Энциклопедия мобильной связи

Выбор аккумулятора для системы автономного или резервного питания.

Использование качественного аккумулятора — это залог надежности работы охранно-пожарной системы в чрезвычайных ситуациях, например при внезапном отключении электричества, что случается, к сожалению, нередко.

Критериев при выборе аккумулятора не так много: проверенный поставщик, сертифицированный продукт и знание основных характеристик.

В соответствии с НПБ-88-2001 "Установки пожаротушения и сигнализации. Нормы и правила проектирования" электроприемники установок пожарной автоматики по степени обеспечения надежности электроснабжения относятся к 1 категории.
На практике, в большинстве случаев, имеются источники электропитания 3 категории. В этом случае в качестве резервных источников питания (РИП) разрешается использовать аккумуляторные батареи или блоки бесперебойного питания (ББП).
В данном случае речь пойдет об аккумуляторных батареях (АКБ), которые во многом определяют работоспособность РИП, а следовательно и установок пожарной автоматики в целом.

В ОПС обычно используются свинцово-кислотные аккумуляторы, изготовленные по технологии AGM (Absorbed in Glass Mat), в которых содержится электролит, абсорбированный в стекловолоконном сепарате. Срок их службы измеряется годами (к примеру, Delta DTM — до 5-7 лет). Применение аккумуляторов, произведенных по технологии AGM, связано с тем, что нет необходимости в их обслуживании (за счет внутренней рекомбинации газа), батареи полностью герметичны, поэтому утечка электролитов невозможна, а соотношение цена/качество лучшее. Эти батареи оптимизированы для работы как в циклическом, так и в буферном режимах.

Электрическая емкость АКБ для РИП, измеряемая в ампер/часах (А/ч), рассчитывается исходя из потребляемого тока установкой пожарной автоматики и необходимого времени работы установки от РИП.
При этом надо помнить, что РИП должен обеспечить требуемое время работы в течении всего срока эксплуатации установки пожарной автоматики, то есть не менее 10 лет.
Поэтому правильная эксплуатация АКБ, диагностика и своевременная их замена является залогом надежной работы установки пожарной автоматики.

В современных РИП самое широкое применение нашли герметичные свинцово-кислотные АКБ. Еще их называют "необслуживаемые".
Это не совсем правильно, так как даже обычная грязь на клеммах может привести к потере контакта, нагреву клеммного соединения и, возможно, выходу АКБ из строя.
Здесь уместнее говорить о простоте и большой периодичности обслуживания.
К несомненным достоинствам данных АКБ также относиться возможность кратковременного разряда большим током, до 3С,
где "С" — условное обозначение тока разряда (заряда), выраженное в числовом значении емкости АКБ в А/ч при часовом разряде батареи.
Это особенно актуально для установок пожаротушения, где пусковой ток может быть в десятки раз больше тока дежурного режима.
Свинцово-кислотные АКБ не боятся глубокого разряда и быстро восстанавливают свою электрическую емкость.
Они имеют достаточно длительный срок хранения и эксплуатации.

По конструкции свинцово-кислотные батареи представляют собой набор аккумуляторов, заключенных в пластиковый корпус,
на котором имеются положительный и отрицательный выводы и односторонний клапан для поддержания на определенном уровне избыточного давления газа в АКБ.
Каждый аккумулятор имеет набор положительных и отрицательных свинцово-олово-кальциевых пластин с активной массой из химических соединений свинца.
Между пластинами расположены сепараторы из химически устойчивого, не электропроводящего стекловолокна.
В качестве проводящей среды – электролита используется раствор серной кислоты. В результате заряда в процессе электрохимической реакции в аккумуляторе накапливается энергия в форме химической энергии. При этом на положительных пластинах происходит реакция с выделением кислорода, который переносится внутри аккумулятора и поглощается поверхностью отрицательных пластин. При разряде происходит обратная электрохимическая реакция.

