¦ A2 A4 AE A3 E0 A0 E4 A8 олы♪◙псевдографи 00000230: AA A8 20 E1 AE A4 A5 E0 ¦ A6 A0 E2 E1 EF 20 A2 20 ки содержатся в 00000240: AF AE E1 AB A5 A4 AD A8 ¦ E5 20 31 32 38 20 AA AE последних 128 ко 00000250: A4 A0 E5 20 ED E2 A8 E5 ¦ 20 E2 A0 A1 AB A8 E6 2C дах этих таблиц, 00000260: 20 AF AE ED E2 AE AC E3 ¦ 20 E0 E3 E1 E1 AA A8 A5 поэтому русские 00000270: 0D 0A E2 A5 AA E1 E2 EB ¦ 20 A2 20 AE AF A5 E0 A0 ♪◙тексты в опера 00000280: E6 A8 AE AD AD EB E5 20 ¦ E1 A8 E1 E2 A5 AC A0 E5 ционных системах 00000290: 20 44 4F 53 20 A8 20 57 ¦ 49 4E 44 4F 57 53 20 AD DOS и WINDOWS н 000002A0: A5 20 E1 AE A2 AF A0 A4 ¦ A0 EE E2 2E 0D 0A е совпадают.♪◙

В приведенном примере видно, что первая строка текста занимает 80 байт. Первый байт 82 соответствует букве "В". Второй байт E1 соответствует букве "с". Третий байт A5 соответствует букве "е". Следующий байт 20 отображает пустой промежуток между словами (пробел) " ". 81 и 82 байты содержат символы возврата каретки и перевода строки 0D 0A. Эти символы мы находим по двоичному адресу 00000050: Следующая строка исходного текста не кратна 16 (ее длина равна 76 буквам), поэтому для того, чтобы найти ее конец потребуется сначала найти строку 000000E0: и от нее отсчитать девять колонок. Там снова записаны байты возврата каретки и перевода строки 0D 0A. Остальной текст анализируется точно таким же образом.

Дата последнего обновления файла 04.12.2018

Литература:

Вместе со статьей "Запись текстов двоичным кодом" читают:

Представление двоичных чисел в памяти компьютера или микроконтроллера
http://сайт/proc/IntCod.php

Иногда бывает удобно хранить числа в памяти процессора в десятичном виде
http://сайт/proc/DecCod.php

Стандартные форматы чисел с плавающей запятой для компьютеров и микроконтроллеров
http://сайт/proc/float/

В настоящее время и в технике и в быту широко используются как позиционные, так и непозиционные системы счисления.
.php

Двоичный код представляет собой форму записи информации в виде единиц и нулей. Такая является позиционной с основанием 2. На сегодняшний день двоичный код (таблица, представленная немного ниже, содержит некоторые примеры записи чисел) используется во всех без исключения цифровых устройствах. Его популярность объясняется высокой надежность и простотой данной формы записи. Двоичная арифметика весьма проста, соответственно, ее легко реализовать и на аппаратном уровне. компоненты (или как их еще называют - логические) весьма надежны, так как они оперируют в работе всего двумя состояниями: логической единицы (есть ток) и логического нуля (нет тока). Тем самым они выгодно отличаются от аналоговых компонентов, работа которых основана на переходных процессах.

Как составляется двоичная форма записи?

Давайте разберемся, каким образом формируется такой ключ. Один разряд двоичного кода может содержать всего два состояния: ноль и единицу (0 и 1). При использовании двух разрядов появляется возможность записать четыре значения: 00, 01, 10, 11. Трехразрядная запись содержит восемь состояний: 000, 001 … 110, 111. В результате получаем, что длина двоичного кода зависит от числа разрядов. Это выражение можно записать с помощью следующей формулы: N =2m, где: m - это количество разрядов, а N - число комбинаций.

Виды двоичных кодов

В микропроцессорах такие ключи применяются для записи разнообразной обрабатываемой информации. Разрядность двоичного кода может существенно превышать и его встроенной памяти. В таких случаях длинные числа занимают несколько ячеек запоминающего устройства и обрабатываются с помощью нескольких команд. При этом все сектора памяти, которые выделены под многобайтный двоичный код, рассматриваются в качестве одного числа.

