Энциклопедия мобильной связи

Что такое водяное охлаждение. Тихая заводь: собираем систему водяного охлаждения для ПК

В этой статье я постараюсь рассказать о своей попытке изготовить систему водяного охлаждения для процессора в домашних условиях. При этом опишу основные моменты и технические тонкости на примере собственного опыта. Если вам интересно подробное иллюстрированное руководство по изготовлению, сборке и установке такой системы, то добро пожаловать под кат.

Трафик, много картинок! Видео процесса изготовления в самом низу.


Мысль о создании более эффективного охлаждения домашнего компьютера у меня зародилась в процессе поиска способа повысить производительность своего компьютера с помощью «разгона» процессора. Разогнанный процессор потребляет в полтора раза больше мощности и соответственно греется. Главный ограничитель покупки готовой – цена, покупка в магазине готовой системы водяного охлаждения вряд ли обойдется дешевле ста долларов. Да и в обзорах бюджетные системы жидкостного охлаждения не особо хвалят. Так было решено сделать простейшую СВО самостоятельно и с минимальными затратами.

Теория и сборка

Основные детали
  • Водоблок (или теплообменник)
  • Центробежный водяной насос (помпа) мощностью 600 литров/ч.
  • Радиатор охлаждения (автомобильный)
  • Расширительный резервуар под теплоноситель (воду)
  • Шланги 10-12 мм;
  • Вентиляторы диаметром 120мм (4 штуки)
  • Источник питания для вентиляторов
  • Расходные материалы
Водоблок
Основная задача водорблока это быстро забрать у процессора тепло и передать его теплоносителю. Для данных целей наиболее подходит медь. Возможно изготовление теплообменника и из алюминия, но его теплопроводность (230Вт/(м*К)) вдвое меньше меди (395,4 Вт/(м*К)). Также немаловажно устройство водоблока (или теплообменника). Устройство теплообменника представляет собой один или несколько непрерывных каналов, проходящих через весь внутренний объем водоблока. При этом важно максимально увеличить поверхность соприкосновения с водой и избежать застоев воды. Для увеличения поверхности обычно используют частые надрезы на стенках водоблока или устанавливают мелкие игольчатые радиаторы.

Я не пытался сделать что-то сложное, поэтому начал делать простую ёмкость для воды с двумя отверстиями для трубок. За основу был взят латунный соединитель для труб, а основанием стала медная пластина толщиной 2 миллиметра. Сверху в такую же пластину вставляются две медные трубки диаметра шланга. Всё запаивается оловянно-свинцовым припоем. Делая водоблок побольше я сначала не задумывался о его весе. В собранном виде со шлангами и водой на материнской плате будет висеть более 300 грамм, и для облегчения пришлось использовать дополнительные крепления для шлангов.

  • Материал: медь, латунь
  • Диаметр штуцеров: 10 мм
  • Пайка: Оловянно-свинцовый припой
  • Способ крепления: винтами к креплению магазинного кулера, шланги крепятся хомутами
  • Цена: около 100 рублей
Выпиливание и пайка

Помпа
Помпы бывают внешние или погружные. Первая лишь пропускает ее через себя, а вторая ее выталкивает, будучи в нее погружена. Здесь использована погружная, помещается в ёмкость с водой. Внешнюю найти не удалось, искал в зоомагазинах, а там только погружные аквариумные помпы. Мощность от 200 до 1400 литров в час цена от 500 до 2000 рублей. Питается от розетки, мощность от 4 до 20 ватт. На твёрдой поверхности помпа сильно шумит, а на поролоне шум незначителен. В качестве резервуара для воды использовалась банка, вмещающая в себя помпу. Для присоединения силиконовых шлангов были использованы стальные хомуты на винтах. Для лёгкого надевания и снятия шлангов можно использовать смазку без запаха.

  • Максимальная производительность - 650 л/ч.
  • Высота подъема воды – 80 см
  • Напряжение – 220В
  • Мощность – 6 Вт
  • Цена - 580 рублей
Радиатор
Насколько качественным будет радиатор, во многом определит эффективность всей системы водяного охлаждения. Тут использован автомобильный радиаторсистемы отопления (печка) от девятки, куплен старый на барахолке за 100 рублей. К сожалению, интервал между пластинами в нём оказался меньше миллиметра, поэтому пришлось вручную раздвигать и сжимать пластины по нескольку штук, чтобы слабые китайские вентиляторы смогли продуть его насквозь.
  • Материал трубок: медь
  • Материал ребер: алюминий
  • Размер: 35х20х5 см
  • Диаметр штуцеров: 14 мм
  • Цена: 100 рублей
Обдув
Обдувается радиатор двумя парами 12 см вентиляторами спереди и сзади. Запитать 4 вентилятора от системного блока во время проверки не представилось возможным, поэтому пришлось собрать простой блок питания на 12 вольт. Вентиляторы были соединены параллельно, и подключены с учётом полярности. Это важно, иначе с большой вероятностью вентилятор можно испортить. У кулера 3 провода: черный (земля), красный (+12В) и желтый (значение скорости).

  • Материал: китайский пластик
  • Диаметр: 12 см
  • Напряжение: 12 В
  • Ток: 0.15 А
  • Цена: 80*4 рублей
Хозяйке на заметку
Цель снижения шума я не ставил из-за стоимости вентиляторов. Так вентилятор за 100 рублей изготовлен из чёрного пластика и потребляет 150 миллиампер тока. Именно такие я использовал для обдува радиатора, дует слабо, зато дешёвый. Уже за 200-300 рублей можно найти намного более мощные и красивые модели с потреблением 300-600 миллиампер, но на максимальных оборотах они шумные. Это решается силиконовыми прокладками и антивибрационными креплениями, но для меня решающее значение играла минимальная стоимость.
Блок питания
Если готового под рукой нет, можно собрать простейший из подручных материалов и микросхемы, которая стоит меньше 100 рублей. Для 4 вентиляторов необходим ток 0,6 А и немного про запас. Микросхема даёт примерно 1 ампер при напряжении от 9 до 15 вольт в зависимости от модели. Можно использовать любую модель, выставляя 12 вольт переменным резистором.

  • Инструменты и паяльник
  • Радиодетали
  • Микросхема
  • Провода и изоляция
  • Цена: 100 рублей

Установка и проверка

Аппаратная часть
  • Процессор: Intel Core i7 960 3.2 ГГц / 4.3 ГГц
  • Системная плата: ASUS Rampage 3 formula
  • Блок питания: OCZ ZX1250W
  • Термопаста: АЛ-СИЛ 3
Программное обеспечение
  • Windows 7 x64 SP1
  • Prime 95
  • RealTemp 3.69
  • Cpu-z 1.58

Особо долго тестировать не пришлось, т.к. результаты не приближались даже к возможностям воздушного кулера. Радиатор СВО обдувался пока только двумя китайскими вентиляторами из 4х возможных и ещё не были раздвинуты шире пластины для лучшего продува. Так в режиме экономии энергии и нулевой загрузке температура процессора на воздухе примерно 42 градуса, а на самодельной СВО 57 градусов. Запуск теста prime95 на 4 потока (50% загрузка) прогревает до 65 градусов на воздухе и до 100 градусов за 30 секунд на СВО. При разгоне результаты ещё хуже.

