Энциклопедия мобильной связи

Блоки пельтье. Для чего нужны элементы Пельтье? Элементы Пельтье: принцип работы, характеристики, применение

2 июня 2012 в 23:47

Элементы Пельтье или мой путь к криогенным температурам

  • DIY или Сделай сам

Многие слышали про «магические» элементы Пельтье - при прохождении тока через них одна сторона охлаждается, а другая - нагревается. Это работает и в обратную сторону - если одну сторону нагревать, а другую охлаждать - вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей - есть точка максимальной мощности, и если работать далеко от неё - КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье - это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В - то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье - это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В - у нас может не получится 6 ампер (для 6-и амперного элемента) - ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С - перенос тепла стремится к 0, а при нулевой разнице - 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию - нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С - так что если элемент случайно останется без охлаждения и перегреется - то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие - как керамика, так и сами охлаждающие элементы - я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем



Итак, маленький элемент - 5В*2А, большой - 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея - вынести все на морозный воздух, но есть проблема - кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам - к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях - добавим килограммовую медную пластину - тепловой аккумулятор.


Результат шокирующий - те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха - -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда - подключаем ток - на 12В температура моментально начинает расти, при 5В - падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах - я пробовал элементы разных моделей от 3-х разных продавцов - поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом - получится жидкий азот для «бедных» - в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей - получить обморожение существенно легче.

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал .

Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов ;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) - максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор . Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C (в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5% . При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо , для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию .
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность , т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В , или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации компании производителя – HB Corporation.

Технические параметры TEC1-12706.

Графические характеристики.

0 Рубрика: . Вы можете добавить в закладки.

Элемент Пельтье стал известен миру давно. Еще в 18 веке французский часовщик Жан-Шарль Пельтье совсем случайно для самого себя открыл новый эффект на границе двух металлов: висмута и сурьмы. Он заключался в резком изменении температуры помещенной между контактами капли воды, которая при подведении тока превратилась в лед. Это свойство стало новым для часовщика, потому что до того момента еще ни один ученый мира не излагал в своих материалах подобной информации.

Эффект хоть и был интересен, но не нашел практического применения в то время, что было связано с небольшим количеством электронной техники, которой требовалось бы интенсивное охлаждение. Спустя 2 столетия об открытии ученого вспомнили, потому что возникла острая необходимость изготовить устройство, которое могло бы обеспечить качественное охлаждение кристалла греющегося микропроцессора.

В результате многочисленных исследований в этой области и огромного количества практических опытов ученые выяснили, что термоэлектрическая пара может вырабатывать достаточное количество холода для нормальной работы практически любого микропроцессора. А благодаря небольшим размерам их научились встраивать в корпуса микросхем, обеспечивая, таким образом, собственный внутренний генератор холода.

Открытие Жан-Шарля Пельте стало огромным толчком для целой отрасли по производству мобильных холодильных установок. Сегодня свойство термоэлектрического элемента используется в следующей технике:

  • переносные холодильники;
  • автомобильные кондиционеры;
  • портативные охладители;
  • фотоаппараты, телескопы и многое другое.

Активно используют для охлаждения микропроцессоров и прочих элементов электронной техники. Кроме прямого эффекта охлаждения, элемент Пельтье многие стали использовать в качестве генератора. Примером чего может стать фонарик на 3 элементах .

Знают немногие, что для осуществления радиосвязи с командованием солдаты ставили на огонь специальный котелок и заваривали чай, готовили кашу и прочие бытовые вещи, а в это время осуществляли передачу необходимой информации по переносной радиостанции .

Как изготовить элемент Пельтье своими руками?

Многих интересует вопрос, что такое Пельтье элемент своими руками, как сделать его в домашних условиях? Для этого потребуется высокоточное дозированное добавление разных веществ и материалов. Изготовить в домашних условиях подобное устройство невозможно, потому что требуется иметь технологии и обладать необходимыми методами обработки металлов. Также требуются особо чистые материалы в таких же лабораториях, чего в домашних условиях добиться невозможно. Поэтому на вопрос, как сделать термоэлектрический модуль Пельтье, можно ответить однозначно. Никак. Но для построения эффективной системы охлаждения вполне достаточно имеющихся навыков.

Изготовление элемента Пельтье из диодов

Существует мнение о том, что можно сделать термоэлектрический модуль на диодах . Дело в том, что каждая пара разнородных полупроводников – это два материала с p и n -проводимостями. А диод как раз таковым и является. Чтобы выявить изменение проводимости при нагреве, необходимо выбирать определенные элементы. Но для получения низкой температуры на поверхности устройства никакие диоды не помогут. При подаче большого тока можно добиться лишь разогрева.

Радиолюбители используют в качестве датчика температуры диоды малой мощности в стеклянном корпусе. При подключении их в обратном направлении и разогреве переход начинает открываться и пропускать ток в обратном направлении. Но при этом вырабатывать электричество он не будет.

Как устроен элемент Пельте?

Термоэлектрический модуль Пельтье в упрощенном виде представляет собой пару пластин из разных металлов, которыми могут быть висмут, сурьма, теллур или селен. Между ними расположена пара полупроводников с разной проводимостью n и p -типа. Все образованные разными металлами термоэлектрические пары соединены последовательно в единую цепь. В результате образуется своего рода матрица из большого количества отдельных термопар, расположенных между двумя керамическими пластинами.