В зависимости от необходимости предоставления той или иной информации, различают следующие виды ключей:

  • беззнаковые;
  • прямые целыезнаковые коды;
  • знаковые обратные;
  • знаковые дополнительные;
  • код Грея;
  • код Грея-Экспресс.;
  • дробные коды.

Рассмотрим более детально каждый из них.

Беззнаковый двоичный код

Давайте разберемся, что же представляет собой такой вид записи. В целых беззнаковых кодах каждый разряд (двоичный) представляет степень цифры два. При этом наименьшее число, которое можно записать в такой форме, равно нулю, а максимальное можно представить следующей формулой: М=2 п -1. Эти два числа полностью определяют диапазон ключа, которым можно выразить такой двоичный код. Давайте рассмотрим возможности упомянутой формы записи. При использовании данного вида беззнакового ключа, состоящего из восьми разрядов, диапазон возможных чисел составит от 0 до 255. Шестнадцатиразрядный код будет иметь диапазон от 0 до 65535. В восьмиразрядных процессорах для хранения и записи таких чисел используют два сектора памяти, которые располагаются в соседних адресатах. Работу с такими ключами обеспечивают специальные команды.

Прямые целые знаковые коды

В данном виде двоичных ключей старший разряд используется для записи знака числа. Нуль соответствует плюсу, а единица - минусу. В результате введения данного разряда диапазон закодированных чисел смещается в отрицательную сторону. Получается, что восьмиразрядный знаковый целый двоичный ключ может записать числа в диапазоне от -127 до +127. Шестнадцатиразрядный - в диапазоне от -32767 до +32767. В восьмиразрядных микропроцессорах для хранения подобных кодов используют два соседних сектора.

Недостатком такой формы записи является то, что знаковые и цифровые разряды ключа необходимо обрабатывать раздельно. Алгоритмы программ, работающих с этими кодами, получаются очень сложными. Для изменения и выделения знаковых разрядов необходимо применять механизмы маскировки этого символа, что способствует резкому увеличению размеров программного обеспечения и уменьшению его быстродействия. С целью устранения данного недостатка был введен новый вид ключа - обратный двоичный код.

Знаковый обратный ключ

Данная форма записи отличается от прямых кодов только тем, что отрицательное число в ней получается путем инвертирования всех разрядов ключа. При этом цифровые и знаковые разряды идентичны. Благодаря этому, алгоритмы работы с таким видом кодов существенно упрощаются. Однако обратный ключ требует специальный алгоритм для распознавания символа первого разряда, вычисления абсолютной величины числа. А также восстановления знака результирующего значения. Более того, в обратном и прямом кодах числа для записи нуля используют два ключа. Несмотря на то что это значение не имеет положительного или отрицательного знака.

Знаковый дополнительный код двоичного числа

Данный вид записи не имеет перечисленных недостатков предыдущих ключей. Такие коды позволяют проводить непосредственное суммирование как положительных, так и отрицательных чисел. При этом не проводится анализ знакового разряда. Все это стало возможным благодаря тому факту, что дополнительные числа представляют собой естественное кольцо символов, а не искусственные образования, такие как прямые и обратные ключи. Более того, важным фактором является, то что произвести вычисления дополнений в двоичных кодах чрезвычайно просто. Для этого достаточно к обратному ключу добавить единицу. При использовании данного вида знакового кода, состоящего из восьми разрядов, диапазон возможных чисел составит от -128 до +127. Шестнадцатиразрядный ключ будет иметь диапазон от -32768 до +32767. В восьмиразрядных процессорах для хранения таких чисел также используют два соседних сектора.

Двоичный дополнительный код интересен наблюдаемым эффектом, который называют явлением распространения знака. Давайте разберемся, что это значит. Данный эффект заключается в том, что в процессе преобразования однобайтового значения в двухбайтовое достаточно каждому биту старшего байта назначить значения знаковых битов младшего байта. Получается, что для хранения знакового можно воспользоваться старшими битами. При этом значение ключа совершенно не изменяется.