Была предпринята попытка сделать новый водоблок с более тонкой (0,5 мм) медной пластиной основания и почти втрое более вместительный внутри, правда из тех же материалов (медь + латунь). В радиаторе раздвинуты пластины для лучшего продува и добавлено ещё два вентилятора, теперь их 4 штуки. В этот раз в режиме экономии энергии и нулевой загрузке температура процессора на воздухе примерно 42 градуса, а на самодельной СВО примерно 55 градусов. Запуск теста prime95 на 4 потока (50% загрузка) прогревает до 65 градусов на воздухе и до 83 градусов на СВО. Но при этом вода в контуре начинает довольно быстро нагреваться и уже через 5-7 минут температура процессора достигает 96 градусов. Это показания без разгона.

Собирать СВО было, конечно интересно, но применить её для охлаждения современного процессора не удалось. В старых компьютерах отлично справляется штатный кулер. Может быть я подобрал некачественные материалы или неправильно изготавливал водоблок, но собрать СВО менее, чем за 1000 рублей в домашних условиях мне не представляется возможным. Почитав обзоры бюджетных готовых СВО, имеющихся в магазинах я не надеялся, что моя самоделка будет лучше хорошего воздушного кулера. Для себя сделал вывод, что не стоит экономить в будущем на комплектующих для СВО. Когда решусь покупать СВО для разгона, однозначно буду собирать её сам из отдельных деталей.

Видеоролик

Введение

Вам не кажется, что термин "жидкостное охлаждение" наводит на мысль об автомобилях? На самом деле, жидкостное охлаждение является неотъемлемой частью обычного двигателя внутреннего сгорания почти 100 лет. Сразу же напрашивается вопрос: почему именно оно является предпочтительным методом охлаждения дорогих автомобильных двигателей? Чем же так замечательно жидкостное охлаждение?

Чтобы это выяснить, мы должны сравнить его с воздушным охлаждением. При сравнении эффективности этих методов охлаждения нужно учесть два наиболее важных свойства: теплопроводность и удельную теплоёмкость.

Теплопроводность - это физическая величина, показывающая, насколько хорошо вещество переносит тепло. Теплопроводность воды почти в 25 раз больше, чем воздуха. Очевидно, что это даёт водяному охлаждению огромное преимущество над воздушным, так как оно позволяет гораздо быстрее переносить тепло от горячего двигателя к радиатору.

Удельная теплоёмкость - ещё одна физическая величина, которая определяется как количество теплоты, необходимое для повышения температуры одного килограмма вещества на один кельвин (градус Цельсия). Удельная теплоёмкость воды почти в четыре раза больше, чем воздуха. Это означает, что для нагревания воды требуется в четыре раза больше энергии, чем для нагревания воздуха. И снова способность воды поглощать гораздо больше тепловой энергии без повышения собственной температуры является огромным преимуществом.

Итак, имеем неоспоримые факты того, что жидкостное охлаждение является более эффективным, чем воздушное. Однако совсем не обязательно, что это - лучший метод для охлаждения компонентов ПК. Давайте разберёмся.

Жидкостное охлаждение ПК

Несмотря на очень хорошие качества воды, касающиеся отвода тепла, есть несколько убедительных причин, чтобы не помещать воду в компьютер. Самая главная из этих причин - электропроводность охлаждающей жидкости.

Если бы вы случайно пролили стакан воды на бензиновый двигатель во время заправки радиатора, то ничего страшного бы не произошло; вода не повредила бы двигатель. А вот если бы вы вылили стакан воды на материнскую плату своего компьютера, то было бы очень плохо. Поэтому существует определённый риск, связанный с применением воды для охлаждения компонентов компьютера.

Следующий фактор - это сложность технического обслуживания. Системы воздушного охлаждения проще и дешевле производить и ремонтировать по сравнению с водяными аналогами, и радиаторы не требуют никакого технического обслуживания, разве что необходимо удалять из них пыль. С системами водяного охлаждения работать гораздо сложнее. Их труднее устанавливать, они часто требуют обслуживания, хотя и незначительного.

В-третьих, элементы системы водяного охлаждения для ПК стоят гораздо больше, чем детали системы охлаждения воздухом. Если комплект качественных радиаторов и вентиляторов воздушного охлаждения для процессора, видеокарты и материнской платы будет стоить, скорее всего, в пределах $150, то стоимость системы жидкостного охлаждения для тех же самых комплектующих легко может доходить до $500.

Имея столько недостатков, системы водяного охлаждения, казалось бы, не должны пользоваться спросом. Но на самом деле они настолько хорошо отводят тепло, что это их свойство оправдывает все недостатки.

На рынке можно найти полностью готовые к установке системы жидкостного охлаждения, которые уже не являются набором запасных частей, с которым энтузиастам приходилось иметь дело в прошлом. Готовые системы собраны, проверены и вполне надёжны. К тому же, водяное охлаждение не так опасно, как кажется: разумеется, всегда существует большой риск при использовании жидкостей в ПК, но если соблюдать осторожность, то этот риск существенно снижается. Что касается технического обслуживания, то современные хладагенты требуют замены довольно редко, может, раз в год. Что касается цены, то любое оборудование, которое работает с высокой производительностью, всегда стоит дороже обычного, будь то "Феррари" в вашем гараже или система водяного охлаждения для вашего компьютера. За высокую производительность приходится платить.

Предположим, что вас привлекает этот метод охлаждения или, по крайней мере, вам хотелось бы узнать, как он работает, что с ним связано, и каковы его преимущества.

Общие принципы водяного охлаждения

Цель любой системы охлаждения в ПК - отвести тепло от компонентов компьютера.

Традиционный воздушный кулер для ЦП отводит тепло от процессора на радиатор. Вентилятор активно прогоняет воздух через рёбра радиатора, и когда воздух проходит мимо, он забирает тепло. Воздух из корпуса компьютера выводится другим вентилятором или даже несколькими. Как видите, воздух совершает много перемещений.

В системах водяного охлаждения вместо воздуха для отвода тепла используется охлаждающая жидкость (теплоноситель) - вода. Вода выходит из резервуара по трубке, поступая туда, куда нужно. Блок водяного охлаждения может либо представлять собой отдельный блок вне корпуса ПК, либо может быть встроен в корпус. На диаграмме водоохладительный блок является внешним.

Тепло передаётся от процессора к головке охлаждения (водоблоку), которая представляет собой полый радиатор-теплосъёмник с входным и выходным отверстиями для охлаждающей жидкости. Когда вода проходит сквозь головку, она забирает с собой тепло. Теплоотдача за счёт воды происходит гораздо эффективнее, чем за счёт воздуха.

Затем нагретая жидкость закачивается в резервуар. Из резервуара она протекает в теплообменник, где отдаёт тепло радиатору, а тот - окружающему воздуху, обычно с помощью вентилятора. После этого вода попадает снова в головку, и цикл начинается сначала.

Сейчас, когда мы имеем хорошее представление об основах жидкостного охлаждения ПК, поговорим о том, какие системы доступны на рынке.

Выбор системы водяного охлаждения

Есть три основных типа систем водяного охлаждения: внутренние, внешние и встроенные. Главное различие между ними заключается в том, где по отношению к корпусу компьютера расположены их основные компоненты: радиатор/теплообменник, насос и резервуар.