Наибольшее распространение получили АКБ из трех и шести аккумуляторов, так называемые "шестивольтовые" и "двенадцативольтовые" АКБ.

Электрические характеристики АКБ существенно зависят от температуры окружающей среды.
Температурный режим оказывает наибольшее влияние на срок службы аккумуляторов.
Допустимый диапазон хранения в среднем составляет от -35° до +60°С (нужно понимать, что производитель, как правило, указывает максимальные характеристики). И все-таки хранить
их лучше всего при температуре от +10° до +20°С — это оптимальные показатели для хранения. При эксплуатации аккумулятора нужно учитывать, что при повышении температуры на каждые 10° от нормальной (+20°С) срок службы уменьшается почти вдвое. Это связано с тем, что при работе в повышенных температурах увеличивается выделение газа за счет более активных электрохимических процессов. Не весь газ успевает рекомбинировать и стравливается через клапан. Вследствие этого увеличивается плотность электролита и происходит сульфатация пластин, что приводит к уменьшению срока службы аккумулятора.

Однако в практической эксплуатации вряд ли кто-то будет создавать для АКБ оптимальный температурный режим, поэтому все характеристики будем рассматривать для комнатных условий при температуре от 18°С до 22°С и относительной влажности воздуха до 85%.

Для выбора правильного режима эксплуатации АКБ необходимо представлять в какой зависимости находятся электрические характеристики АКБ от различных режимов эксплуатации.
При одинаковой разрядной емкости АКБ, при малых токах разряда активные материалы в аккумуляторе работают эффективнее, поэтому конечное напряжение разряда остается выше, чем при больших токах разряда.
Эта зависимость приведена на графике 1 для "двенадцативольтовой" АКБ.

Одно из важнейших условий успешной работы свинцово-кислотных батарей — правильный заряд. Поэтому нужно помнить, что оптимальный ток заряда для аккумуляторных батарей -0,1 С. При выборе зарядного устройства обязательно обращайте внимание на то, подходит оно вам по току заряда или нет.

Герметизированные свинцово-кислотные батареи очень чувствительны к перезаряду. Срок службы быстро снижается при работе в режиме постоянного подзаряда и увеличении напряжения источника питания и тем самым тока подзаряда. И в обратном случае, при постоянном недозаряде, происходит неполное восстановление активных масс и пластин, что ведет к повышению скорости коррозии и выпадению осадка. Со временем осадок может замкнуть пластины и, как следствие, аккумулятор выходит из строя. Многократные переразрядки снижают разрядную емкость и уменьшают срок службы. Такие же изменения могут происходить и при длительном хранении батарей в разряженном состоянии.

Рекомендуемый ток разряда, при котором не происходит необратимых изменений в характеристиках АКБ, лежит в пределах от 1/20С до 3С.
Величина разрядной емкости АКБ зависит от тока разряда.
Оптимальный ток разряда составляет 1/20С и при его увеличении разрядная емкость уменьшается, как показано на графике 2 для "двенадцативольтовой" АКБ.

При хранении АКБ происходит явление саморазряда. Рекомендуется ставить АКБ на хранение полностью заряженной. Во время хранения разряженного свинцового аккумулятора происходит перекристаллизация сульфата свинца на пластинах. Кристаллы сульфата становятся крупнее и могут частично перекрывать доступ электролита в глубину пористой структуры пластин. Это — начало сульфатации аккумулятора, которая ведет к уменьшению срока службы и способствует его старению.

В течении 12 месяцев хранения, за счет саморазряда, разрядная емкость АКБ падает до 50% от первоначальной, поэтому с этой же периодичностью рекомендуется производить перезаряд АКБ.