Образованный термопарами термоэлектрический модуль изготовлен в едином корпусе небольших размеров. При их последовательном или параллельном соединении можно добиться усиления эффекта охлаждения или выработки электрической энергии. В режиме охладителя положительный вывод матрицы подключается к первой паре с проводником n -типа, отрицательный контакт подведен к проводникам p -типа. В качестве внешних обкладок используется специальная керамика, изготовленная на основе оксида и нитрида алюминия. Это обеспечивает наилучшие показатели теплоотдачи на обеих сторон как при высоких, так и при низких температурах.

Число термопар в модуле ничем не ограничено и может быть до нескольких сотен. Чем их больше, тем лучше ощущается эффект охлаждения. Для повышения эффективности работы элемента Пельтье к его холодной стороне крепится радиатор с наибольшей площадью теплоотдачи. Разница в температуре между обкладками должна составлять не менее двух десятков градусов.

При подаче напряжения на обкладки одна из сторон становится горячей, а другая холодной. При смене полярности питающего напряжения температура пластин меняется местами.

Учитывая сложность и технологичность, сделать своими руками термоэлектрический элемент не представляется возможным. Но все же встречаются умельцы, которые предлагают свои разработки. Эффект наблюдается, но для повышения КПД без специальной исследовательской лаборатории получить невозможно. Даже можно найти видео по этой теме с пошаговым руководством.

Особенности элемента Пельтье

К особенностям элемента на основе биметаллических пар следует отнести:

Формульное отображение

Эффект Пельтье заключается в протекании тока через контакт двух металлов с разной проводимостью. В результате выделяется тепло или холод, что зависит от направления протекания тока.

В формульном выражении эффект Пельтье можно изобразить:

Q п=П12 j , где П12 – это коэффициент Пельтье . Показатель зависит от типа используемого металла, его термоэлектрических свойств.

Кроме преимуществ, в устройстве можно выделить и некоторые недостатки, к которым следует отнести:

Невысокий КПД. Для того чтобы получить значительный перепад температур, необходимо к обкладкам подводить достаточно большой ток.

Для эффективного отвода тепловой энергии необходимо предусматривать радиатор.

Генераторный режим элемента Пельтье

Открытие Жака-Шарля Пельтье буквально перевернуло мир, так как устройство может использоваться в качестве универсального генератора тепла и холода. Кроме этих функций, был отмечен еще один немаловажный эффект – генераторный режим. Если теплую сторону устройства нагревать, а холодную охлаждать, то на выводах возникает разница потенциалов, и при замыкании цепи начинает течь ток.

Генератор на основе элемента Пельтье можно сделать своими руками и для этого не потребуется особых навыков. Но стоит понимать, что используемый китайскими разработчиками материал не обладает идеальными характеристиками, позволяющими получать максимум энергии. Доступных термоэлектрических модулей в продаже хватит для:

  • зарядки мобильных устройств;
  • питания светодиодного освещения;
  • изготовления автономного радиоприемника и прочих целей.

По этой теме можно найти массу видео с подробным описанием всех этапов. Поэтому если вы хотите сделать термоэлектрический модуль для получения энергии, то это вполне реально.

Первым делом необходимо заказать необходимое количество элементов Пельтье с учетом их характеристик. Устройство с мощностью 10 Вт на том же e — Bay стоит 15$. И этого вполне достаточно будет для зарядки смартфонов. Далее, необходимо обеспечить эффективное теплоотведение. Для этих целей можно сконструировать систему жидкостного охлаждения с естественной циркуляцией. А горячую сторону нагревать любым источником тепла, в том числе открытым огнем. В результате любой радиолюбитель может сделать сам великолепный термоэлектрический генератор, который можно взять с собой в поход, на рыбалку или дачу.

Один стандартный элемент-ячейка вырабатывает 5 В и 1 Вт мощности, чего вполне достаточно для небольшого освещения. Например, для изготовления фонарика с подогревом от тепла рук. В продаже имеются и готовые элементы с выходным напряжением до 12 В.

Переносная термоэлектрическая печка с генераторным режимом

Сегодня можно найти массу способов, как сделать своими руками достаточно эффективный термоэлектрический генератор на основе элемента Пельтье. Как один из них – портативная печка с топкой из старого компьютерного блока питания. К одной из сторон корпуса прикрепляется сам термоэлектрический элемент Пельтье через термопасту с радиатором внушительных размеров. Такая установка позволит получить тепло в любом удобном месте, приготовить пищу и зарядить телефон.

Многие слышали про «магические» элементы Пельтье - при прохождении тока через них одна сторона охлаждается, а другая - нагревается. Это работает и в обратную сторону - если одну сторону нагревать, а другую охлаждать - вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей - есть точка максимальной мощности, и если работать далеко от неё - КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье - это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В - то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье - это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В - у нас может не получится 6 ампер (для 6-и амперного элемента) - ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С - перенос тепла стремится к 0, а при нулевой разнице - 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию - нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С - так что если элемент случайно останется без охлаждения и перегреется - то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие - как керамика, так и сами охлаждающие элементы - я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем



Итак, маленький элемент - 5В*2А, большой - 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея - вынести все на морозный воздух, но есть проблема - кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам - к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях - добавим килограммовую медную пластину - тепловой аккумулятор.