Код Грея

Данная форма записи, по сути, является одношаговым ключом. То есть в процессе перехода от одного значения к другому меняется всего лишь один бит информации. При этом погрешность при считывании данных приводит к переходу от одного положения к другому с незначительным смещением по времени. Однако получение совершенно неверного результата углового положения при таком процессе полностью исключается. Достоинством такого кода является его способность зеркально отображать информацию. Например, инвертируя старшие биты, можно просто менять направление отсчета. Это происходит благодаря управляющему входу Complement. При этом выдаваемое значение может быть как возрастающим, так и спадающим при одном физическом направлении вращения оси. Так как информация, записанная в ключе Грея, имеет исключительно кодированный характер, который не несет реальных числовых данных, то перед дальнейшей работой требуется предварительно преобразовать его в обычную бинарную форму записи. Осуществляется это с помощью специального преобразователя - декодера Грей-Бинар. Данное устройство легко реализуется на элементарных логических элементах как аппаратным, так и программным способом.

Код Грея-Экспресс

Стандартный одношаговый ключ Грей подходит для решений, которые представлены в виде чисел, два. В случаях, где необходимо реализовывать иные решения, из такой формы записи вырезают и используют только средний участок. В результате сохраняется одношаговость ключа. Однако в таком коде началом числового диапазона не является нуль. Он смещается на заданное значение. В процессе обработки данных от генерируемых импульсов отнимают половину разницы между начальным и редуцированным разрешением.

Представление дробного числа в двоичном ключе с фиксированной запятой

В процессе работы приходится оперировать не только целыми цифрами, но и дробными. Такие числа можно записывать с помощью прямых, обратных и дополнительных кодов. Принцип построения упомянутых ключей такой же, как и у целых. До сих пор мы считали, что двоичная запятая должна находиться справа от младшего разряда. Но это не так. Она может располагаться и слева от старшего разряда (в таком случае в качестве переменной можно записывать исключительно дробные числа), и посередине переменной (можно записывать смешанные значения).

Представление двоичного кода с плавающей запятой

Такая форма применяется для записи либо наоборот - очень малых. В качестве примера можно привести межзвездные расстояния или размеры атомов и электронов. При вычислении таких значений пришлось бы применять двоичный код с очень большой разрядностью. Однако нам нет необходимости учитывать космические расстояние с точностью до миллиметра. Поэтому форма записи с фиксированной запятой в данном случае неэффективна. Для отображения таких кодов используется алгебраическая форма. То есть число записывается как мантисса, умноженная на десять в степени, отображающей нужный порядок числа. Следует знать, что мантисса не должна быть больше единицы, а после запятой не должен записываться ноль.

Считается, что двоичное исчисление было изобретено в начале 18-го века математиком из Германии Готфридом Лейбницем. Однако, как недавно открыли ученые, задолго до полинезийского острова Мангареву использовали данный вид арифметики. Несмотря на то что колонизация практически полностью уничтожила оригинальные системы исчисления, ученые восстановили сложные двоичные и десятичные виды счета. Кроме того, ученый Когнитивист Нуньес утверждает, что кодирование двоичным кодом применялось в древнем Китае еще в 9-м веке до н. э. Другие древние цивилизации, например, индейцы майя, также использовали сложные комбинации десятичных и бинарных систем для отслеживания временных интервалов и астрономических явлений.

Компьютеры не понимают слов и цифр так, как это делают люди. Современное программное обеспечение позволяет конечному пользователю игнорировать это, но на самых низких уровнях ваш компьютер оперирует двоичным электрическим сигналом, который имеет только два состояния : есть ток или нет тока. Чтобы «понять» сложные данные, ваш компьютер должен закодировать их в двоичном формате.