Необходимо помнить, что со временем характеристики АКБ безвозвратно ухудшаются, даже если АКБ не эксплуатируется, а находиться на хранении. Остаточную емкость АКБ можно грубо оценить измерением напряжения на выводах АКБ при отключенной нагрузке. Эта зависимость приведена на графике 3 для "двенадцативольтовой" АКБ. Не рекомендуется разряжать АКБ до напряжения ниже 1,75В на аккумулятор.

Данные характеристики и зависимости справедливы для АКБ, произведенных известными фирмами, где используются качественные материалы и строго соблюдается технологический процесс. Дешевые аналоги этих АКБ могут иметь характеристики, которые существенно отличаются в худшую сторону.

Существуют два основных режима применения свинцово-кислотных АКБ.

1. АКБ – это основной источник питания, работающий в циклическом режиме заряда и разряда.
Данный режим, в силу своих особенностей, практически не нашел применения в РИП установок пожарной автоматики.

2. Буферный режим, когда АКБ отдает питание на нагрузку только при отключении основного источника переменного тока. Этот режим получил наибольшее распространение.

В зависимости от режима применения АКБ существует несколько способов заряда АКБ.

При циклическом режиме используются следующие способы заряда:

    — поддержание постоянного напряжения заряда. Это наиболее предпочтительный способ, так как позволяет АКБ достичь максимальной отдачи. При этом на АКБ в течении всего времени заряда подается напряжение из расчета 2,45В на аккумулятор и завершается, когда зарядный ток имеет постоянное минимальное значение в течении 3 часов. При этом способе необходимо точно контролировать значение напряжения и времени заряда, так как перезаряд может отрицательно сказаться на рабочих характеристиках АКБ. Как правило, время заряда при таком способе находиться в пределах 6-12 часов.

    — поддержание постоянного напряжения заряда при ограничении начального тока заряда. При этом на АКБ подается напряжение заряда из расчета 2,45В на аккумулятор и начальный ток ограничивается 0,4С. Если АКБ достаточно глубоко разряжена то на начальном этапе заряда вряд ли удастся обеспечить требуемое напряжение заряда, но в последующем величину этого напряжения и времени заряда необходимо строго контролировать. Это более щадящий способ заряда АКБ, однако, требует чуть больше времени.

    — для быстрого заряда может применяться способ с двумя значениями постоянного напряжения. На начальной стадии заряда на АКБ подается зарядное напряжение из расчета 2,45В на аккумулятор и зарядный ток до 0,8С. Когда величина зарядного тока уменьшиться до 0,15-0,2С необходимо уменьшить зарядное напряжение до 2,3В на аккумулятор и контролировать постоянство минимального значения зарядного тока аналогично пункту "а". При этом способе время заряда сокращается примерно в 1,5 раза. Этим способом не рекомендуется пользоваться часто.

    При работе АКБ в буферном режиме ей необходим компенсирующий подзаряд. Конечно, если источник длительное время работал от АКБ и она разрядилась необходимо применить один из вышеперечисленных способов заряда. В источнике питания АКБ может быть включена двумя вариантами:
    — АКБ отсоединена от нагрузки и заряжается от источника малым током только для компенсации саморазряда. Подключения АКБ к нагрузке происходит автоматически только при пропадании основного питания.

    — АКБ и нагрузка соединены постоянно параллельно с выходом выпрямителя. При этом ток с выхода выпрямителя распределяется между нагрузкой и АКБ.

Поскольку ток нагрузки постоянно изменяется в процессе работы установки пожарной автоматики, то в режиме постоянного подзаряда следует контролировать величину напряжения и тока подзаряда. Стандартное напряжение подзаряда рассчитывается по 2,3В на аккумулятор и тока не более 0,15С. Однако, в ряде РИП с целью уменьшения их стоимости такие цепи контроля не применяются, что в свою очередь может приводить к перезаряду АКБ и уменьшению срока ее эксплуатации.

Ведущие фирмы выпускают АКБ различных типов для применения в различных режимах. Это, как правило, отражено в маркировке моделей.

