Энциклопедия мобильной связи

Протокол динамической маршрутизации RIP. Общее описание маршрутизаторов OSPF

В маршрутизаторе с динамическим протоколом резидентно загруженная программа (демон - gated или routed для UNIX) изменяет таблицы маршрутизации на основе информации, полученной от соседних маршрутизаторов.

Динамические протоколы делят на две группы:

· EGP (External Gateway Protocol) - внешний протокол маршрутизации для использования между AS (автономными системами). В группу входят - RIP, OSPF , IGRP (CISCO), IS-IS.

· IGP (Interior Gateway Protocol) - внутреннего протокола маршрутизации для использования внутри AS. В группу входят - BGP , IDPR.

Протокол RIP

RIP (Routing Information Protocol) - протокол маршрутной информации, использует алгоритм Белмана-Форда. Выбирается самый короткий маршрут (distance-vector).

Первый стандарт RIP RFC1058 (Routing Information Protocol C.L. Hedrick Jun-01-1988).

Последняя версия RIPv2 RFC2453 (RIP Version 2 G. Malkin November 1998).

Используется транспортный протокол UDP .

Порт сервера по умолчанию 520.

Маршрут характеризуется вектором расстояния до места назначения.

Протокол RIP очень популярен среди тех, кто имеет отношение к Internet. Это протокол с использованием алгоритма длины вектора, где маршрут определяется исходя из расстояния (числа транзитных узлов) на пути следования данных до точки назначения

В маршрутизаторе, работающем с RIP, вся информация хранится в виде таблицы маршрутизации, содержащей следующие поля:

Пункт назначения (в нем перечислены все конечные, в смысле адреса, локальные сети);

Следующий транзитный узел (оно определяет, на какой порт должен быть переслан пакет для отправки на следующий маршрутизатор);

Расстояние (число транзитных узлов, необходимых для того, чтобы достичь пункта назначения).

Таблица маршрутизации RIP содержит информацию о наилучшем пути к месту назначения. После получения новых данных от другого узла старая информация стирается, и на ее место записывается новая.

Выбор оптимального маршрута в RIP обеспечивается рассылкой соответствующих сообщений при изменении топологии сети. Например, если маршрутизатор выявляет отказ в одном из каналов связи, он вносит изменения в свою таблицу маршрутизации, а затем рассылает копии новой таблицы всем своим соседям. Соседи соответственно вносят изменения в свои таблицы и рассылают их копии своим соседям и так далее. В результате через короткое время необходимая информация достигает всех маршрутизаторов.

В соответствии с протоколом RIP каждый маршрутизатор автоматически посылает (примерно раз в 30 секунд) своим соседям пакет типа «ответ» со своей таблицей маршрутизации. Для передачи больших таблиц маршрутизации требуется несколько пакетов. Помимо этого в протоколе RIP предусмотрено, чтобы каждый маршрутизатор следил за тем, сколько времени прошло с момента получения последнего ответа; если ответ от кого-нибудь из соседей не поступает в течение длительного времени (обычно 90 секунд), соответствующий путь удаляется из таблицы маршрутизации данного устройства, а все соседи извещаются об этом событии.

В протоколе RIP предусмотрен ряд мер, призванных повысить стабильность работы протокола. Среди них: лимит числа промежуточных узлов (hop-count limit), временный отказ от приема информации (hold-down) и расщепление горизонта (split horizon). Лимит на число промежуточных узлов позволяет предотвратить зацикливание пакета при пересылке. Данный лимит в RIP равен 15, откуда следует, что этот протокол годится только для не слишком больших сетей. (Во второй версии протокола RIP это ограничение снято, и количество промежуточных узлов может достигать 255.)

Основным недостатком RIP является не слишком высокая функциональность: он не годится для больших сетей и не может эффективно определять альтернативные маршруты.

Недостатки RIP

· Ограничение в 16 хопов (Hop -прыжок). Фактически ограничивает количество сетей.

· Медленная реакция на изменение сети. При этом могут возникнуть циклические маршруты.

· Самый короткий маршрут может быть перегружен (медленным).

Протокол OSPF

OSPF (Open Shortest Path First) - открыть наикратчайший маршрут первым (алгоритм Дикстры), является протоколом состояния канала (link-state).

Протокол OSPF, основанный на алгоритме предпочтения кратчайшего пути, был разработан Болтом, Беранеком и Ньюменом (Кембридж, шт. Массачусетс) для сети ARPANet в 1978 году. OSPF способен осуществлять эффективную маршрутизацию пакетов с учетом изменений топологии сети, соответствующим образом меняя путь прохождения сетевого трафика. Кроме того, накладные расходы на пересылку данных об изменении топологии в OSPF меньше: рассылке подлежит не таблица маршрутизации в целом, а только информация об изменениях.