Двоичная система основывается на двух цифрах – 1 и 0, соответствующим состояниям включения и выключения, которые ваш компьютер может понять. Вероятно, вы знакомы с десятичной системой. Она использует десять цифр – от 0 до 9, а затем переходит к следующему порядку, чтобы сформировать двузначные числа, причем цифра из каждого следующего порядка в десять раз больше, чем предыдущая. Двоичная система аналогична, причем каждая цифра в два раза больше, чем предыдущая.

Подсчет в двоичном формате

В двоичном выражении первая цифра равноценна 1 из десятичной системы. Вторая цифра равна 2, третья – 4, четвертая – 8, и так далее – удваивается каждый раз. Добавление всех этих значений даст вам число в десятичном формате.

1111 (в двоичном формате) = 8 + 4 + 2 + 1 = 15 (в десятичной системе)

Учет 0 даёт нам 16 возможных значений для четырех двоичных битов. Переместитесь на 8 бит, и вы получите 256 возможных значений. Это занимает намного больше места для представления, поскольку четыре цифры в десятичной форме дают нам 10000 возможных значений. Конечно, бинарный код занимает больше места, но компьютеры понимают двоичные файлы намного лучше, чем десятичную систему. И для некоторых вещей, таких как логическая обработка, двоичный код лучше десятичного.

Следует сказать, что существует ещё одна базовая система, которая используется в программировании: шестнадцатеричная . Хотя компьютеры не работают в шестнадцатеричном формате, программисты используют её для представления двоичных адресов в удобочитаемом формате при написании кода. Это связано с тем, что две цифры шестнадцатеричного числа могут представлять собой целый байт, то есть заменяют восемь цифр в двоичном формате. Шестнадцатеричная система использует цифры 0-9, а также буквы от A до F, чтобы получить дополнительные шесть цифр.

Почему компьютеры используют двоичные файлы

Короткий ответ: аппаратное обеспечение и законы физики. Каждый символ в вашем компьютере является электрическим сигналом, и в первые дни вычислений измерять электрические сигналы было намного сложнее. Было более разумно различать только «включенное» состояние, представленное отрицательным зарядом, и «выключенное» состояние, представленное положительным зарядом.

Для тех, кто не знает, почему «выключено» представлено положительным зарядом, это связано с тем, что электроны имеют отрицательный заряд, а больше электронов – больше тока с отрицательным зарядом.

Таким образом, ранние компьютеры размером с комнату использовали двоичные файлы для создания своих систем, и хотя они использовали более старое, более громоздкое оборудование, они работали на тех же фундаментальных принципах. Современные компьютеры используют, так называемый, транзистор для выполнения расчетов с двоичным кодом.

Вот схема типичного транзистора:

По сути, он позволяет току течь от источника к стоку, если в воротах есть ток. Это формирует двоичный ключ. Производители могут создавать эти транзисторы невероятно малыми – вплоть до 5 нанометров или размером с две нити ДНК. Это то, как работают современные процессоры, и даже они могут страдать от проблем с различением включенного и выключенного состояния (хотя это связано с их нереальным молекулярным размером, подверженным странностям квантовой механики ).

Почему только двоичная система

Поэтому вы можете подумать: «Почему только 0 и 1? Почему бы не добавить ещё одну цифру?». Хотя отчасти это связано с традициями создания компьютеров, вместе с тем, добавление ещё одной цифры означало бы необходимость выделять ещё одно состояние тока, а не только «выключен» или «включен».

Проблема здесь в том, что если вы хотите использовать несколько уровней напряжения, вам нужен способ легко выполнять вычисления с ними, а современное аппаратное обеспечение, способное на это, не жизнеспособно как замена двоичных вычислений. Например, существует, так называемый, тройной компьютер , разработанный в 1950-х годах, но разработка на том и прекратилась. Тернарная логика более эффективна, чем двоичная, но пока ещё нет эффективной замены бинарного транзистора или, по крайней мере, нет транзистора столь же крошечных масштабов, что и двоичные.

Причина, по которой мы не можем использовать тройную логику, сводится к тому, как транзисторы соединяются в компьютере и как они используются для математических вычислений. Транзистор получает информацию на два входа, выполняет операцию и возвращает результат на один выход.