Исходя из выше изложенного, можно сформулировать несколько практических рекомендаций по выбору и эксплуатации свинцово-кислотных АКБ:

    — Перед приобретением АКБ надо определиться в каком из режимов она будет использоваться. Исходя из этого, выбрать конкретную модель АКБ. Определить ее параметры заряда и разряда.
    — При приобретении источника питания отдавать предпочтение тому, где существуют схемы заряда и разряда, подходящие для выбранной модели АКБ.
    — Не рекомендуется приобретать АКБ, которые были выпущены более года назад.
    — Перед установкой в источник питания полностью зарядить АКБ.
    — При расчете требуемой электрической емкости АКБ необходимо учитывать, что стандартная АКБ на 4-м году, даже при правильной эксплуатации, безвозвратно теряет от 10% до 40% электрической емкости, поэтому для обеспечения требуемого времени работы установки пожарной автоматики от резервного источника питания на 4-5 году ее эксплуатации эти потери надо закладывать в расчеты.
    — В процессе эксплуатации необходимо:
    — соблюдать температурный режим,
    — правильно выбирать и применять зарядное устройство,
    — избегать глубоких или быстрых разрядов АКБ, а равно как и избыточного заряда, так как эти критические режимы при многократном повторении сокращают срок эксплуатации АКБ.
    — В процессе эксплуатации необходимо следить за остаточной емкостью АКБ и при уменьшении ее ниже критической, то есть более чем на 50%, производить замену АКБ.
    — При необходимости обеспечить большую электрическую емкость рекомендуется применять одну АКБ большой емкости, чем соединять параллельно несколько АКБ меньшей емкости.
    — Следить за чистотой корпуса и выводов АКБ, не допускать ее падения, попадания на корпус агрессивных жидкостей, солнечных лучей. Не рекомендуется использовать АКБ при температуре воздуха ниже -15°С или выше +60°С, а также высокой влажности воздуха. Утилизацию АКБ необходимо производить в специализированных организациях.

БОРЬБА С КОРРОЗИЕЙ

Еще одной из причин, уменьшающей срок службы, является преждевременная деградация положительных пластин при работе в буферном режиме. Это влечет за собой коррозию решеток и изменения в активной массе пластин. Коррозия решеток приводит к нарушению контакта с активной массой и увеличению внутреннего сопротивления. Из-за увеличения удельного объема вещества возникают большие внутренние напряжения, деформации пластин и корпуса. В результате возрастает вероятность короткого замыкания, происходит оплывание и осыпание активной массы. Этот эффект чаще проявляется при заряде аккумуляторов после разряда при низкой температуре и при больших токах нагрузки.

ВОССТАНОВЛЕНИЕ ЕМКОСТИ

При изменении глубины разряда от 20 до 100 % срок эксплуатации герметизированных свинцово-кислотных аккумуляторов уменьшается в пять раз и более. Если после длительного хранения устройство потеряло менее 40% емкости, то ее можно частично или полностью восстановить. Для этого аккумулятор несколько раз заряжают и разряжают небольшими токами около 10%емкости (например,Delta DTM 1207, емкостью 7 Ач — ток 0,7 А). Оптимально провести 3 цикла заряда-разряда. В случае если аккумулятор потерял более половины емкости, то его полное восстановление, как правило, невозможно.

ПРЕДОТВРАЩЕНИЕ ДЕФЕКТОВ

Периодически необходимо проверять емкость тестером свинцово-кислотных аккумуляторов. Это поможет своевременно исправить возникшие дефекты или предотвратить их. И заключительный совет: покупайте аккумуляторы только у проверенных поставщиков, запрашивайте сертификаты и декларации о соответствии. Это поможет избежать приобретения подделок, а значит, сделать свою охранно-пожарную сигнализацию надежной.

Все изложенное справедливо не только для резервных источников питания установок пожарной автоматики, но и для всех остальных систем безопасности.