Результат шокирующий - те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха - -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда - подключаем ток - на 12В температура моментально начинает расти, при 5В - падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах - я пробовал элементы разных моделей от 3-х разных продавцов - поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом - получится жидкий азот для «бедных» - в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей - получить обморожение существенно легче.

Полупроводниковые холодильники Пельтье

Работа современных высокопроизводительных электронных компонентов, составляющих основу компьютеров, сопровождается значительным тепловыделением, особенно при эксплуатации их в форсированных режимах разгона (overclocking). Эффективная работа таких компонентов требует адекватных средств охлаждения, обеспечивающих необходимые температурные режимы их работы. Как правило, такими средствами поддержки оптимальных температурных режимов являются кулеры, основой которых являются традиционные радиаторы и вентиляторы.

Надежность и производительность таких средств непрерывно повышаются за счет совершенствования их конструкции, использования новейших технологий и применения в их составе разнообразных датчиков и средств контроля. Это позволяет интегрировать подобные средства в состав компьютерных систем, обеспечивая диагностику и управление их работой с целью достижения наибольшей эффективности при обеспечении оптимальных температурных режимов эксплуатации компьютерных элементов, что повышает надежность и удлиняет сроки их безаварийной работы.

Параметры традиционных кулеров непрерывно улучшаются, тем не менее, в последнее время на компьютерном рынке появились и вскоре стали популярными такие специфические средства охлаждения электронных элементов как полупроводниковые холодильники Пельтье (хотя часто применяется слово кулер, но правильным термином в случае элементов Пельтье является именно холодильник).

Холодильники Пельтье, содержащие специальные полупроводниковые термоэлектрические модули, работа которых основана на эффекте Пельтье, открытом еще в 1834 г., являются чрезвычайно перспективными устройствами охлаждения. Подобные средства уже много лет успешно применяются в различных областях науки и техники.

В шестидесятых и семидесятых годах отечественной промышленностью предпринимались неоднократные попытки выпуска бытовых малогабаритных холодильников, работа которых была основана на эффекте Пельтье. Однако несовершенство существовавших технологий, низкие значения коэффициента полезного действия и высокие цены не позволили в те времена подобным устройствам покинуть научно-исследовательские лаборатории и испытательные стенды.

Но эффект Пельтье и термоэлектрические модули не остались уделом только ученых. В процессе совершенствования технологий многие негативные явления удалось существенно ослабить. В результате этих усилий были созданы высокоэффективные и надежные полупроводниковые модули.

В последние годы данные модули, работа которых основана на эффекте Пельтье, стали активно использовать для охлаждения разнообразных электронных компонентов компьютеров. Их, в частности, стали применять для охлаждения современных мощных процессоров, работа которых сопровождается высоким уровнем тепловыделения.

Благодаря своим уникальным тепловым и эксплуатационным свойствам устройства, созданные на основе термоэлектрических модулей — модулей Пельтье, позволяют достичь необходимого уровня охлаждения компьютерных элементов без особых технических трудностей и финансовых затрат. Как кулеры электронных компонентов, данные средства поддержки необходимых температурных режимов их эксплуатации являются чрезвычайно перспективными. Они компактны, удобны, надежны и обладают очень высокой эффективностью работы.

Особенно большой интерес полупроводниковые холодильники представляют в качестве средств, обеспечивающих интенсивное охлаждение в компьютерных системах, элементы которых, установлены и эксплуатируются в жестких форсированных режимах. Использование таких режимов — разгона (overclocking) часто обеспечивает значительный прирост производительности применяемых электронных компонентов, а, следовательно, как правило, и всей системы компьютера. Однако работа компьютерных компонентов в подобных режимах отличается значительным тепловыделением и нередко находится на пределе возможностей компьютерных архитектур, а также существующих и используемых микроэлектронных технологий. Такими компьютерными компонентами, работа которых сопровождается высоким тепловыделением, являются не только высокопроизводительные процессоры, но и элементы современных высокопроизводительных видеоадаптеров, а в некоторых случаях и микросхемы модулей памяти. Подобные мощные элементы требуют для своей корректной работы интенсивного охлаждения даже в штатных режимах и тем более в режимах разгона.

Модули Пельтье

В холодильниках Пельтье используется обычный, так называемый термоэлектрический холодильник, действие которого основано на эффекте Пельтье. Данный эффект назван в честь французского часовщика Пельтье (1785-1845 г.), сделавшего свое открытие более полутора столетий назад — в 1834 г.

Сам Пельтье не совсем понимал сущность открытого им явления. Истинный смысл явления был установлен несколькими годами позже в 1838 году Ленцем (1804-1865 г.).

В углубление на стыке двух стержней из висмута и сурьмы Ленц поместил каплю воды. При пропускании электрического тока в одном направлении капля воды замерзала. При пропускании тока в противоположном направлении образовавшийся лед таял. Тем самым было установлено, что при прохождении через контакт двух проводников электрического тока, в зависимости от направления последнего, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Это явление получило название явления Пельтье (эффекта Пельтье). Таким образом, оно является обратным по отношению к явлению Зеебека.