Как следует из названия, встроенная охлаждающая система является составной частью корпуса ПК, то есть вмонтирована в корпус и продаётся в комплекте с ним. Так как вся система водяного охлаждения смонтирована в корпусе, этот вариант, возможно, является самым простым в обращении, потому что и внутри корпуса остаётся больше места, и снаружи нет громоздких конструкций. Недостатком, разумеется, является то, что если вы решите перейти на такую систему, то старый корпус ПК окажется бесполезным.


Если вам нравится корпус вашего ПК, и вы не хотите с ним расставаться, то внутренние и внешние системы водяного охлаждения, вероятно, покажутся более привлекательными. Компоненты внутренней системы помещаются внутрь корпуса ПК. Так как большинство корпусов не рассчитаны на размещение такой системы охлаждения, внутри становится довольно тесно. Однако установка подобных систем позволит сохранить ваш любимый корпус, а также переносить его без особых препятствий.


Третий вариант - внешняя система водяного охлаждения. Она тоже для тех, кто желает оставить старый корпус своего ПК. В таком случае радиатор, резервуар и водяной насос помещаются в отдельный блок вне корпуса компьютера. Вода по трубкам закачивается в корпус ПК, к головке охлаждения, а по обратной трубке нагретая жидкость выкачивается из корпуса в резервуар. Преимущество внешней системы заключается в том, что она может использоваться с любым корпусом. Она также позволяет использовать радиатор большего размера и может обладать лучшей охлаждающей способностью, чем средняя встроенная установка. Недостаток заключается в том, что компьютер с внешней системой охлаждения становится не таким мобильным, как с внутренними или встроенными системами охлаждения.


В нашем случае мобильность не имеет большого значения, однако нам хотелось бы оставить наш "родной" корпус ПК. Кроме того, нас привлекла повышенная эффективность охлаждения внешнего радиатора. Поэтому для обзора мы выбрали внешнюю систему охлаждения. Компания Koolance любезно предоставила нам отличный образец - систему EXOS-2.


Внешняя система водяного охлаждения Koolance EXOS-2.

EXOS-2 представляет собой мощную внешнюю систему водяного охлаждения с охлаждающей способностью свыше 700 Вт. Это не означает, что система потребляет 700 Вт - она потребляет лишь малую часть этого. Это значит, что система может эффективно справляться с тепловыделением в 700 Вт, поддерживая температуру на уровне 55 градусов Цельсия при 25 градусах окружающей среды.

EXOS-2 поставляется со всеми необходимыми трубками и приспособлениями, кроме головок охлаждения (водоблоков). Пользователю придётся купить подходящие головки, в зависимости от того, какие компоненты ПК он хочет охлаждать.

Охлаждение нескольких компонентов

Одним из преимуществ большинства систем жидкостного охлаждения является то, что они расширяемы и могут охлаждать не только процессор, но и другие компоненты. Даже после прохождения через головку охлаждения процессора, вода всё ещё способна охладить, например, чипсет материнской платы и видеокарту. Это основное, но по желанию можно добавить ещё больше компонентов, например жёсткий диск. Для этого каждому компоненту, который будет охлаждаться, потребуется свой собственный водоблок. Конечно, придётся заняться и планированием, чтобы убедиться, что охлаждающая жидкость протекает хорошо.

Почему выгодно объединить все три компонента - центральный процессор, чипсет и видеокарту - с хорошей системой водяного охлаждения?

Большинство пользователей понимают необходимость охлаждения процессора. ЦП сильно нагревается в корпусе ПК, а устойчивая работа компьютера зависит от поддержания низкой температуры процессора. Центральный процессор является одной из самых дорогих составляющих компьютера, и чем ниже поддерживаемая температура, тем дольше прослужит процессор. Наконец, охлаждение процессора особенно актуально при разгоне.


Водоблок центрального процессора и аксессуары для сборки.

Идея охлаждения чипсета материнской платы (вернее, северного моста), возможно, не всем знакома. Но учтите, что компьютер устойчив настолько, насколько стабилен его чипсет. Во многих случаях дополнительное охлаждение чипсета может поспособствовать стабильности системы, особенно при разгоне.


Водоблок чипсета и аксессуары для сборки.

Третий компонент очень важен для тех, кто обладает higher-end видеокартой и использует ПК для игр. Во многих случаях графический процессор видеокарты выделяет тепла больше остальных компонентов компьютера. Опять же, чем лучше охлаждение графического процессора, тем дольше он прослужит, тем выше устойчивость и больше возможностей для разгона.

Разумеется, для тех пользователей, кто не намерен использовать свой компьютер для игр и имеет маломощную графическую карту, водяное охлаждение окажется излишеством. Но для современных мощных и сильно нагревающихся видеокарт, водяное охлаждение может стать выгодным приобретением.

Мы собираемся установить охлаждающую систему на нашу видеокарту Radeon X1900 XTX. Хотя эта видеокарта не самая новая и мощная, она всё ещё хоть куда, и к тому же очень сильно нагревается. В случае с данной моделью компания Koolance предлагает не только водоблок для графического процессора/памяти, но и отдельную головку охлаждения для стабилизатора напряжения.


Водоблок для графического процессора и аксессуары для сборки.

Если системы воздушного охлаждения могут поддерживать температуру графического процессора в допустимых пределах, то нам не известны подобные системы, способные урегулировать чрезвычайно высокую температуру регуляторов напряжения на X1900, которая при нагрузках легко может достигать 100 градусов Цельсия. Интересно, как водоблок для регулятора напряжения повлияет на видеокарту X1900.


Водоблок для регулятора напряжения видеокарты и аксессуары для сборки.

Это основные компоненты, которые охлаждаются с помощью воды. Как говорилось выше, есть и другие компоненты, которые можно охлаждать таким образом. Например, компания Koolance предлагает блок питания мощностью 1200 Вт с жидкостным охлаждением. Все электронные компоненты блока питания погружены в жидкость, не проводящую ток, которая прокачивается через собственный внешний радиатор. Это - особый пример альтернативного жидкостного охлаждения, однако такая система отлично справляется с работой.


Koolance: 1200-Вт блок питания с жидкостным охлаждением.

Сейчас можно приступить к установке.

Планирование и установка

В отличие от систем воздушного охлаждения, установка системы жидкостного охлаждения требует некоторого планирования. Жидкостное охлаждение предполагает несколько ограничений, которые пользователь должен принять во внимание.

Во-первых, во время установки следует всегда помнить об удобстве. Трубки с водой должны свободно проходить внутрь корпуса и между компонентами. Кроме того, охлаждающая система должна оставлять свободное место, чтобы в дальнейшем работа с ней и комплектующими не вызывала трудностей.

Во-вторых, течение жидкости не должно быть ничем ограничено. Следует также помнить, что охлаждающая жидкость нагревается при прохождении через каждый водоблок. Если бы мы спроектировали систему таким образом, чтобы вода поступала в каждый последующий водоблок в такой последовательности: сначала к процессору, затем к чипсету, к видеокарте и, наконец, к регулятору напряжения видеокарты, то в водоблок регулятора напряжения всегда поступала бы вода, нагретая всеми предыдущими компонентами системы. Такой сценарий нельзя назвать идеальным для последнего компонента.

Чтобы как-то смягчить эту проблему, неплохо бы пустить охлаждающую жидкость по отдельным, параллельным путям. Если это сделать правильно, то поток воды будет менее нагружен, и в водоблоки каждого компонента будет поступать вода, не нагретая другими компонентами.