Аварийные отключения электроэнергии загородом случаются гораздо чаще, чем в городской черте. Сохранить комфорт проживания помогают различные системы бесперебойного электропитания. Одна из самых простых и надежных систем предполагает использование аккумуляторов, которые обеспечат дом электроэнергией в случае ее аварийного отключения.

Системы резервного питания на основе аккумуляторов позволяют надолго забыть о скачках в сети и кратковременного отключения электричества. Но надежность такой системы во многом зависит от правильности ее выполнения, а также качества монтажных работ.

Контур резервного питания включает в себя только наиболее важные и не очень энергоемкие потребители. К таковым относятся отопительные котлы (кроме электрических) и их автоматика, водяной насос, дежурное освещение, холодильник и средства связи.

Мощные ТЭНы в этот контур включать не стоит, поскольку резервирование питания для них потребует аккумуляторов большой емкости, а также усиления сопутствующего оборудования. Одним словом это дорого. Необходимо придерживаться принципа рациональности, т.е. включить в контур резервного питания только самые необходимые электроприборы. Запас электроэнергии в любых аккумуляторах ограничен, поэтому такую систему можно рассматривать только как аварийную. Время автономной работы техники напрямую будет зависеть от ее потребляемой мощности и емкости батарейного блока.

Виды аккумуляторов

Системы резервного питания (СРП) автоматически переводят подключенное электрооборудование в автономный режим в случае отключения основной сети. В аккумуляторных системах энергия запасается соответственно в аккумуляторах. Наиболее распространенными из них долго являлись кислотные аккумуляторы. Внутри них находятся свинцовые пластины, погруженные в электролит. Накопление электроэнергии возникает в результате химической реакции. Кислотные аккумуляторы способны обеспечить высокие значения пускового тока, поэтому они часто называются стартерными или тяговыми. Данное свойство обеспечило им распространение в автомобильной технике.

Использовать в домашних резервных системах тяговые аккумуляторы не рекомендуется из соображений безопасности. При больших токах жидкий электролит закипает, что может вызвать взрыв аккумулятора или возгорание.

В этом отношении намного безопаснее гелевые аккумуляторы. Они используют кислоту, которая находится в тиксотропном состоянии. По консистенции она больше похожа на воск. Это вещество не сможет разлиться даже при повреждении герметичного корпуса аккумулятора. При этом опасность использования таких батарей практически отсутствует. Их можно устанавливать в любом помещении, не переживая за его целостность и экологию.

Наиболее технологичными на сегодняшний день являются AGM-аккумуляторы. Кислотный электролит в них связан специальным стекловолокном. AGM-аккумуляторы обладают всеми преимуществами гелевых. При этом они практически не греются, т.к. внутреннее сопротивление у них невысокое. Таким образом, во время зарядки AGM-аккумуляторов в тепло переходит только 3-4% электроэнергии. У кислотных аккумуляторов этот показатель достигает 20%, а у гелевых - 10-15%.

Обычные кислотные аккумуляторы с жидким электролитом теряют 1% своего заряда в день, т.е. до 30% в месяц. Гелевые и AGM-аккумуляторы гораздо лучше держат заряд, теряя не более 1-3% в месяц. Именно такие батареи можно рекомендовать для применения в домашних СРП. AGM-аккумуляторы хороши еще и тем, что не требуют пополнения электролита и контроль его уровня.

В аккумуляторных системах резервного питания, как правило, применяется не один, а несколько аккумуляторов в параллельной цепи.

Характеристики аккумуляторов

Для СРП аккумуляторы выбирают с учетом следующих важных характеристик.

Масса аккумулятора важна для определения конструкции стойки, на которой он будет установлен. Аккумуляторы используемых классов весят от 10 до 20 кг. Поскольку чаще всего применяется группа аккумуляторов, стойку лучше всего сварить из стального уголка.