Если в замкнутой цепи, состоящей из нескольких металлов или полупроводников, температуры в местах контактов металлов или полупроводников разные, то в цепи появляется электрический ток. Это явление термоэлектрического тока и было открыто в 1821 году немецким физиком Зеебеком (1770-1831 г.).

В отличие от тепла Джоуля-Ленца, которое пропорционально квадрату силы тока (Q=R·I·I·t), тепло Пельтье пропорционально первой степени силы тока и меняет знак при изменении направления последнего. Тепло Пельтье, как показали экспериментальные исследования, можно выразить формулой:

Qп = П ·q

где q — количество прошедшего электричества (q=I·t), П — так называемый коэффициент Пельтье, величина которого зависит от природы контактирующих материалов и от их температуры.

Тепло Пельтье Qп считается положительным, если оно выделяется, и отрицательным, если оно поглощается.

Рис. 1. Схема опыта для измерения тепла Пельтье, Cu — медь, Bi — висмут.

В представленной схеме опыта измерения тепла Пельтье при одинаковом сопротивлении проводов R (Cu+Bi), опущенных в калориметры, выделится одно и то же джоулево тепло в каждом калориметре, а именно по Q=R·I·I·t. Тепло Пельтье, напротив, в одном калориметре будет положительно, а в другом отрицательно. В соответствии с данной схемой можно измерить тепло Пельтье и вычислить значения коэффициентов Пельтье для разных пар проводников.

Необходимо отметить, что коэффициент Пельтье находится в существенной зависимости от температуры. Некоторые значения коэффициента Пельтье для различных пар металлов представлены в таблице.

Значения коэффициента Пельтье для различных пар металлов
Железо-константан Медь-никель Свинец-константан
T, К П, мВ T, К П, мВ T, К П, мВ
273 13,0 292 8,0 293 8,7
299 15,0 328 9,0 383 11,8
403 19,0 478 10,3 508 16,0
513 26,0 563 8,6 578 18,7
593 34,0 613 8,0 633 20,6
833 52,0 718 10,0 713 23,4

Коэффициент Пельтье, являющийся важной технической характеристикой материалов, как правило, не измеряется, а вычисляется через коэффициент Томсона:

П = a · T

где П — коэффициент Пельтье, a — коэффициент Томсона, T — абсолютная температура.

Открытие эффекта Пельтье оказало большое влияние на последующее развитие физики, а в дальнейшем и различных областей техники.

Итак, суть открытого эффекта заключается в следующем: при прохождении электрического тока через контакт двух проводников, сделанных из различных материалов, в зависимости от его направления, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и используемых электрических режимов.

Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного метала в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника. В результате происходит охлаждение. Более полная теория учитывает изменение не потенциальной энергии при переносе электрона из одного металла в другой, а изменение полной энергии.

Наиболее сильно эффект Пельтье наблюдается в случае использования полупроводников p- и n-типа проводимости. В зависимости от направления электрического тока через контакт полупроводников разного типа — p-n- и n-p-переходов вследствие взаимодействия зарядов, представленных электронами (n) и дырками (p), и их рекомбинации энергия либо поглощается, либо выделяется. В результате данных взаимодействий и порожденных энергетических процессов тепло либо поглощается, либо выделяется. Использование полупроводников p- и n-типа проводимости в термоэлектрических холодильниках иллюстрирует рис. 2.


Рис. 2. Использование полупроводников p- и n-типа в термоэлектрических холодильниках.

Объединение большого количества пар полупроводников p- и n-типа позволяет создавать охлаждающие элементы — модули Пельтье сравнительно большой мощности. Структура полупроводникового термоэлектрического модуля Пельтье представлена на рис. 3.


Рис. 3. Структура модуля Пельтье

Модуль Пельтье, представляет собой термоэлектрический холодильник, состоящий из последовательно соединенных полупроводников p- и n-типа, образующих p-n- и n-p-переходы. Каждый из таких переходов имеет тепловой контакт с одним из двух радиаторов. В результате прохождения электрического тока определенной полярности образуется перепад температур между радиаторами модуля Пельтье: один радиатор работает как холодильник, другой радиатор нагревается и служит для отвода тепла. На рис. 4 представлен внешний вид типового модуля Пельтье.


Рис. 4. Внешний вид модуля Пельтье

Типичный модуль обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающегося радиатора второй радиатор — холодильник, позволяет достичь отрицательных значений температур. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье при обеспечении адекватного их охлаждения. Это позволяет сравнительно простыми средствами получить значительный перепад температур и обеспечить эффективное охлаждение защищаемых элементов. На рис. 5 представлен пример каскадного включения типовых модулей Пельтье.


Рис. 5. Пример каскадного включения модулей Пельтье

Устройства охлаждения на основе модулей Пельтье часто называют активными холодильниками Пельтье или просто кулерами Пельтье.

Использование модулей Пельтье в активных кулерах делает их существенно более эффективными по сравнению со стандартными типами кулеров на основе традиционных радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей, их принципа работы, архитектуры современных аппаратных средств компьютеров и функциональных возможностей системного и прикладного программного обеспечения.