Протокол OSPF предусматривает, что новый маршрутизатор, начав работу в сети, рассылает «приветствия» всем своим соседям. Такие же сообщения периодически рассылают все маршрутизаторы, подтверждая тем самым свою работоспособность. В итоге новый маршрутизатор очень быстро «знакомится» со всеми своими соседями.

OSPF работает с запросами верхнего уровня , содержащимися в заголовке пакетов IP. Вычисление кратчайшего пути в OSPF осуществляется на основе информации, содержащейся в ToS. Всего насчитывается восемь комбинаций битов ToS, описывающих все возможные сочетания уровней задержки, пропускной способности и надежности связи. OSPF в состоянии подобрать путь таким образом, чтобы удовлетворить любую из этих восьми комбинаций. Например, если в ToS указано, что данный пакет должен быть передан с малой задержкой, высокой пропускной способностью и малой надежностью, то OSPF-маршрутизатор подберет путь передачи, как можно лучше отвечающий всем этим требованиям.

Основные достоинства OSPF.

· Отсутствие ограничения на размер сети.

· Автономная система может быть поделена на области маршрутизации.

· Высокая скорость установления маршрутов.

· Маршрутизация учитывает тип сервиса IP (type-of-service - ToS), т.е. для разных сервисов могут быть разные маршруты.

· Каждому интерфейсу может быть назначена метрика на основании:

Пропускной способности

Времени возврата

Надежности

Загруженности (очередь пакетов)

Размера максимального блока данных, который может быть передан через канал.

Отдельная цена может быть назначена для каждого типа сервиса IP (ToS).

· Если маршруты имеют одинаковую цену, OSPF распределяет траффик поровну между этими маршрутами. Это называется балансировкой нагрузки (Load balancing).

· Поддерживает подсети (маску).

· Поддержка без адресных сетей (unnumbered) - каналы точка-точка между маршрутизаторами, не имеющими IP адресов. Такой подход позволяет сэкономить IP адреса.

· Использование аутентификации.

· Используется групповая (multicast) адресация вместо широковещательной.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-25

Статическая и динамическая маршрутизация

Статическая маршрутизация - вид маршрутизации, при котором маршруты указываются в явном виде при конфигурации маршрутизатора. Вся маршрутизация при этом происходит без участия каких-либо протоколов маршрутизации.

При задании статического маршрута указывается:

· Адрес сети (на которую маршрутизируется трафик), маска сети

· Адрес шлюза (узла), который способствует дальнейшей маршрутизации (или подключен к маршрутизируемой сети напрямую)

· (опционально) метрика (иногда именуется также "ценой") маршрута. При наличии нескольких маршрутов на одну и ту же сеть некоторые маршрутизаторы выбирают маршрут с минимальной метрикой

Статическая маршрутизация продолжает успешно использоваться при :

· -организации работы компьютерных сетей небольшого размера(1-2маршрутизатора

· -на компьютерах (рабочих станциях) внутри сети. В таком случае обычно задается маршрут шлюза по умолчанию.

· -в целях безопасности - когда необходимо скрыть некоторые части составной корпоративной сети;

· -если доступ к подсети обеспечивается одним маршрутом, то вполне достаточно использовать один статический маршрут. Такой тип сети (подсети) носит названия тупиковой сети (stub network).

Динамическая маршрутизация - вид маршрутизации, при котором таблица маршрутизации редактируется программно.

При динамической маршрутизации происходит обмен маршрутной информацией между соседними маршрутизаторами, в ходе которого они сообщают друг другу, какие сети в данный момент доступны через них. Информация обрабатывается и помещается в таблицу маршрутизации. К наиболее распространенным внутренним протоколам маршрутизации относятся:

RIP (Routing Information Protocol) - протокол маршрутной информации OSPF (Open Shortest Path First) - протокол выбора кратчайшего маршрута EIGRP (Enhanced Interior Gateway Routing Protocol) - усовершенствованный протокол маршрутизации внутреннего шлюза IGRP (Interior Gateway Routing Protocol) - протокол маршрутизации внутреннего шлюза

Протокол динамической маршрутизации выбирается исходя из множества предпосылок (скорость конвергенции, размер сети, задействование ресурсов, внедрение и сопровождение и др.) поэтому прежде всего, во внимание принимаются такие характеристики, как размер сети, доступная полоса пропускания, аппаратные возможности процессоров маршрутизирующих устройств, модели и типы маршрутизаторов.

Большинство алгоритмов маршрутизации может быть отнесено к одной из двух категорий: дистанционно-векторные протоколы (RIPv1, RIPv2, RIPng, IGRP, EIGRP, EIGRP for IPv6) и протоколы с учетом состояния канала (OSPFv2, OSPFv3, IS-IS, IS-IS for IPv6).