Набор Koolance EXOS-2, который мы выбрали для данной статьи, предназначен в основном для работы с соединительными трубками сечением 3/8", и водоблок для центрального процессора спроектирован с прессуемыми соединителями на 3/8". Однако головки охлаждения чипсета и видеокарты Koolance спроектированы для работы с соединительными трубками меньшего диаметра - 1/4". Из-за этого пользователь вынужден использовать сплиттер, разделяющий 3/8" трубку на две 1/4" трубки. Эта схема хорошо работает, когда мы разбиваем поток на два параллельных пути. По одной из этих 1/4" трубок будет охлаждаться чипсет материнской платы, а по другой - видеокарта. После того, как вода заберёт тепло от этих компонентов, две 1/4" трубки соединятся вновь в одну 3/8", по которой нагретая вода потечёт из корпуса ПК обратно в радиатор для охлаждения.

Весь процесс представлен на следующей схеме.


Спланированная конфигурация охлаждающей системы.

При планировании расположения собственной системы водяного охлаждения рекомендуем вам начертить простую схему. Это поможет правильно установить систему. Начертив план на бумаге, можно приступать к реальной сборке и установке.

Для начала можно разложить на столе все детали системы и прикинуть необходимую длину трубок. Не обрезайте слишком коротко, оставьте запас; потом вы всегда сможете отрезать лишнее.

После подготовительных работ можно приступать к установке водоблоков. Головка охлаждения Koolance для процессора, который мы используем, требует установки металлической скобы крепления на задней стороне материнской платы за процессором. И что хорошо, эта скоба крепления поставляется вместе с пластмассовой прокладкой, чтобы предотвратить замыкание с материнской платой. Сначала мы достали материнскую плату из корпуса и установили скобу крепления.


Затем можно снять радиатор, который прикреплён к северному мосту материнской платы. Мы воспользовались материнской платой Biostar 965PT, у которой чипсет охлаждается с помощью пассивного радиатора, прикреплённого пластмассовыми фиксаторами.


Чипсет материнской платы без радиатора. Готов к установке водоблока.

После того, как радиатор чипсета снят, следует прикрепить элементы крепления водоблока для чипсета.

Во время установки мы заметили, что элементы крепления водоблока для чипсета, в частности, пластмассовая прокладка, давит на резистор на задней части материнской платы. За этим нужно внимательно следить при установке. Чрезмерно сильное затягивание болтов может нанести непоправимый ущерб материнской плате, поэтому будьте внимательны и осторожны!

После установки элементов крепления головок охлаждения процессора и чипсета можно вернуть материнскую плату в корпус ПК и подумать о подсоединении водоблоков к процессору и чипсету. Не забудьте удалить с процессора и чипсета остатки старой термопасты перед тем, как нанести новый тонкий слой.


Процессор с элементами крепления для водоблока.

Возможно, вам захочется подсоединить трубки для воды к водоблокам до того, как вы установите их на материнскую плату. Но будьте при этом осторожны: можно не рассчитать давление и силу, которые при сгибании трубок приложатся к хрупким чипсету и процессору. Главное - оставить достаточную длину трубок, ведь подрезать их по размерам можно позже.

Сейчас можно осторожно установить водоблоки на процессор и чипсет с помощью предоставленных элементов крепления. Помните, что не нужно прижимать их с силой: достаточно просто хорошо их установить на процессор и чипсет. Применяя силу, можно повредить комплектующие.


После установки водоблоков на процессор и чипсет, можно переключить внимание на видеокарту. Удаляем имеющийся на ней радиатор и заменяем его водоблоком. В нашем случае мы также сняли радиатор стабилизатора напряжения и установили на карту второй водоблок. После того, как водоблоки установлены на видеокарту, можно подсоединить трубки. После этого видеокарту можно вставить в слот PCI Express.


После установки всех водоблоков следует подсоединить оставшиеся трубки. Последней нужно подключать трубку, которая ведёт к внешнему блоку водяного охлаждения. Убедитесь в правильности направления движения воды: охлаждённая жидкость должна поступать сначала в водоблок процессора.


Настал момент, когда можно заливать воду в резервуар. Наполняйте резервуар только до уровня, указанного в инструкции производителя. По мере заполнения резервуара, вода будет медленно поступать в трубки. Особенно внимательно следите за всеми креплениями и имейте под рукой полотенце на случай непредвиденной утечки жидкости. При малейших признаках протекания, немедленно устраните проблему.


Когда все компоненты собраны вместе, можно заливать охлаждающую жидкость.

Если вы всё сделали аккуратно, и в системе не возникло протечек, то вам нужно прокачать охлаждающую жидкость, чтобы удалить пузырьки воздуха. В случае с Koolance EXOS-2 это достигается путём замыкания контактов на блоке питания ATX, чтобы подать питание водяному насосу, но не подавать питание на материнскую плату.

Пусть система поработает в таком режиме, а вы в это время медленно и осторожно наклоняйте компьютер в одну и другую стороны, чтобы пузырьки воздуха вышли из водоблоков. Когда все пузырьки выйдут, вы, скорее всего, обнаружите, что в систему требуется добавить охлаждающей жидкости. Это нормально. Примерно через 10 минут после заливки в трубках не должно быть видно никаких пузырьков воздуха. Если вы убедились, что пузырьков воздуха больше нет и вероятность протечки исключена, то можно запускать систему по-настоящему.


Тестовая конфигурация и тесты

Все заботы по сборке и установке позади. Настало время посмотреть, какие преимущества даёт система водяного охлаждения.

Аппаратное обеспечение
Процессор Intel Core 2 Duo e4300, 1,8 ГГц (разогнан до 2250 МГц), кэш 2 Мбайт L2
Платформа Biostar T-Force 965PT (Socket 775), чипсет Intel 965, BIOS vP96CA103BS
Оперативная память Patriot Signature Line, 1x 1024 Мбайт PC2-6400 (CL5-5-5-16)
Жёсткий диск Western Digital WD1200JB, 120 Гбайт, 7 200 об/мин, кэш 8 Мбайт, UltraATA/100
Сеть Встроенный адаптер Ethernet 1 Гбит/с
Видеокарта ATI X1900 XTX (PCIe), 512 Мбайт GDDR3
Блок питания Koolance 1200 Вт
Системное ПО и Драйверы
ОС Microsoft Windows XP Professional 5.10.2600, Service Pack 2
Версия DirectX 9.0c (4.09.0000.0904)
Графический драйвер ATI Catalyst 7.2

В нашей тестовой конфигурации мы использовали платформу Core 2 Duo, потому что процессор E4300 очень легко разогнать. Разгон позволил нам посмотреть, насколько высоко поднимется температура, и как с этим справятся стандартная система воздушного охлаждения и наша новая система водяного охлаждения.

Методика проста: максимально разогнать процессор E4300 со штатным воздушным охлаждением, а затем разогнать его с водяным охлаждением и сравнить результаты. Как оказалось, E4300 способен на большее. Мы увеличили частоту процессора с заявленных 1800 МГц до 2250 МГц. При этом процессор E4300 легко справлялся с добавленными 450 МГц без увеличения напряжения или каких-либо других проблем. Однако стандартный кулер не справился с работой, так как при нагрузке температура процессора поднялась до нежелательных 62 градусов Цельсия. Хотя ядро можно было бы разгонять и дальше, дальнейшее повышение температуры могло стать опасным, поэтому мы остановились, зафиксировали результат и установили систему водяного охлаждения.