Большое значение играет мощность модуля Пельтье, которая, как правило, зависит от его размера. Модуль малой мощности не обеспечивает необходимый уровень охлаждения, что может привести к нарушению работоспособности защищаемого электронного элемента, например, процессора вследствие его перегрева. Однако применение модулей слишком большой мощности может вызвать понижение температуры охлаждающего радиатора до уровня конденсации влаги из воздуха, что опасно для электронных цепей. Это связано с тем, что вода, непрерывно получаемая в результате конденсации, может привести к коротким замыканиям в электронных цепях компьютера. Здесь уместно напомнить, что расстояние между токопроводящими проводниками на современных печатных платах нередко составляет доли миллиметров. Тем не менее, несмотря ни на что, именно мощные модули Пельтье в составе высокопроизводительных кулеров и соответствующие системы дополнительного охлаждения и вентиляции позволили в свое время фирмам KryoTech и AMD в совместных исследованиях разогнать процессоры AMD, созданные по традиционной технологии, до частоты, превышающей 1 ГГц, то есть увеличить их частоту работы почти в 2 раза по сравнению со штатным режимом их функционирования. И необходимо подчеркнуть, что данный уровень производительности достигнут в условиях обеспечения необходимой стабильности и надежности работы процессоров в форсированных режимах. Ну, а следствием такого экстремального разгона явился рекорд производительности среди процессоров архитектуры и системы команд 80х86. А фирма KryoTech неплохо заработала, предлагая на рынке свои установки охлаждения. Снабженные соответствующей электронной начинкой, они оказались востребованными в качестве платформ высокопроизводительных серверов и рабочих станций. А фирма AMD получила подтверждение высокого уровня своих изделий и богатый экспериментальный материал для дальнейшего совершенствования архитектуры своих процессоров. К слову сказать, аналогичные исследования были проведены и с процессорами Intel Celeron, Pentium II, Pentium III, в результате которых был получен тоже значительный прирост производительности.

Необходимо отметить, что модули Пельтье в процессе своей работы выделяют сравнительно большое количество тепла. По этой причине следует применять не только мощный вентилятор в составе кулера, но и меры для снижения температуры внутри корпуса компьютера для предупреждения перегрева остальных компонентов компьютера. Для этого целесообразно использовать дополнительные вентиляторы в конструктиве корпуса компьютера для обеспечения лучшего теплообмена с окружающей средой вне корпуса.

На рис. 6 представлен внешний вид активного кулера, в составе которого использован полупроводниковый модуль Пельтье.


Рис. 6. Внешний вид кулера с модулем Пельтье

Следует отметить, что системы охлаждения на основе модулей Пельтье используются не только в электронных системах, таких как компьютеры. Подобные модули применяются для охлаждения различных высокоточных устройств. Большое значение модули Пельтье имеют для науки. В первую очередь это касается экспериментальных исследований, выполняемых в физике, химии, биологии.

Информацию о модулях и холодильниках Пельтье, а также особенностях и результатах их применения можно найти на сайтах в Internet, например, по следующим адресам:

Особенности эксплуатации

Модули Пельтье, применяемые в составе средств охлаждения электронных элементов, отличаются сравнительно высокой надежностью, и в отличие от холодильников, созданных по традиционной технологии, не имеют движущихся частей. И, как это отмечалось выше, для увеличения эффективности своей работы они допускают каскадное использование, что позволяют довести температуру корпусов защищаемых электронных элементов до отрицательных значений даже при их значительной мощности рассеяния.

Однако кроме очевидных преимуществ, модули Пельтье обладает и рядом специфических свойств и характеристик, которые необходимо учитывать при их использовании в составе охлаждающих средств. Некоторые из них были уже отмечены, но для корректного применения модулей Пельтье требуют более детального рассмотрения. К важнейшим характеристикам относятся следующие особенности эксплуатации:

  • Модули Пельтье, выделяющие в процессе своей работы большое количество тепла, требуют наличия в составе кулера соответствующих радиаторов и вентиляторов, способных эффективно отводить избыточное тепло от охлаждающих модулей. Следует отметить, что термоэлектрические модули отличаются относительно низким коэффициентом полезного действия (кпд) и, выполняя функции теплового насоса, они сами являются мощными источниками тепла. Использование данных модулей в составе средств охлаждения электронных комплектующих компьютера вызывает значительный рост температуры внутри системного блока, что нередко требует дополнительных мер и средств для снижения температуры внутри корпуса компьютера. В противном случае повышенная температура внутри корпуса создает трудности для работы не только для защищаемых элементов и их систем охлаждения, но и остальным компонентам компьютера. Необходимо также подчеркнуть, что модули Пельтье являются сравнительно мощной дополнительной нагрузкой для блока питания. С учетом значения тока потребления модулей Пельтье величина мощности блока питания компьютера должна быть не менее 250 Вт. Все это приводит к целесообразности выбора материнских плат и корпусов конструктива ATX с блоками питания достаточной мощности. Использование данного конструктива облегчает для комплектующих компьютера организацию оптимальных теплового и электрического режимов. Следует отметить, что существуют холодильники Пельтье с собственным блоком питания.
  • Модуль Пельтье, в случае выхода его из строя, изолирует охлаждаемый элемент от радиатора кулера. Это приводит к очень быстрому нарушению теплового режима защищаемого элемента и скорому выходу его из строя от последующего перегрева.
  • Низкие температуры, возникающие в процессе работы холодильников Пельтье избыточной мощности, способствуют конденсации влаги из воздуха. Это представляет опасность для электронных компонентов, так как конденсат может вызвать короткие замыкания между элементами. Для исключения данной опасности целесообразно использовать холодильники Пельтье оптимальной мощности. Возникнет конденсация или нет, зависит от нескольких параметров. Важнейшими являются: температура окружающей среды (в данном случае температура воздуха внутри корпуса), температура охлаждаемого объекта и влажность воздуха. Чем теплее воздух внутри корпуса и чем больше влажность, тем вероятнее произойдет конденсация влаги и последующий выход из строя электронных элементов компьютера. Ниже представлена таблица, иллюстрирующая зависимость температуру конденсации влаги на охлаждаемом объекте в зависимости от влажности и температуры окружающего воздуха. Используя эту таблицу, можно легко установить, существует ли опасность конденсации влаги или нет. Например, если внешняя температура 25°C, а влажность 65%, то конденсация влаги на охлаждаемом объекте происходит при температуре его поверхности ниже 18°C.