Вывод

Маршрутизация - процесс определения маршрута следования информации в сетях связи.

Маршрутизатор, как и, например, мост, имеет несколько портов и должен для каждого поступающего пакета решить – отфильтровать его или передать на какой-то другой порт.

Как и мосты, маршрутизаторы решают эту дачу с помощью специальной таблицы – таблицы маршрутизации. По этой таблице маршрутизатор определяет, на какой порт нужно передавать пакет, чтобы он достиг нужной подсети (не обязательно сразу). Если сеть содержит петли, в таблицах маршрутизации может быть несколько записей на одну подсеть, описывающих разные возможные маршруты.

Каждый порт маршрутизатора рассматривается, как отдельный узел сети. Другие узлы должны знать его адрес и направлять пакеты для передачи в другие подсети на этот адрес, а не просто выдавать их в канал (как при прозрачных мостах).

Каждый маршрутизатор принимает решения о направлении пересылки пакетов на основании таблицы маршрутизации. Таблица маршрутизации содержит набор правил. Каждое правило в наборе описывает шлюз или интерфейс, используемый маршрутизатором для доступа к определенной сети.

Описание из Вики: OSPF(англ. Open Shortest Path First) - протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала (link-state technology) и использующий для нахождения кратчайшего пути алгоритм Дейкстры.

Для чего нужен OSPF и как применять его на сетях, построенных на Mikrotik RouterOS, мы и рассмотрим в этой статье.

Описание работы протокола OSPF

Все, кто работал с сетями, имеющими более одной подсети (провайдеры, компании с филиалами, несколько vlan и т.д.) знают о необходимости существования маршрутов из одной сети в другую. Иначе пакеты в соединении будут просто улетать на шлюз по умолчанию и дропаться где-то в интернете.

Для тех же, кто с этим не знаком, поясню. Представьте, что мы внезапно захотели попасть из Челябинска в Киев, не имя при этом ни карты, ни навигатора. Поедем по указателям — не зря же их ставили.

Таким образом посмотрев на 10-20-100 укзателей мы рано или поздно доберемся до Киева — пакет от отправителя ушел к адресату. Сделали там все свои дела и захотели обратно домой в Челябинск — приложение обработало пакет и отправило ответ инициатору соединения. Но дорогу то мы не помним (в пакете нет никаких данных о прохождении пути. На самом деле есть намеки на это, но с помощью них нельзя восстановить путь пакета). Не беда — поедем по указателям.

Так же как и в первый раз мы каким-то образом вернемся в точку, из которой выехали. Причем, очень важно то, что вернуться мы можем по другим дорогам — на каких то начали укладывать асфальт за время нашего пребывания в Киеве и поставили знаки объезда, где-то просто затор и мы решили объехать по менее нагруженным трассам. Но мы все равно доберемся до места, пусть и затратив большее время.

Итак, мы, инкапсулированные в автомобиль — это данные, инкапсулированные в IP-пакет. Перекрестки на дороге — маршрутизаторы, подключенные к разным сетям (дорогам). А указатели на перекрестках — таблицы маршрутизации отдельных маршрутизаторов, знающие куда повернуть, чтобы попасть в ту или иную точку. И если в одну сторону мы доедем по указателям, а в другую указателей не будет, то пиши пропало — до исходной точки не доберемся. Значит, маршруты до общающихся сетей должны быть прописаны на обеих сторонах. И очень важно понимать, что дорог-маршрутов может быть несколько. И если один перекресток-маршрутизатор в ремонте, то предыдущий может послать нас в объезд, но сначала он должен узнать, что его сосед сломался. И если мы ездим по разным дорогам, значит и время пинга у нас будет разное.

Итак, с маршрутами разобрались. Теперь поговорим о дорожниках, ставящих указатели.

Статические указатели на дорогах — хорошо. Но расстояние между Челябинском и Киевом 2400 км. А значит и указателей должно быть не меньше 24 — по одному на каждые 100 км. И если на одном из перекрестков идет ремонт, необходимо внести изменения на два смежных указателя. А вероятность одновременного ремонта на 24 перекрестах весьма высока. То есть нужна отдельная бригада дорожников, меняющих указатели.

Было бы неплохо соединить все указатели в сеть и позволить им самим оценивать ситуацию на своих участках и передевать эти данные между собой. К сожалению великие и ужасные службы обслуживания дорог об этом ещё не додумались, да и вряд ли это надо — деньги то пилить не получится. А вот айтишники придумали технологии, позволяющие динамически изменять таблицы маршрутизации и обмениваться этой информацией. Эти технологии называются Протоколы Динамической Маршрутизации. И один из них — OSPF, предназначенный для обмена информацией внутри одной автономной системы — AS.