Прежде чем рассмотреть температуру процессора при нагрузке, давайте взглянем на температуру при простое системы.

В режиме простоя водяное охлаждение даёт приличное снижение температуры процессора, примерно на 10 градусов. Однако это не такое уж большое достижение, если учесть, что собственный кулер процессора относится к классу low-end, а высококачественный воздушный кулер мог бы быть эффективнее. Тем не менее, стоит помнить, что водяное охлаждение не может снижать температуру так, чтобы она была ниже, чем температура окружающей среды, которая в нашем случае была около 22 градусов Цельсия.

При нагрузке системы - десятиминутный прогон стресс-теста Orthos - установка водяного охлаждения действительно показала, на что она способна.

Вот это уже на самом деле интересно. Штатный воздушный кулер не может даже поддерживать температуру процессора ниже нежелательно высоких для него 60 градусов, а система водяного охлаждения снизила температуру до 49 градусов при самой низкой скорости вентиляторов. Кроме снижения температуры, система водяного охлаждения работает гораздо тише, чем штатный кулер процессора.

При максимальной скорости вентиляторов в системе водяного охлаждения температура процессора опускается ниже 40 градусов! Это на 24 градуса ниже, чем со штатным кулером при нагрузке, и практически столько же, сколько собственный кулер выдаёт при простое. Результат производит впечатление, хотя при высокой скорости вентиляторов система водяного охлаждения производит больше шума, чем хотелось бы. Однако скорость вентиляторов регулируется по 10-бальной шкале, и вряд ли в повседневном использовании придётся устанавливать её на полную мощность. Orthos нагружает процессор сильнее, чем другие тесты, и нам было весьма интересно посмотреть, на что способна система водяного охлаждения.

В заключение обратите внимание на результаты, полученные для видеокарты. Обычно X1900 XTX нагревается очень сильно, но в нашем распоряжении был один из лучших воздушных кулеров - Thermalright HR-03. Посмотрим, какими преимуществами обладает водяное охлаждение по сравнению с этим кулером после 10 минут стресс-теста Atitool в режиме тестирования на артефакты.

Температура, поддерживаемая штатным кулером, ужасна: 89 градусов на графическом процессоре и свыше 100 градусов на стабилизаторе напряжения! Кулер Thermalright HR-03 потрясающе сработал, охладив графический процессор до 65 градусов, но температура стабилизаторов напряжения по-прежнему слишком высока - 97 градусов!

Система водяного охлаждения снизила температуру графического процессора до 59 градусов. Это на 30 градусов лучше, чем со штатным кулером, и всего на 6 градусов лучше, чем с HR-03, что ещё больше подчёркивает её эффективность.

Отдельный водоблок для стабилизатора напряжения демонстрирует отличный результат. HR-03 не имеет средств для охлаждения стабилизатора напряжения, а водоблок снизил температуру до 77 градусов, что на 25 градусов лучше, чем со штатным кулером. Это очень хороший результат.

Заключение

Результаты, полученные при тестировании с использованием системы водяного охлаждения, достаточно очевидны: жидкостное охлаждение намного эффективнее воздушного.

Водяное охлаждение доступно сейчас не только ограниченному кругу профессионалов, но и простым пользователям. К тому же, современные системы водяного охлаждения, такие, как EXOS-2, очень легко устанавливать, они работают по принципу "включай и работай", в отличие от старых систем, которые требовали сборки. Кроме того, современные наборы водяного охлаждения с подсвеченными и стилизованными корпусами выглядят очень симпатично.

Если вы энтузиаст и испробовали уже все системы воздушного охлаждения, то жидкостное охлаждение будет для вас следующим логическим шагом. Конечно, существует риск, и оборудование для водяного охлаждения будет стоить больше, чем для воздушного, но выгода очевидна.

Мнение редактора

Долгое время я избегал водяного охлаждения, так как опасался, что от него будет больше проблем, чем пользы. Но сейчас могу с уверенностью сказать, что моё мнение изменилось: системы водяного охлаждения гораздо легче устанавливать, чем я думал, а результаты охлаждения говорят сами за себя. Также хотелось бы выразить благодарность компании Koolance за предоставленный нам набор EXOS-2, работа с которым доставила удовольствие.

Как не крути, а многие пользователи задумывались об улучшении системы охлаждения своего персонального компьютера. И главным критерием, кроме снижения температуры комплектующих, естественно является снижение шума . Система водяного охлаждения самый лучший вариант позволяющий достичь эффективного охлаждения и значительно снизить уровень шума. Но есть один существенный минус, отпугивающий простого компьютерщика и не дающий достичь заветной цели – цена.
Да, цена заводских систем значительно превышает все мыслимые и немыслимые границы, но давайте подробнее рассмотрим все компоненты системы водяного охлаждения и постараемся сделать аналогичную реально работающую систему при этом потратить минимальную сумму.

СВО Zalman RESERATOR 2 цена от 340$. Удобная компактная внешняя система с такой же «эффективной» ценой.


Радиаторы от именитых фирм отличаются красотой и компактностью при этом уже оборудованы системой для установки вентиляторов на корпус. Цена от 50$.


Процессорный водоблок имеет медное основание улучшающее теплоотдачу от процессора и удобное крепление под различные сокеты.


Самый простой водоблок с таким же медным основанием. Стоимость данного изделия начинается от 25 «вечнозеленых».


Помпа – один из главных компонентов системы без которого вода никуда не потечет и охлаждаться ничего не будет. Существуют помпы двух типов погружные и внешние. Внешние - дороже, но не требуют дополнительных резервуаров. Цена от 45 долларов и до … установить границу трудновато.


Расширительный бачек – компонент, позволяющий без проблем заправлять всю систему и удалять воздух. Кроме плюсов есть один минус – дополнительный риск протечки, следовательно, выход из строя комплектующих системного блока. Цена 20$ и выше.
Подведя несложные расчеты, получим кругленькую сумму в 140 плюс 10-20 долларов на расходные материалы, итого 150-160$ за полный комплект. Сумма действительно немалая, а учитывая, что для охлаждения других элементов системного блока (видеокарты, северного и южного мостов, оперативной памяти и т.д.) потребуются дополнительные затраты, она может еще увеличится и достичь немного немало 200 долларов.
Как альтернатива водяному охлаждению, возможно применение эффективной системы воздушного или даже пассивного охлаждения. Но стоимость качественной системы воздушного охлаждения также желает лучшего при этом она, как и система пассивного охлаждения имеет практически всегда немалые размеры и вес, следовательно, нуждается в дополнительном креплении или фиксации, что само по себе не очень удобно.
Перейдем непосредственно к созданию СВО . Для начала стоит определиться с тем, что мы будем охлаждать и что мы хотим получить в итоге. Главные компоненты, выделяющие наибольше тепла в нашем случае и требующие охлаждения это само собой процессор и видеокарта (45 и 70 градусов в простое соответственно). Видеокарта оборудована пассивной системой охлаждения и хотя 70 градусов и многовато, было решено пока не устанавливать на нее водоблок, а сделать это в ближайшем будущем. (Об этом мы обязательно напишем в следующей статье).
Еще один критерий, по которому определим надобность водяного охлаждения это шум, издаваемый стандартной системой. Здесь возможно много вариантов: процессор, видеокарта, блок питания, южный мост и прочие элементы. Так как установка системы на блок питания довольно сложная задача было решено оставить новый блок питания без изменений (старый стал жертвой неудачной попытки установки этой самой системы).
Итак, определившись, что главным и первоочередным подопытным будет именно процессор Athlon 64 X2 3600+ приступим непосредственно к изготовлению системы водяного охлаждения.
Начнем с самого сложного водоблока . Главная проблема заключается в материале, из которого он будет изготовляться. Нам повезло найти медный кругляк диаметром 40 мм, и хотя данная конструкция не самая эффективная по теплоотдаче было решено сделать водоблок из того что было, а в дальнейшем поменять его на более удачный вариант.