Температура конденсации влаги

Влажность, %
Температура
окружающей среды, °C
30 35 40 45 50 55 60 65 70
30 11 13 15 17 18 20 21 23 24
29 10 12 14 16 18 19 20 22 23
28 9 11 13 15 17 18 20 21 22
27 8 10 12 14 16 17 19 20 21
26 7 9 11 13 15 16 18 19 20
25 6 9 11 12 14 15 17 18 19
24 5 8 10 11 13 14 16 17 18
23 5 7 9 10 12 14 15 16 17
22 4 6 8 10 11 13 14 15 16
21 3 5 7 9 10 12 13 14 15
20 2 4 6 8 9 11 12 13 14

Кроме указанных особенностей, необходимо учитывать и ряд специфических обстоятельств, связанных с использованием термоэлектрических модулей Пельтье в составе кулеров, применяемых для охлаждения высокопроизводительных центральных процессоров мощных компьютеров.

Архитектура современных процессоров и некоторые системные программы предусматривают изменение энергопотребления в зависимости от загрузки процессоров. Это позволяет оптимизировать их энергопотребление. Кстати, это предусмотрено и стандартами энергосбережения, поддерживаемыми некоторыми функциями, встроенными в аппаратно-программное обеспечение современных компьютеров. В обычных условиях оптимизация работы процессора и его энергопотребления благотворно сказывается как на тепловом режиме самого процессора, так и общем тепловом балансе. Однако следует отметить, что режимы с периодическим изменением энергопотребления могут плохо сочетаться со средствами охлаждения процессоров, использующих модули Пельтье. Это связано с тем, что существующие холодильники Пельтье, как правило, рассчитаны на непрерывную работу. В связи с этим, простейшие холодильники Пельтье, не обладающие средствами контроля, не рекомендуется использовать вместе с охлаждающими программами, такими как, например, CpuIdle, а также с операционными системами Windows NT/2000 или Linux.

В случае перехода процессора в режим пониженного энергопотребления и соответственно тепловыделения возможно значительное снижение температуры корпуса и кристалла процессора. Переохлаждение ядра процессора может вызвать в некоторых случаях временное прекращение его работоспособности, и как результат, стойкое зависание компьютера. Необходимо напомнить, что в соответствии с документацией фирмы Intel минимальная температура, при которой гарантируется корректная работа серийных процессоров Pentium II и Pentium III, обычно составляет +5 °C, хотя, как показывает практика, они прекрасно работают и при более низких температурах.

Некоторые проблемы могут возникнуть и в результате работы ряда встроенных функций, например, тех, которые осуществляют управление вентиляторами кулеров. В частности, режимы управления энергопотреблением процессора в некоторых компьютерных системах предусматривают изменение скорости вращения охлаждающих вентиляторов через встроенные аппаратные средства материнской платы. В обычных условиях это значительно улучшает тепловой режим процессора компьютера. Однако в случае использования простейших холодильников Пельтье уменьшение скорости вращения может привести к ухудшению теплового режима с фатальным результатом для процессора уже вследствие его перегрева работающим модулем Пельтье, который кроме выполнения функций теплового насоса, является мощным источником дополнительного тепла.

Необходимо отметить, что, как и в случае центральных процессоров компьютеров, холодильники Пельтье могут быть хорошей альтернативой традиционным средствам охлаждения видеочипсетов, используемых в составе современных высокопроизводительных видеоадаптеров. Работа таких видеочипсетов сопровождается значительным тепловыделением и обычно не подвержена резким изменениям режимов их функционирования.

Для того чтобы исключить проблемы с режимами изменяемого энергопотребления, вызывающих конденсацию влаги из воздуха и возможное переохлаждение, а в некоторых случаях даже перегрев защищаемых элементов, таких как процессоры компьютеров, следует отказаться от использования подобных режимов и ряда встроенных функций. Однако как альтернативу можно использовать системы охлаждения, предусматривающие интеллектуальные средства управления холодильниками Пельтье. Такие средства могут контролировать не только работу вентиляторов, но и изменять режимы работы самих термоэлектрических модулей, используемых в составе активных кулеров.