Таким образом, бинарная математика проще для компьютера, чем что-либо ещё. Двоичная логика легко преобразуется в двоичные системы, причем True и False соответствуют состояниям Вкл и Выкл .

Бинарная таблица истинности, работающая на двоичной логике, будет иметь четыре возможных выхода для каждой фундаментальной операции. Но, поскольку тройные ворота используют три входа, тройная таблица истинности имела бы 9 или более. В то время как бинарная система имеет 16 возможных операторов (2^2^2), троичная система имела бы 19683 (3^3^3). Масштабирование становится проблемой, поскольку, хотя троичность более эффективна, она также экспоненциально более сложна.

Кто знает? В будущем мы вполне возможно увидим тройничные компьютеры, поскольку бинарная логика столкнулась с проблемами миниатюризации. Пока же мир будет продолжать работать в двоичном режиме.

Множество символов, с помощью которых записывается текст, называется алфавитом .

Число символов в алфавите – это его мощность .

Формула определения количества информации: N = 2 b ,

где N – мощность алфавита (количество символов),

b – количество бит (информационный вес символа).

В алфавит мощностью 256 символов можно поместить практически все необходимые символы. Такой алфавит называется достаточным.

Т.к. 256 = 2 8 , то вес 1 символа – 8 бит.

Единице измерения 8 бит присвоили название 1 байт:

1 байт = 8 бит.

Двоичный код каждого символа в компьютерном тексте занимает 1 байт памяти.

Каким же образом текстовая информация представлена в памяти компьютера?

Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.

Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.

Понятно, что это дело условное, можно придумать множество способов кодировки.

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.

Для разных типов ЭВМ используются различные таблицы кодировки.

Международным стандартом для ПК стала таблица ASCII (читается аски) (Американский стандартный код для информационного обмена).

Таблица кодов ASCII делится на две части.

Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от 0 (00000000), до 127 (01111111).

Структура таблицы кодировки ASCII

Порядковый номер

Код

Символ

0 - 31

00000000 - 00011111

Символы с номерами от 0 до 31 принято называть управляющими.
Их функция – управление процессом вывода текста на экран или печать, подача звукового сигнала, разметка текста и т.п.

32 - 127

00100000 - 01111111

Стандартная часть таблицы (английский). Сюда входят строчные и прописные буквы латинского алфавита, десятичные цифры, знаки препинания, всевозможные скобки, коммерческие и другие символы.
Символ 32 - пробел, т.е. пустая позиция в тексте.
Все остальные отражаются определенными знаками.

128 - 255

10000000 - 11111111

Альтернативная часть таблицы (русская).
Вторая половина кодовой таблицы ASCII, называемая кодовой страницей (128 кодов, начиная с 10000000 и кончая 11111111), может иметь различные варианты, каждый вариант имеет свой номер.
Кодовая страница в первую очередь используется для размещения национальных алфавитов, отличных от латинского. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита.

Первая половина таблицы кодов ASCII


Обращаю ваше внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.

Для букв русского алфавита также соблюдается принцип последовательного кодирования.

Вторая половина таблицы кодов ASCII


К сожалению, в настоящее время существуют пять различных кодировок кириллицы (КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за этого часто возникают проблемы с переносом русского текста с одного компьютера на другой, из одной программной системы в другую.

Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 ("Код обмена информацией, 8-битный"). Эта кодировка применялась еще в 70-ые годы на компьютерах серии ЕС ЭВМ, а с середины 80-х стала использоваться в первых русифицированных версиях операционной системы UNIX.

От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 ("CP" означает "Code Page", "кодовая страница").

Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.

Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.

Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251.

С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode . Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.

Попробуем с помощью таблицы ASCII представить, как будут выглядеть слова в памяти компьютера.

Внутреннее представление слов в памяти компьютера

Иногда бывает так, что текст, состоящий из букв русского алфавита, полученный с другого компьютера, невозможно прочитать - на экране монитора видна какая-то "абракадабра". Это происходит оттого, что на компьютерах применяется разная кодировка символов русского языка.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!