Настрока протокола OSPF на оборудовании Mikrotik

Термины и работа OSPF хорошо описаны в вики микротика. Но я осмелюсь кое-что повторить и перефразировать.
Допустим, есть следующая сеть:

Как видим, к сети 172.16.1.0 можно попасть двумя путями: через R2 и через связку R3+R4. Cost’ы, написанные возле каждого линка задают стоимость линка, своеобразный аналог параметра distance в ip-route. Чем ниже значение cost’а, тем выше вероятность того, что трафик пойдет по этому пути. Но как видно на следующем рисунке суммарная стоимость обоих маршрутов к сети 172.16.1.0 составляет 20. Так по какому же пути пойдет трафик?

В таком случае в таблице маршрутизации увидим примерно такую картину — к одной сети имеем два шлюза. И трафик должен пойти через оба шлюза. В этом случае мы можем управлять тем, куда пойдет трафик. Называется эта технология Policy Based Routing, но тема управления трафиком — это совсем другая история.

Сделать, чтобы OSPF “заработал” в Mikrotik RouterOS очень просто — нужно лишь добавить в backbone на каждом роутере в Routing — OSPF — Networks все ваши сети, между которыми вы хотите динамическую маршрутизацию и “оно заработает”.

Но мы ведь хотим управлять процессом. Тот, кто не хочет управлять дальше может не читать. Остальным — добро пожаловать!

Пример организации протокола OSPF

Рассматривать будем сеть, типичную для организации с несколькими филиалами. Имеем центральный офис (Headquarter на схеме, для краткости будем звать его ЦО) с сетью 192.168.0.0/24 (что я, кстати, не рекомендую при дефолтных настройках OSPF. Почему — скажу ниже). В ЦО расположены все основные элементы инфраструктуры — контроллер домена, сервер удаленного доступа, почтовый сервер и т.д. Все филиалы должны иметь доступ ко всем этим сервисам.

Несколько филиалов (Branche на схеме, для краткости — СП — Структурное Подразделение) с адресами 192.168.X.0/24. Между ЦО и каждым СП шифрованный туннель SSTP (или любой другой VPN) — адреса в туннелях из подсети 192.168.255.0/24 (192.168.255.10 — ЦО, 192.168.255.1 — СП1, 192.168.255.2 — СП2, …). Между филиалами связь не нужна, т.к. все службы в ЦО. Когда филиалов 3, нам легко добавить 3 маршрута на роутер в ЦО и по одному на каждый из роутеров СП. Итого 6 движений мышкой. А что если СП у нас не 3, а 33 и необходимы маршруты от каждого каждому, а ещё есть подрядчики с доступом к нескольким СП? Тут и приходит на помощь OSPF.

Кому надо “быстро и все равно как оно работает”, могут пойти по схеме, предложенной выше — добавить в backbone все свои сети.

Добавление сетей в Backbone

Почему именно backbone? Backbone в переводе с английского — хребет, позвоночник. OSPF оперирует понятиями Area (область), Autonomous System (AS, автономная система). AS — все сети, которые принадлежат вам и между которыми может работать ваш протокол динамической маршрутизации. Area — часть этой сети. На картинке ниже показана одна AS с тремя Area, одна из которых — backbone (Area 0 с ID 0.0.0.0). Каждая Area имеет свой ID, похожий на IP адрес. Backbone всегда имеет ID 0.0.0.0. Все области в OSPF должны иметь линк с backbone. Иначе ничего работать не будет.

В нашем примере мы решили долго не думать и загнать все в backbone. По большому счету это ничем не грозит и работать будет. Но если провайдер отдает одному из ваших филиалов частный адрес из 192.168.0.0/16 (192.168.18.27/29, например), то в вашей таблице маршрутизации появится сеть провайдера. И если кто-то с другой стороны провайдера использует такие же настройки (или просто указал маршрут к вашим сетям), то он сможет беспрепятственно попасть в вашу сеть. А уж случайно это сделали или намеренно — узнаете когда данные из вашей БД всплывут в интернете.

Или указать, что интерфейс, смотрящий к провайдеру будет в пассивном режиме.

Настройка OSPF в ручном режиме

Теперь поговорим о том, как сделать “правильно” — не вещать свои сети куда попало и позволить грамотно траблшутить работу OSPF.
Как мы говорили выше, каждая область имеет свой ID. Также и каждый участник OSPF имеет свой ID. По умолчаню он выставляется автоматически и выбирается из IP адресов, присвоенных интерфейсам роутера. Но нам надо проставить его в ручную, чтобы была какая-то логика в именовании и мы всегда знали откуда пришел запрос. Ставится это в Routing — OSPF — Instances — Router ID.

В нашей схеме имеется несколько областей. Как мы выяснили, основная область, соединяющая все остальные — backbone. Именно в этой области летают пакеты от одного роутера к другому, позволяющие обмениваться маршрутной информацией. Значит, этой областью должны быть туннели, соединяющие СП и ЦО, что видно на рисунке ниже.