Отдельное спасибо знакомому токарю, за проведенную работу по изготовлению этих частей, ведь обработка меди задача не из простых, а сломанный резец мы обязательно отдадим с первой пенсии)))
Штуцера были куплены в строительном магазине и, исходя из их диаметра, приобретен и ПВХ шланг.


В зборе водоблок выглядит приблизительно так. Для полной герметичности крышка была припаяна к «стакану» с помощью паяльника на 0,5 кВт, а штуцера вклеены суперклеем (циакрилан). Изначально штуцера садились на силиконовый герметик, но он не оправдал надежд и дал течь.


Нижняя часть водоблока непосредственно контактирующая с поверхностью процессора в таком состоянии явно не пригодна, поэтому ее пришлось отшлифовать и отполировать дополнительно.


Вот и все водоблок готов. Диаметр составил немного меньше 40 мм, так как процессор имеет размеры 40 х 40 мм, он не полностью его перекрывает. Но это не страшно, так как размера ядра процессора, скрывающегося под теплорассеивающей пластиной всего около 16 х 16 мм и та часть, которую водоблок не перекрывает, особой роли нам не сыграет.

Следующим этапом будет помпа . Здесь все довольно просто, идем в магазин с названием типа «Водный мир» или любое другое на Ваше усмотрение, главное чтобы в нем были в продаже фильтры для аквариумов. Выбираем фильтр по максимальной производительности и напору. Нам попался погружной экземпляр производства Atman с напором 0,85 метра и максимальной производительностью 600 л/час. Хотя конечно реально о таких параметрах и говорить не стоит, но 250-280 л/ час более чем достаточно.


Стоимость составила всего 9$. Далее нужно было переделать помпу во внешнюю и избавиться от вибрации. Снова нам потребовались 2 штуцера,


на которых немного ошлифованы грани, чтобы они вплотную входили в напорный и всасывающий патрубки.


Штуцера также как и на водоблоке вклеены циакриланом.


После нехитрых манипуляций погружная помпа превратилась во внешнюю. Остался нерешенным вопрос с вибрацией.


Снимаем резиновые присоски с днища и прикручиваем к нему пластину. Приклеиваем пластину к куску крупнопористого поролона, а его приклеиваем к нижней пластине.


Нижнюю пластину устанавливаем на присоски, которые сняли с фильтра.
Включаем помпу и слушаем – тишина и практически нет вибрации (с водой будет еще тише). Очередной вопрос решен. Идем дальше.
Радиатор – подойдет практически любой из отопительной системы автомобиля. Идеально конечно приобрести медный, но его стоимость начинается от 20$. Можно поискать б/у, но гарантии что он не потечет, никто Вам не даст. Первоначально нам попался радиатор с «печки» автомобиля ГАЗ-66, но после дня запаивания все новых и новых отверстий было решено приобрести новый.


В магазине автозапчастей был куплен радиатор системы отопления от ВАЗ 2101-07.


Правда он изготовлен из алюминиевых трубок, но стоимость в 10 долларов сыграла основную роль.


Боковые части радиатора изготовлены из пластмассы. На первый взгляд не внушает особой надежды на прочность, но ведь давление в системе практически не будет, главное, чтобы радиатор справился со своей основной задачей – охлаждением.


С установкой штуцеров проблем не возникло. Немного рассверлив отверстия, просто вкручиваем штуцера, одновременно нарезая резьбу в пластмассе.


Для дополнительной надежности штуцера посажены на герметик.


Расширительный бачек – мы решили полностью отказаться от этой части, так как радиатор будет устанавливаться в горизонтальном положении и трубка, находящаяся над верхним штуцером не будет полностью заполнена водой. Она-то и сыграет роль расширительного бачка.
Не стоит забывать и об охлаждении радиатора ведь без дополнительного воздушного потока он не сможет удержать температуру процессора в допустимых пределах. В нашем случае, немного забегая наперед, оказалось достаточно одного 120 мм кулера, работающего на заниженном питании (3В), который не создавал никакого шума в принципе.
Переходим к полной сборке системы и ее заправке. Для удобства заправки и контроля уровня воды в системе в контур был вставлен тройник с вертикальной трубкой. В дальнейшем этот тройник будет изъят, а заправка производится через верхний штуцер радиатора. Заправка системы проводилась дистиллированной водой с добавлением небольшого количества мыла, предотвращающего появление живых организмов в воде.


Полностью система в сборе выглядит приблизительно так. Заправка производится довольно просто: наливаем воду в вертикальную трубку, включаем помпу и постепенно доливаем воду до тех пор, пока полностью не выйдет воздух. Ставим метку на трубке и оставляем систему в работе на пару дней, а лучше неделю, дабы полностью удостоверится в ее герметичности и надежности.
Что же подведем итоги . Потратив немного более 25$ мы собрали СВО, которая обеспечит охлаждение процессора, при этом, практически не создавая шума и имея неплохой запас производительности. Этот запас позволит в дальнейшем установить дополнительные водоблоки на видеокарту и блок питания, а также возможно позволит немного разогнать комплектующие.
Обо всем этом, а также об установке СВО в системный блок, не выходя за его пределы, мы постараемся написать в следующих статьях. Продолжая тему повышения производительности игровых систем нельзя не сказать об эффективном охлаждении для нестандартных частот процессоров. Как правило в погоне за высокими частотами и максимальной производительностью многие пользователи уже давно используют компоненты в режимах далеких от штатных. Плюсы и минусы данного метода мы рассматривали в предыдущей рассылке .

Законы Физики.

Естественно, что с ростом тактовой частоты увеличивается температура на всех компонентах, - это законы физики. Слишком высокая температура может стать причиной термического повреждения кристалла процессора. Именно поэтому в современных компьютерах на аппаратном уровне реализован целый ряд защитных механизмов, направленных на то что бы уберечь процессор от повреждения в случае перегрева.

Один из таких механизмов называется Троттлинг (от английского throttling): чем выше температура на кристалле процессора, тем больше машинных тактов он пропускает. Такты пропускаются, соответственно снижается эффективность и производительность – это и есть троттлинг процессора.

Таким образом мы плавно подошли к сути нашей проблемы, с одной стороны нам нужна максимальная производительность нашей игровой системы, с другой стороны необходимо обеспечить максимально эффективное охлаждение и не допустить повышения температуры до уровня, при котором включаются защитные механизмы.


Основательность воздушного охлаждения

Классическим решением данной задачи является использование воздушных систем охлаждения, естественно стандартные кулера идущие в комплекте с процессором не способны эффективно отводить излишки тепла. Именно поэтому многие геймеры, профессионалы в области графики и даже инженеры предпочитают штатным системам более дорогие и производительные кулера от таких вендоров как Zalman , Noctua , Skythe , Cooler Master .