Выходное напряжение у подавляющего большинства кислотных аккумуляторов составляет 12 В, но также встречаются модификации на 24 В и 48 В. Для домашних СРП специалисты рекомендуют применять аккумуляторы на 12 В.

Максимальный пусковой ток аккумулятора показывает его возможности относительно запуска электродвигателей, у которых пусковой ток в несколько раз выше потребляемого номинала. Если данные величины не соответствуют, то двигатель попросту не запустится. Пусковой ток измеряется в амперах. Для домашнего оборудования достаточно источника, способного выдавать 200-400 А. С таким пусковым током будет обеспечена работа наиболее затратных потребителей - скважинных насосов.

Емкость аккумуляторной батареи определяет заряд, накапливаемый и отдаваемый. Данная величина выражается в ампер-часах (А.ч). Чем емкость больше, тем больше электроэнергии может запасти аккумулятор, и тем дольше питать подключенное к нему электрическое оборудование.

Практическую отдачу аккумулятора несложно вычислить. Пример: аккумулятор емкостью 200 А.ч с напряжением 12 В способен накапливать 12 × 200 = 2400 Вт.ч (2,4 кВт.ч).

Реальная доступная мощность аккумулятора будет на 20-25% ниже, поскольку для него не рекомендуется глубокая разрядка. Таким образом, имея аккумулятор с указанными характеристиками, можно расcчитывать на мощность 2 кВ.ч. Это означает, что от данного аккумулятора лампочка на 100 Вт сможет проработать беспрерывно на протяжении 20 часов. Аналогичным образом можно рассчитать время работы других потребителей, мощность которых не превышает 2 кВт.

Компоненты системы резервного питания

Источник бесперебойного питания (ИПБ) - устройство в данном случае используемое для компенсации пиковых нагрузок и нормальной работы бытовой техники в случае кратковременного падения напряжения в сети. ИПБ постоянно включен в сеть, а электроприборы и оборудование уже подключено через него.

ИПБ бывают двух основных видов - online и offline. Проще устроены и соответственно дешевле в производстве offline-устройства. Однако они срабатывают только при резком отключении или критическом падении напряжения в сети. При этом время срабатывания у них относительно велико - 30-40 мс. Оnline-устройства компенсируют любые скачки, обеспечивая наилучшую защиту электроприборов и оборудования. Это особенно важно для чувствительной электроники, например, компьютерной техники.

Инвертор используется для преобразования тока. Данное устройство в номинальном режиме работы потребляет небольшое количество электроэнергии и выполняет функцию зарядного устройства для аккумуляторов. В аварийной ситуации инвертор переходит в обратный режим, при котором постоянный ток аккумулятора преобразуется в переменный с напряжением 220 В.

Инверторы бывают с модифицированной синусоидой и синусоидальные. Первый тип подходит только для видео- аудиотехники. Для работы бытовых приборов и насосов необходим второй тип (синусоидальный). Такие устройства стоят дороже, но обладают значительно лучшими качественными характеристиками тока.

Вспомогательные устройства, используемые в СРП, представлены контроллерами заряда, управляющей и регулирующей автоматикой, защитными реле. Сегодня практически все из названного содержит инвертор.

Расчет параметров СРП

Суть такого расчета сводится к определению соответствия мощности потребления и обеспечивающих возможностей аккумуляторного блока. Прежде всего, необходимо очертить круг электроприборов, которые планируется питать в аварийном режиме. Обычно это отопительный котел, холодильник, дежурное освещение, компьютер, роутер и водяной насос. К полученной цифре рекомендуется прибавить мощность одного из силовых потребителей, например, электрочайника или привода гаражных ворот. В расчетах обязательно нужно учесть пусковую (динамическую) мощность, которая может превышать статическую в 3-4 раза. Обычно берется пусковая мощность наиболее сильного потребителя - скваженного насоса. Полученное значение является критерием для выбора ИПБ и инвертора.