Таким образом, нам необходимо выделить на каждом маршрутизаторе по две зоны — backbone и свою локальную сеть. На примере ЦО:
routing ospf area add name=Area0 area-id=192.168.0.0
routing ospf network add area=Area0 network=192.168.0.0/24
routing ospf network add area=backbone network=192.168.255.0/24

И точно так же на остальных маршрутизаторах, только заменив Area-ID, Area name и network на свои.

Теперь на каждом маршрутизаторе можем увидеть маршруты ко всем остальным сетям с буквами D и o в описании, что означает, что эти маршруты D — динамические (прилетели в резудльтате работы протоколов динамической маршрутизации) и o — из протокола OSPF.

Так мы получили простую и надежную настройку протокола динамической маршрутизации. У OSPF ещё имеется куча дополнительных настроек, таких как приоритет роутера, стоимость интерфейса, время определения состояний и многое, многое другое. Это позволяет очень гибко настроить маршрутизацию под свои нужды.

Статическая маршрутизация, альтернатива динамической - это процесс, в котором администратор системной сети вручную настраивал сетевые маршрутизаторы со всей информацией, необходимой для успешной пересылки пакетов. Администратор создает в каждом устройстве, помещая записи для каждой сети, которая может быть назначением. Статические пути передачи данных для сетевых маршрутов неизменяемы.

Определение

Статический способ — это управляемый сетевым администратором метод сетевой маршрутизации, который заключается в ручной настройке и выборе сетевого маршрута. Используется в сценариях, где сетевые параметры и среда должны оставаться постоянными.

Маршрутизация является одной из наиболее важных процедур передачи данных. Это гарантирует, что данные перемещаются из одной сети в другую с оптимальной скоростью и минимальной задержкой, и что ее целостность сохраняется в этом процессе.

В широком смысле маршрутизация выполняется двумя разными способами:

  • Динамическая — периодически обновляет свою таблицу маршрутизации путями и их стоимостью/метрикой, принимая оптимальные решения на основе изменения сетевых рабочих условий.
  • Статическая — считается простейшей формой этого процесса, выполняет правила маршрутизации с предварительно настроенными путями передачи данных в таблице, которые могут быть изменены вручную только администраторами.

Статические маршруты обычно используются в тех ситуациях, когда выбор ограничен или существует только один доступный по умолчанию путь. Кроме того, статическая методика может использоваться, если есть лишь несколько устройств для настройки маршрута, и в будущем не возникнет необходимость его менять.

Разновидности маршрутизации

Устройство может использовать три пути для изучения маршрутов:

    Статическая маршрутизация — это метод, с помощью которого администратор вручную добавляет пути передачи информации в электронную таблицу/базу данных.

    Маршрутизация по умолчанию — это методика, где все маршрутизаторы настроены на отправку всех пакетов по одному пути. Это очень полезный метод для небольших сетей или для сетей с единой точкой входа и выхода. Он обычно используется в дополнение к статическому и динамическому способам.

    Динамическая методика — это способ, при котором протоколы и алгоритмы используются для автоматического распространения информации о маршрутизации. Это наиболее распространенный и самый сложный метод.

Классификация протоколов

Протоколы маршрутизации классифицируются как протоколы внутренних шлюзов (IGP) или внешние шлюзовые протоколы (EGP). IGP используются для обмена информацией о процессе в межсетевых сетях, которые попадают под единый административный домен (также называемый автономными системами). EGP используются для обмена информацией между различными автономными системами. Обычными примерами IGP являются протокол маршрутизации (RIP), расширенный протокол внутренних шлюзов (EIGRP) и Open Shortest Path First (OSPF).

Протокол маршрутизации использует программное обеспечение и алгоритмы для определения оптимальной передачи сетевых данных и путей связи между сетевыми узлами. Также известен как политика маршрутизации. Они существенно облегчают взаимодействие маршрутизаторов, а также общую топологию сети.

В большинстве (IP) используются следующие протоколы маршрутизации:

    Протокол маршрутизации (RIP) и протокол маршрутизации внутренних шлюзов (IGRP): обеспечивают процесс для внутренних шлюзов через протоколы маршрутных или дистанционных векторов. RIP используется для определения кратчайшего пути от источника к месту назначения. Это позволяет передавать данные на высокой скорости в кратчайшие сроки.

    Open Shortest Path First (OSPF): обеспечивает процесс для внутренних шлюзов через протоколы маршрутизации состояния канала.

  • Протокол пограничного шлюза (BGP) v4: предоставляет общедоступный протокол маршрутизации через внешнее взаимодействие со шлюзом.

Как настроить статическую маршрутизацию Cisco

Чтобы настроить статический маршрут, устройство должно находиться в режиме глобальной конфигурации.