Огромные радиаторы, толстые тепловые трубки, большие вентиляторы – это все конечно отлично, но есть нечто более эффективное . То, что сразу переводит в разряд «настоящих энтузиастов».



Системы Водяного Охлаждения

Системы жидкостного охлаждения (СЖО) или системы водяного охлаждения (СВО) – решение для тех, кто знает цену каждому дополнительному мегагерцу. Качественная СВО способна подарить тишину, несколько сотен дополнительных мегагерц и уважение друзей и коллег

Что же такое эта СВО? Само название говорит за себя. В системе СВО в качестве теплоносителя используется вода. То есть сначала тепло от нагревающих элементов передается напрямую в воду, в отличии от воздушного, где передача происходит сразу в воздух.



Как это работает:

От процессора или графического чипа тепло сначала передается через теплообменник воде. Далее нагретая вода двигается в радиатор, где тепло из водной среды отдается воздуху и отрабатывается во внешнюю среду. Качает же водный поток, как водится, специальный насос – помпа. Весьма стандартная система, которая используется во многих сферах, таких как двигатели внутреннего сгорания (куда уж без нашей любимой автомобильной аналогии). Большим преимуществом выбора СВО объясняется просто, Вода имеет куда более высокий уровень теплоемкости, что позволяет намного эффективнее охлаждать элементы и поддерживать низкий температурный режим.

Какой же сделать выбор?

Сейчас, когда разгон процессоров стал достаточно привычным делом, никто не откажется от повышенных частот для более быстрого выполнения задач, будь то профессиональная деятельность, или компьютерные игры с богатой и тяжелой графикой или высоконагруженными сценами с большим кол-вом персонажей и полигонов. Очевидно, что в таких условиях вопрос о надежной и максимально эффективной системе теплоотвода стоит очень остро. Чем мощнее процессор или графическая карта, тем эффективнее должна работать система охлаждения компьютера. А воздушные кулера, как правило, имеют очень неприятную особенность – вентиляторы при работе в экстремальных режимах, шумят очень сильно и это может вызвать негативные эмоции особенно у пользователей или геймеров в ночное время.


Необслуживаемые СВО

Для тех, кто только начинает свой путь в мире компьютеров существуют необслуживаемые системы водяного охлаждения. Многие именитые производители предлагают готовые и надежные необслуживаемые (замкнутые) системы охлаждения по относительно невысокой цене, например: Corsair Hydro Series (существует несколько вариантов с разными типами радиаторов), Cooler Master Seidon , NZXT Kraken , Silverstone Tundra , да что там говорить, даже компания Intel рекомендует к своим процессорам Intel Core i7 в исполнении LGA 2011 в качестве штатной СО – систему водяного охлаждения от компании Asetek.


А это точно эффективнее?

Эффективность замкнутых систем водяного охлаждения можно оценить на графике приведенном справа.

Из дополнительных преимуществ необслуживаемых систем водяного охлаждения можно назвать освобождение места в пространстве рядом с сокетом для установки центрального процессора, поскольку аналогичные по производительности воздушные кулеры весьма громоздки и часто мешают установке памяти с высокими "рубашками". Снижается нагрузка на подложку системной платы, что может быть критично в случаях, когда компьютер часто транспортируется или отправляется через Транспортные компании.



Кастомные системы:

Но это лишь старт. Безусловно удобное и компактное решение не всегда дает выжать максимум производительности и раскрыть потенциал процессора. Тогда на помощь приходят системы водяного охлаждения, которые собираются по компонентам – “кастомные ”, от англ. custom (custom-made) - изготовленные на заказ, системы водяного охлаждения .

Cложность “кастомной СВО ” может быть просто космической, и ограничивается только количеством денег у энтузиаста. Преимущества такого подхода перед готовыми СВО следующие: более мощная помпа, радиатор большего размера, возможность включить в контур СВО другие компоненты (чипсет, систему питания материнской платы, видеокарту и даже оперативную память). В дальнейшем при замене материнской платы или процессора, можно проапгрейдить систему охлаждения, а не менять ее целиком. Или заменить радиатор на более мощный и тем самым еще увеличить частоты до запредельных значений.

Введение

Ещё несколько лет назад водяное охлаждение считалось экстримом в мире моддинга. Системы обычно состояли из самостоятельно собранных пользователем блоков с редкими алюминиевыми деталями. Сегодня же, в 2005 году, водяное охлаждение стало весьма ценной и доступной, хотя всё ещё экзотической технологией. С помощью компаний вроде Koolance, Danger Den и Swiftech массовое производство компонентов систем водяного охлаждения открыло дверь даже для не слишком опытных моддеров.

Для водяного охлаждения существует две основные сферы применения: бесшумные компьютеры и экстремальный "разгон". Любителям бесшумных ПК водяное охлаждение позволяет избавиться от громких вентиляторов, в то же время, обеспечивая превосходный отвод тепла. Петля водяного охлаждения проходит через самые горячие участки ПК (CPU, GPU) и передаёт тепло на теплообменник. В результате компоненты не так сильно нагреваются, что создаёт неплохой потенциал для "разгона".

Проектируем общий вид системы

Перед тем, как начать выбирать компоненты, следует спроектировать вашу систему. Главное, что нужно продумать, - как разместить все компоненты внутри вашего корпуса.

Ниже мы привели список компонентов, которые используются в типичной системе водяного охлаждения.

  • Головки охлаждения: передают тепло от системных компонентов жидкости.
  • Насос: заставляет жидкость циркулировать по трубкам.
  • Теплообменник: рассеивает в воздух тепло, полученное от жидкости.
  • Вентилятор и кожух: помогают продувать воздух через теплообменник.
  • Резервуар: нужен для заполнения системы жидкостью и удаления из неё пузырьков.
  • Трубки: по ним течёт жидкость.

Будь ваша система полностью заключена в корпус (здесь "средняя башня" не подойдёт) или вы будете использовать внешний теплообменник, вы должны всё предварительно продумать. Водяное охлаждение - это не тот проект, который можно дорабатывать по ходу. Если вы что-то упустите, то во время сборки системы потратите намного больше времени и денег.

Головки охлаждения

Выбор нужных головок охлаждения обычно не представляет труда. Всё попросту упирается в деньги. Посетите несколько сайтов, предлагающих головки охлаждения, и решите, какая из них лучше всего вам подойдёт. Обратите внимание, из какого материала изготовлена головка (обычно медь) и подойдёт ли она для диаметра ваших трубок. Некоторые сайты продают головки, изготовленные из серебра, а не из меди. Несмотря на очевидный шик, реальные преимущества серебра перед медью ничтожны, так что мы не рекомендуем их покупать, даже если вы можете себе это позволить.

Если вы планируете охлаждать видеокарту, то неплохо будет взять две головки, чтобы охлаждать и GPU, и видеопамять. Большие головки, охлаждающие оба компонента, обычно трудно устанавливать, да и высота чипов на каждой карте разная. Кроме того, неправильный монтаж такой головки может привести к катастрофическим результатам. В большинстве случаев лучше всего купить головку для GPU, а к памяти прикрепить обычные радиаторы.

Купить головки охлаждения вы можете на следующих сайтах.

Насос

При выборе насоса следует учитывать несколько факторов. Для простоты мы будем рассматривать только линейные насосы, а не погружные.