Появились сообщения об экспериментах по встраиванию миниатюрных модулей Пельтье непосредственно в микросхемы процессоров для охлаждения их наиболее критичных структур. Такое решение способствует лучшему охлаждению за счет снижения теплового сопротивления и позволяет значительно повысить рабочую частоту и производительность процессоров.

Работы в направлении совершенствования систем обеспечения оптимальных температурных режимов электронных элементов ведутся многими исследовательскими лабораториями. И системы охлаждения, предусматривающие использование термоэлектрических модулей Пельтье, считаются чрезвычайно перспективными.

Примеры холодильников Пельтье

Сравнительно недавно на компьютерном рынке появились модули Пельтье отечественного производства. Это простые, надежные и сравнительно дешевые ($7-$15) устройства. Как правило, охлаждающий вентилятор не входит в состав. Тем не менее, подобные модули позволяют не только познакомиться с перспективными средствами охлаждения, но и использовать их по прямому назначению в системах защиты компьютерных компонентов. Вот краткие параметры одного из образцов.

Размер модуля (Рис.7) — 40×40 мм, максимальный ток — 6 А, максимальное напряжение — 15 В, потребляемая мощность — до 85 Вт, перепад температур — более 60 °C. При обеспечении мощного вентилятора модуль способен защитить процессор при рассеиваемой им мощности до 40 Вт.


Рис. 7. Внешний вид холодильника PAP2X3B

На рынке представлены как менее, так и более мощные варианты отечественных модулей Пельтье.

Спектр зарубежных устройств значительно шире. Ниже приведены примеры холодильников, в конструкции которых использованы термоэлектрические модули Пельтье.

Активные холодильники Пельтье фирмы Computernerd

Название Производитель / поставщик Параметры вентилятора Процессор
PAX56B Computernerd ball-bearing Pentium/MMX до 200 МГц, 25 Вт
PA6EXB Computernerd dual ball-bearing, тахометр Pentium MMX до 40 Вт
DT-P54A DesTech Solutions dual ball bearing Pentium
AC-P2 AOC Cooler ball bearing Pentium II
PAP2X3B Computernerd 3 ball bearing Pentium II
STEP-UP-53X2 Step Thermodynamics 2 ball bearing Pentium II, Celeron
PAP2CX3B-10
BCool PC-Peltier
Computernerd 3 ball-bearing, тахометр Pentium II, Celeron
PAP2CX3B-25
BCool-ER PC-Peltier
Computernerd 3 ball-bearing, тахометр Pentium II, Celeron
PAP2CX3B-10S BCool-EST PC-Peltier Computernerd 3 ball-bearing, тахометр Pentium II, Celeron

Холодильник PAX56B разработан для охлаждения процессоров Pentium и Pentium-MMX фирм Intel, Cyrix и AMD, работающих на частотах до 200 МГц. Термоэлектрический модуль размером 30×30 мм позволяет холодильнику поддерживать температуру процессора ниже 63 °C при рассеиваемой им мощности 25 Вт и внешней температуре равной 25 °C. В связи с тем, что большинство процессоров рассеивают меньшую мощность, данный холодильник позволяет поддерживать температуру процессора гораздо ниже, чем многие альтернативные кулеры на основе радиаторов и вентиляторов. Питание модуля Пельтье, входящего в состав холодильника PAX56B, осуществляется от источника 5 В, способного обеспечить ток 1,5 А (максимум). Вентилятор данного холодильника требует напряжение 12 В и ток 0,1 А (максимум). Параметры вентилятора холодильника PAX56B: ball-bearing, 47,5 мм, 65000 часов, 26 дБ. Общий размер данного холодильника составляет 25×25×28,7 мм. Ориентировочная цена холодильника PAX56B равна $35. Указанная цена приведена в соответствии с прайс-листом фирмы на середину 2000 г.

Холодильник PA6EXB разработан для охлаждения более мощных процессоров Pentium-MMX, рассеивающих мощность до 40 Вт. Этот холодильник подходит для всех процессоров фирм Intel, Cyrix и AMD, подключаемых через Socket 5 или Socket 7. Термоэлектрический модуль Пельтье, входящий в состав холодильника PA6EXB имеет размер 40×40 мм и потребляет максимум ток 8 А (обычно 3 А) при напряжении 5 В с подключением через стандартный разъем питания компьютера. Общий размер холодильника PA6EXB составляет 60×60×52,5 мм. При установке данного холодильника для хорошего теплообмена радиатора с окружающей средой необходимо обеспечить открытое пространство вокруг холодильника как минимум 10 мм сверху и 2,5 мм по бокам. Холодильник PA6EXB обеспечивает температуру процессора 62,7 °C при рассеиваемой им мощности 40 Вт и внешней температуре 45 °C. Учитывая принцип работы термоэлектрического модуля, входящего в состав данного холодильника, во избежание конденсации влаги и короткого замыкания необходимо избегать использования программ, которые переводят процессор в спящий режим на длительное время. Ориентировочная цена такого холодильника составляет $65. Указанная цена приведена в соответствии с прайс-листом фирмы на середину 2000 г.