Код для командной строки: ip route prefix mask{адрес|интерфейс}[расстояние]. Разъясним основные составляющие кода:

    сеть — целевая сеть;

    mask — маска подсети для этой сети;

    адрес — IP-адрес маршрутизатора следующего перехода;

    интерфейс — интерфейс оборудования исходящего трафика;

    расстояние — административное расстояние маршрута.

Административное расстояние используется для применения своего рода приоритизации на статических маршрутах, так что разные пути к данному месту назначения будут следовать определенной схеме активации. Административное расстояние представляет собой целое число от 0 до 255, где 0 указывает путь первого приоритета, а 255 означает, что трафик не может проходить через этот маршрут. По умолчанию административное расстояние непосредственно подключенных интерфейсов равно 0, а для статических маршрутов 1.

Пример статической маршрутизации:

ip route 10.0.0.0 255.0.0.0 131.108.3.4 110, где 10.0.0.0 — целевая сеть, 255.0.0.0 — маска подсети, а 131.108.3.4 — следующий скачок для используемого маршрутизатора, 110 — административная дистанция.

Пример создания статического маршрута

В качестве примера того, когда требуется статический маршрут, рассмотрим следующий случай:

    Ваш основной доступ в интернет осуществляется через кабельный модем для интернет-провайдера.

    У вас есть маршрутизатор ISDN в вашей домашней сети для подключения к компании, в которой вы работаете. Адрес этого устройства в вашей локальной сети 192.168.1.100.

    Сетевой адрес вашей компании 134.177.0.0.

    При настройке статической маршрутизации cisco создаются два неявных статических маршрута.

    Путь передачи данных по умолчанию был создан с вашим провайдером в качестве шлюза, а второй статический маршрут создается в локальной сети для всех адресов 192.168.1.x. В этой конфигурации при попытке доступа к устройству в сети 134.177.0.0 маршрутизатор перенаправляет запрос поставщику услуг интернета.

    В этом случае необходимо определить статический маршрут, указав прибору, что 134.177.0.0 должен быть доступен через маршрутизатор ISDN по адресу 192.168.1.100.

    Статические и динамические маршрутизаторы

    Для эффективной работы в межсетевой сети маршрутизаторы должны иметь информацию о других идентификаторах или настраиваться с использованием пути по умолчанию. В больших сетях таблицы маршрутизации должны поддерживаться так, чтобы трафик всегда перемещался по оптимальным путям следования. От того, как поддерживаются электронные таблицы, определяется различие между статической и динамической маршрутизациями.

    Статическая маршрутизация

    Устройство с вручную настроенными таблицами маршрутизации пользователям известно как статическое. Сетевой администратор, владеющий топологией межсетевой сети, вручную создает и обновляет таблицу путей следования информации, программируя все маршруты. Статические маршрутизаторы могут хорошо работать для небольших межсетевых сетей, но не масштабируются для больших или динамически изменяющихся межсетевых сетей из-за их ручного администрирования.

    Хорошим примером статического устройства является многосетевой компьютер под управлением Windows 2000 (компьютер с несколькими сетевыми интерфейсами). Создание статической маршрутизации в Windows 2000 так же просто, как установка нескольких карт сетевого интерфейса, настройка TCP/IP и включение IP-маршрутизации.

    Динамическая маршрутизация

    Прибор с динамически настроенными таблицами известен как динамический. Динамическая маршрутизация состоит из таблиц, которые создаются и поддерживаются автоматически через постоянную связь между устройствами. Это сообщение облегчается протоколом маршрутизации, серией периодических или по требованию сообщений, содержащих информацию, которой обмениваются маршрутизаторы. Динамические устройства, за исключением их первоначальной конфигурации, требуют незначительного постоянного обслуживания и могут масштабироваться до более крупных межсетевых сетей.

    Динамическая маршрутизация является отказоустойчивой. Динамические пути передачи данных, полученные от других устройств, имеют ограниченный срок службы.
    Возможность масштабирования и восстановления от межсетевых ошибок делает этот способ лучшим выбором для средних и больших межсетевых сетей.

    Динамическая методика — это обеспечивающий оптимальную маршрутизацию данных. В отличие от статической, динамическая позволяет маршрутизаторам выбирать пути в соответствии с изменениями логической сети в режиме реального времени. В динамическом процессе протокол, работающий на устройстве, отвечает за создание, обслуживание и обновление электронной таблицы данных. В статической маршрутизации все эти задания выполняются администратором системы вручную.

    Динамическая методика использует множество различных алгоритмов и протоколов. Наиболее популярными являются протокол маршрутизации (RIP) и Open Shortest Path First (OSPF).

    Стоимость маршрутизации является критическим фактором для всех организаций. Наименее дорогостоящая технология этого процесса обеспечивается динамической методикой, которая автоматизирует изменения таблиц и обеспечивает наилучшие пути для стабильной передачи данных.