Сначала нужно решить, будете ли вы питать насос от блока питания компьютера (12 В) или от розетки (220 В). Что касается производительности, то никакой разницы между двумя указанными способами нет. Преимущество 12-В насоса в том, что вы никогда не забудете его включить, так как он запускается вместе с компьютером. Недостатком будет то, что подобные насосы стоят несколько дороже сетевых вариантов. В принципе, если насос питается от сети, то для него тоже можно установить выключатель, который будет автоматически его запускать при старте компьютера. Некоторые пользователи таких насосов вообще никогда их не выключают, чтобы случайно не забыть включить насос.

При выборе насоса следует обращать внимание на такие параметры, как гидростатический напор, уровень шума, надёжность и скорость потока. Гидростатический напор очень важен - насос с большой скоростью потока, но маленьким напором не сможет прокачать жидкость через радиатор и головки охлаждения. Уровень шума насосов бывает разный, однако они редко работают громче, чем вентилятор теплообменника. Не забудьте установить прокладку между насосом и корпусом (в комплект поставки некоторых насосов прокладки уже входят). Тогда вибрация насоса не будет передаваться на корпус.

На следующих сайтах вы можете ознакомиться с популярными решениями.

Во всех системах водяного охлаждения необходимо отводить тепло от жидкости. Наиболее распространённый способ отвода тепла заключается в использовании теплообменника/радиатора. Он представляет собой змеевик, снабжённый большим количеством металлических рёбер и размещающийся снаружи или внутри корпуса компьютера. Через теплообменник пропускается жидкость, которая передаёт тепло рёбрам, а они, в свою очередь, окружающему воздуху. Конечно, существуют и более изощрённые технологии, но для большинства систем одного радиатора будет более чем достаточно.

Поскольку водяное охлаждение компьютера во многом напоминает радиатор автомобиля, вряд ли вас удивит, что самый дешёвый и наиболее эффективный способ конструкции теплообменника копирует систему охлаждения автомобиля. Однако использовать стандартный автомобильный радиатор будет практически невозможно из-за его большого размера и требований по потоку. Вместо этого энтузиасты зачастую берут так называемую сердцевину подогревателя (heater core). Наиболее популярные сердцевины для водяного охлаждения берут от 1984 Chevrolet Chevette и 1977 Pontiac Bonneville, из-за их хорошего соответствия корпусам "полная башня". Сердцевина Chevette имеет подходящую площадь поверхности для одного 120-мм вентилятора, а Bonneville достаточно большая, чтобы вместить два вентилятора. Сердцевины можно купить в любом автомагазине за $20-$30.

Перед тем, как устанавливать упомянутые сердцевины подогревателя в компьютер, необходимо сделать небольшие модификации. Нужно обрезать трубки, идущие от сердцевины, и заменить их нужными трубками. Кроме того, тщательно вычистите сердцевину подогревателя, так как в комплекте поставки она обычно бывает не такой чистой.

Для эффективного охлаждения теплообменника часто забывают о кожухе, который, по сути, является прослойкой между вентиляторами и радиатором. Стандартные вентиляторы корпуса отличаются "мёртвым пятном" в центре, поэтому кожух необходим для создания ровного воздушного потока вдоль рёбер.

Кожух очень просто сконструировать: его можно сделать из картона, листа металла или другого подручного материала. Один из самых удобных кожухов для сердцевины подогревателя Bonneville 77 можно сделать из контейнера для еды. Возьмите CD, обведите его на контейнере и вырежьте. В итоге вы получите два отверстия, идеально подходящие для 120-мм вентиляторов. Затем прикрепите вентиляторы к кожуху с помощью винтов, после чего подсоедините кожух к радиатору скотчем. Если будете вырезать свой кожух, делайте его толщиной не менее двух сантиметров: чем больше расстояние между вентиляторами и поверхностью радиатора, тем лучше.

Ниже приведены самые распространённые решения для теплообменника.

  • Сердцевина подогревателя
  • Black Ice

Резервуар, трубки и жидкость

Существует три способа заполнения системы водяного охлаждения. Всё зависит от размеров корпуса и от количества работы, которую вы готовы тратить на обслуживание вашей системы.

Первый метод состоит в использовании резервуара - простого контейнера с входным и выходным патрубками, а также с крышкой для заливки жидкости. Резервуар обладает несколькими преимуществами, самое важное из которых - лёгкий способ заполнения системы. Кроме того, размещение резервуара перед входным патрубком насоса гарантирует постоянную подачу жидкости в насос. Однако резервуар не понижает температуру жидкости: большое её количество означает, что она дольше будет достигать теплового баланса.

Простой и недорогой способ заполнения системы заключается в использовании T-line. При этом в водяной цикл размещается T-разветвитель, обычно перед насосом, от которого выходит трубка. Она работает в качестве небольшого резервуара, который можно наполнять с помощью воронки. Многие моддеры используют T-line не только из-за низкой цены, но также из-за того, что для этого требуется меньше пространства, чем для резервуара.

Наконец, вы можете использовать закрытый цикл, но при этом нужен погружной насос. Достаточно просто разместить насос в большом резервуаре с жидкостью и включить его. Когда система будет заполнена жидкостью, следует подключить входной патрубок насоса к трубке. Такое решение выглядит наиболее элегантным, но его труднее обслуживать.

В принципе, покупать специальные трубки на сайтах вовсе необязательно. Подойдут любые, лишь бы они имели правильный внутренний диаметр (ID), а патрубки - правильный внешний диаметр (OD).

Если будете покупать на сайтах моддеров, то там чаще всего встречаются трубки Clearflex-60 и Tygon. Основное отличие заключается в том, что трубки Tygon сертифицированы для лабораторного использования и обычно стоят чуть дороже.

Кроме того, не забывайте купить достаточное число креплений для трубок. Они бывают разных типов, берите те, которыми вам будет удобнее пользоваться.

Кроме того, к дистиллированной воде можно добавить хладагент. Опять же, вовсе необязательно покупать его на сайтах моддеров. Можно взять автомобильный хладагент. Следуйте указаниям на бутыли и создайте правильную смесь для вашей системы. Есть несколько причин использовать хладагент. Самая важная - предотвратить электрохимическую коррозию. Кроме того, хладагент предотвратит рост водорослей, да и краситель упростит обнаружение утечек.

Заключение и общие советы

Водяное охлаждение сегодня уже не такое сложное и опасное. Следуйте нашим советам, и вы не только сможете улучшить охлаждение вашей системы, но и получите немало удовольствия от работы своими руками. Конечно же, правильно собранная и должным образом украшенная система водяного охлаждения привлечёт внимание друзей на игровой вечеринке..

Ниже мы привели советы, которые будут не лишними во время сборки.

  • Семь раз отмерь, один отрежь.
  • Избегайте перегибов и 90-градусных углов трубок. Чем меньше трубок и изгибов, тем легче работать насосу. И всегда соединяйте входной патрубок насоса прямой трубкой, без перегибов.
  • Порядок головок охлаждения в цикле не слишком сильно влияет на температуру жидкости.
  • Лучше, если вентиляторы будут выдувать воздух из радиатора, а не вдувать. Такой подход тише, да и более эффективен (если, конечно, использовать кожух).
  • Пусть водяной цикл проработает пару часов без компьютера - тогда вы сможете обнаружить утечки. Лучше всего, если вы обмотаете все сочленения салфетками или газетной бумагой - тогда вы предотвратите попадание жидкости на компоненты системы.


Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!