Холодильник DT-P54A (также известен под названием PA5B фирмы Computernerd) разработан для процессоров Pentium. Однако некоторые фирмы, предлагающие эти холодильники на рынке, рекомендуют его и пользователям Cyrix/IBM 6x86 и AMD K6. Радиатор, входящий в состав холодильника, достаточно мал. Его размеры 29×29 мм. В холодильник встроен термодатчик, который при необходимости оповестит о перегреве. Он также контролирует элемент Пельтье. В комплект входит внешнее контролирующее устройство. Оно выполняет функции контроля за напряжением и самой работой элемента Пельтье, работой вентилятора, а также температурой процессора. Устройство выдаст сигнал тревоги, если элемент Пельтье или вентилятор вышли из строя, если вентилятор вращается со скоростью меньшей, чем на 70% от необходимого значения (4500 RPM) или же температура процессора поднялась выше 145°F (63°C). Если температура процессора поднялась выше 100°F (38°C), то элемент Пельтье автоматически включается, в противном случае он находится в режиме отключения. Последняя функция ликвидирует проблемы, связанные с конденсацией влаги. К сожалению, сам элемент приклеен к радиатору настолько сильно, что его невозможно отделить, не разрушив его конструкцию. Это лишает возможности установить его на другой, более мощный радиатор. Что касается вентилятора, то его конструкция характеризуется высоким уровнем надежности и он обладает высокими параметрами: напряжение питания — 12 В, скорость вращения — 4500 RPM, скорость подачи воздуха — 6.0 CFM, потребляемая мощность — 1 Вт, шумовые характеристики — 30 дБ. Этот холодильник достаточно производителен и полезен при разгоне. Однако в некоторых случаях разгона процессора следует воспользоваться просто большим радиатором и хорошим кулером. Цена этого холодильника составляет от $39 до $49. Указанная цена приведена в соответствии с прайс-листом нескольких фирм на середину 2000 г.

Холодильник AC-P2 разработан для процессоров типа Pentium II. В комплект входит 60 мм кулер, радиатор и элемент Пельтье размером 40 мм. Плохо подходит к процессорам Pentium II 400 МГц и выше, так как практически не охлаждаются чипы памяти SRAM. Ориентировочная цена на середину 2000 года — $59.

Холодильник PAP2X3B (рис. 8) аналогичен AOC AC-P2. В него добавлены два 60 мм кулера. Проблемы с охлаждением памяти SRAM остались нерешенными. Стоит отметить, что холодильник не рекомендуется использовать вместе с охлаждающими программами, такими как, например, CpuIdle, а также под операционными системами Windows NT или Linux, так как вероятна конденсация влаги на процессоре. Ориентировочная цена на середину 2000 года — $79.


Рис. 8. Внешний вид холодильника PAP2X3B

Холодильник STEP-UP-53X2 оснащен двумя вентиляторами, прокачивающими большое количество воздуха через радиатор. Ориентировочная цена на середину 2000 года — $79 (Pentium II), $69 (Celeron).

Холодильники серии Bcool от Computernerd (PAP2CX3B-10 BCool PC-Peltier, PAP2CX3B-25 BCool-ER PC-Peltier, PAP2CX3B-10S, BCool-EST PC-Peltier) разработаны для процессоров Pentium II и Celeron и имеют похожие характеристики, которые представлены в следующей таблице.

Холодильники серии BCool

Item PAP2CX3B-10
BCool PC-Peltier
PAP2CX3B-25
BCool-ER PC-Peltier
PAP2CX3B-10S
BCool-EST PC-Peltier
Рекомендуемые процессоры Pentium II and Celeron
Количество вентиляторов 3
Тип центрального вентилятора Ball-Bearing, тахометр (12 В, 120 мА)
Размер центрального вентилятора 60x60x10 мм
Тип внешнего вентилятора Ball-Bearing Ball-Bearing, тахометр Ball-Bearing, термистр
Размер внешнего вентилятора 60x60x10 мм 60x60x25 мм
Напряжение, ток 12 В, 90 мА 12 В, 130 мА 12 В, 80-225 мА
Общая площадь охвата вентиляторами 84.9 см 2
Общий ток для вентиляторов (мощность) 300 мА
(3.6 Вт)
380 мА
(4.56 Вт)
280-570 мА
(3.36-6.84 Вт)
Количество штырьков на радиаторе (центр) 63 длинных и 72 коротких
Количество штырьков на радиаторе (с каждого края) 45 длинных и 18 коротких
Общее количество штырьков на радиаторе 153 длинных и 108 коротких
Размеры радиатора (центр) 57x59x27 мм (включая термоэлектрической модуль)
Размеры радиатора (с каждого края) 41x59x32 мм
Общие размеры радиатора 145x59x38 мм (включая термоэлектрической модуль)
Общие размеры холодильника 145x60x50 мм 145x60x65 мм
Вес холодильника 357 грамм 416 грамм 422 грамм
Гарантия 5 лет
Ориентировочная цена (2000 г.) $74.95 $79.95 $84.95

Следует отметить, что группа холодильников BCool включет в себя также устройства, которые имеют похожие характеристики, но в которых отсутствуют элементы Пельтье. Такие холодильники, естественно, дешевле, но и менее эффективны как средства охлаждения компьютерных комплектующих.

При подготовке статьи были использованы материалы книги "PC: настройка, оптимизация и разгон". 2-е изд., перераб. и доп., — СПб.: BHV — Петербург. 2000. — 336 с.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!