    Операции протокола динамической маршрутизации можно объяснить следующим образом:

    • Маршрутизатор предоставляет и получает сообщения на интерфейсах устройства.

      Получаемые сообщения и информация используются совместно другими приборами, которые используют точно такой же протокол.

    Маршрутизаторы меняют информацию о маршрутизации для обнаружения данных об удаленных сетях. Всякий раз, когда устройство находит изменение в топологии, протокол маршрутизации вносит изменение топологии на других приборах.

    Динамическая маршрутизация легко настраивается в больших сетях и более интуитивно понятна при выборе наилучшего пути передачи информации, определении изменений и обнаружении удаленных сетей. Однако, поскольку маршрутизаторы обмениваются обновлениями, они потребляют больше полосы пропускания, чем в статической методике. Процессоры и операционная система оборудования могут также столкнуться с дополнительными нагрузками в результате более сложной работы протоколов. Динамическая маршрутизация менее безопасна, чем статическая.

    Сравнительный анализ

    Статическая маршрутизация cisco не является протоколом маршрутизации. Это просто процесс ручного ввода маршрутов в электронную таблицу данных устройства через файл конфигурации, который загружается при запуске устройства. В качестве альтернативы эти пути передачи данных могут быть введены администратором сети, который настраивает их вручную. Поскольку эти настроенные вручную маршруты не изменяются после их настройки, они называются статическими.

    Статическая методика — это простейшая форма маршрутизации, но это кропотливый ручной процесс. Используйте данный метод, когда у вас очень мало устройств для настройки (менее 5), и вы уверены, что пути передачи информации, вероятно, никогда не изменятся.

    Статическая маршрутизация cisco packet tracer также не обрабатывает случайные сбои во внешних сетях, потому что любой маршрут, который настроен вручную, должен быть обновлен или перенастроен вручную, чтобы исправить или восстановить потерянные соединения.

    Протоколы динамической маршрутизации поддерживаются программными приложениями, запущенными на принимающем/передающем устройстве (маршрутизаторе).

    Устройство, использующее динамическую методику, распознает маршруты для всех сетей, которые напрямую к нему подключены. Затем маршрутизатор изучает данные других приборов, которые выполняют один и тот же протокол (RIP, RIP2, EIGRP, OSPF, IS-IS, BGP). Затем каждый маршрутизатор сортирует список маршрутов и выбирает один или несколько оптимальных путей для каждого сетевого адресата.

    Затем протоколы динамической маршрутизации распространяют полученные данные на другие устройства, работающие с одним протоколом, тем самым расширяя информацию о том, какие сети существуют и могут быть достигнуты. Это дает динамическим протоколам возможность адаптироваться к изменениям логической топологии сети или сбоям роутера статической маршрутизации.

    Плюсы и минусы

    Статическая маршрутизация имеет следующие преимущества:

      Никакой дополнительной обработки и дополнительных ресурсов, как в случае динамических протоколов маршрутизации.

      Отсутствие дополнительных требований к пропускной способности, вызванных передачей чрезмерных пакетов для процесса обновления таблицы маршрутизации.

      Дополнительная безопасность обуславливается путем ручного ввода или отклонения путей передачи информации в определенные сети.

      Настройка статической маршрутизации более безопасна.

      Для использования статических маршрутов нет накладных расходов. С динамическими пропускная способность сети используется для связи доступных сетей между маршрутизаторами. При использовании статических маршрутов, поскольку сетевой администратор кодирует данные, устройствам не нужно передавать информацию о маршрутизации.

      Статическую маршрутизацию проще настроить для небольшой сети. Предположим, что у вас есть только два устройства и необходимо настроить сообщение между ними. Для этого потребуется настроить только два оператора маршрута — по одному на каждом маршрутизаторе. С динамическим протоколом, таким как RIP, например, пришлось бы вводить два сетевых оператора на каждом приборе.

      Статические маршруты не требуют каких-либо существенных ресурсов маршрутизатора. Протокол динамической маршрутизации, такой как OSPF, может потребовать значительных ресурсов для расчета кратчайшего пути по сети при наличии большого количества подключенных устройств.

    К недостаткам относятся следующие:

      Сетевые администраторы должны хорошо знать всю чтобы правильно настроить пути передачи данных.

      Изменения топологии требуют ручной настройки статической маршрутизации cisco packet tracer для всех устройств, что очень трудоемко.

      Статические маршруты не масштабируются по мере роста сети. Это связано с тем, что все они настраиваются администратором вручную.

      При динамической методике ручное вмешательство отсутствует, и трафик маршрутизируется автоматически всякий раз, когда в сети происходит отключение. Также он достаточно масштабируемый и легко управляемый.

    В чем разница между статической и динамической маршрутизацией?

    Статическая IP-маршрутизация — это когда вы статически настраиваете устройство для отправки трафика для определенных пунктов назначения в предварительно сконфигурированных направлениях. Динамический способ — это когда вы используете протокол маршрутизации, такой как OSPF, ISIS, EIGRP и или BGP, чтобы выяснить, какой тип трафика должен пройти. В реальном мире очень мало ситуаций, когда используется только один из двух методов. Типичная сеть будет использовать динамический протокол OSPF для определения оптимальных маршрутов внутри предприятия, BGP — для определения лучших точек выхода для остальной части интернета и статическую маршрутизацию для отправки специфического трафика по выделенным путям.

    IP-адресация и маршрутизация: как это работает?

    Маршрутизаторы, чтобы иметь возможность передавать пакеты в конечный пункт назначения, должны поддерживать таблицу маршрутизации, в которой хранится вся необходимая информация, содержащая комбинацию сетей и интерфейсов вывода.

    Каждый раз, когда устройство получает пакет, он проверяет IP-адрес получателя и пытается найти, просмотрев в своей электронной таблице данных возможный путь следования информации к этому IP-адресу. Маршрутизаторы не отправляют широковещательные рассылки в поиске удаленных сетей: если сеть не указана в таблице, прибор просто отбрасывает пакеты.

    Когда использовать маршрутизацию по умолчанию

    Маршрутизация по умолчанию используется только в сетях-заглушках. Stub — это сети, которые имеют только один интерфейс вывода, и все, проходящее через эти сети, должно пересекать единую точку выхода.

    Вместо того, чтобы большое количество статических маршрутов указывало на удаленные сети через один выходной интерфейс, настраивается один путь следования по умолчанию, который соответствует всем возможным маршрутам.

    Использование административных расстояний

    По умолчанию для статических маршрутов административное расстояние составляет 1. AD используются для определения приоритетов. Для разных маршрутов в конкретной целевой сети могут быть назначены разные веса, так что один из путей передачи данных используется в приоритете. Маршруты с одинаковой весовой нагрузкой разделяют трафик.

Протокол динамической маршрутизации RIP

Протокол динамической маршрутизации RIP - понятие и виды. Классификация и особенности категории "Протокол динамической маршрутизации RIP" 2017, 2018.

  • - The Anglo-Saxon script and peculiarities of the Old English alphabet

    The earliest records of English that have come down to us are dated in the 7th century. The period preceding this date is called pre-written. The Old English written monuments represent two types of script – the so called runic alphabet and Latin alphabet. The Runic alphabet was adopted by Anglo-Saxons on the continent before coming to the Island. It is a special type of script used by all Germanic tribes before they became Christians. They adopted Christianity in the 7th century. In the year... .


  • - Post scriptum 1 страница

    Древний мир оставил нам память о нескольких попытках развить возможно шире узколичную жизнь человека, но все они не удались. Особенно грандиозная попытка этого рода была сделана в Риме перед распространением христианства. Вспомните дикие оргии, чувственные излишества,... .


  • - P. Post scriptum

    «Жизнь подобна игрищам: иные приходят на них состязаться, иные торговать, а самые счастливые – смотреть; так и в жизни иные, подобно рабам, рождаются жадными до славы и наживы, между тем как философы – до единой только истины», – сказал Пифагор. Мы пришли для того, чтобы... .


  • - Homo triplex и три квинтета

    Прежде чем изучать структуру Адулруны, рассмотрим представления Буреуса о трёхчастности. Как человек, так и мир состоят из трёх уровней бытия. Это общее представление герметизма и неоплатонизма. Существует божественный уровень, материальный уровень, а между ними - некий... .


  • - Маршрутизация в глобальной сети. Метрики. Протокол RIP.

    Магистральные сети(backbone networks) используют для образования одноранговых связей между крупными локальными сетями.Магистральные сети должны обеспечивать высокую пропускную способность и быть постоянно доступны. Сети доступа представляют собой сети, которые используются... .


  • - Лабораторная работа №7. Настройка протокола RIP в корпоративной сети.

    Создайте схему, представленную на рис.6.2. Рис.6.2. Схема сети. В четырех сетях: 11.0.0.0/8, 12.0.0.0/8, 13.0.0.0/8 и 14.0.0.0/8 установлены компьютеры с адресами: Comp1 – 11.0.0.11, маска 255.0.0.0 Comp2 – 12.0.0.12, маска 255.0.0.0 ... ..


  • - PostScript Type1

    Каждый символ шрифта можно представить как совокупность фрагментов некоторых кривых. С математической точки зрения для описания фрагмента кривой достаточно указать небольшое количество параметров. Например, кривая второго порядка - квадратичная парабола у = ах2+ bх... .




  • Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!