Из практики известно, что для дома площадью 150-300 м² вполне достаточно оборудования, общая мощность которого составляет 3-6 кВА, рассчитанных на пусковую мощность порядка 9-кВА.

Для расчета емкости аккумулятора необходимо общий объем потребления делить на напряжение аккумулятора (с учетом коэф. неполного разряда).

Пример. Требуется расход электроэнергии в объемах 4,5 кВт.ч. Расчет: 4500 Вт / 0,75×12 В = 500 А.ч. (0,75 - коэффициент неполной разрядки на уровне 75%, 12 В - вольтаж АБ).

Полученную емкость необходимо умножить на количество часов, на протяжении которых должно работать оборудование в аварийном режиме. Например, если отключения длятся до 5 часов, то емкость аккумуляторного блока должна составить 2500 А.ч (500 А.ч × 5 ч).

Хозяева дома при аварийном отключении электроснабжения имеют возможность экономить заряд аккумуляторов. Скажем, если они будут пользоваться только приборами с низким электропотреблением, то смогут оттянуть момент критического разряда на несколько суток.

Типовая система резервного питания для среднего коттеджа состоит из восьми аккумуляторов на 12 В (200 А.Ч каждый). В экономном варианте количество аккумуляторов уменьшается вдвое. Даже четыре аккумулятора способны обеспечить работу минимального количества приборов на протяжении 3-5 часов.

  • Лайфхаки для гиков
  • Предыстория
    На тот момент, когда я первый раз попробовал заменить в ИБП старый аккумулятор ёмкостью 7Ач на старый автомобильный аккумулятор номинальной ёмкостью 65Ач, я ещё не знал, почему этого нельзя делать, и как это может навредить здоровью аккумулятора, самому ИБП и людям, проживающим в одном помещении с ним.

    Доработка бесперебойника не заняла много времени, но профит был заметен сразу же. Сто-ватная нагрузка в виде домашнего «сервера» продержалась порядка двадцати часов без внешнего питания, хотя раньше 10 минут - это был предел, которого хватало разве что на корректное завершение работы. Более длительных отключений за время эксплуатации данной модификации замечено не было, а подключение интернета по технологии GPON позволяло серверу оставаться в сети даже при масштабных отключениях электроэнергии.

    Но это было давно. А год назад мне случайно попалось на глаза объявление о продаже нескольких бывших в употреблении ИБП APC 3000 за смешные деньги, 4000 рублей за штуку, без аккумуляторов, но рабочие. Немного подумав, решил что надо брать, причём сразу два, правда к моменту покупки цена успела подняться до 5000 рублей за штуку, но меня это не остановило, ведь в магазине за те же деньги предлагали лишь варианты на 1кВт, да и то от всяких noname фирм с не очень лестными отзывами и модифицированным синусом.

    Без аккумуляторов ИБП включаться отказался, судя по информации из интернета, ему требовалось восемь аккумуляторов по 12 вольт, т.е. батарея на 96 вольт, но конденсаторы на входе батарей были номиналом 63 вольта. Оказалось, что в картридже две параллельно соединённых цепочки по четыре аккумулятора, по 5Ач каждый. Итого получается батарея на 48 вольт и 10Ач. И вот тут началось самое интересное.

    Выбор АКБ
    Настало время покупать аккумуляторы. Разница в цене между специализированным аккумуляторами для ИБП и обычными автомобильными была примерно раза в два при сопоставимой ёмкости. Зачем платить больше? Решил загуглить и нашёл несколько сайтов продающих АКБ для ИБП, которые почти под копирку приводили несколько доводов, почему стоит заплатить больше. В целом звучит правдоподобно, но давайте их рассмотрим поподробнее.
    Итак, первая значительная разница - это различное напряжение постоянного тока в автомобиле и у источника автономного электроснабжения. У автомобильной батареи напряжение постоянного тока примерно равно 14-14.2 В, а у аккумулятора для источника бесперебойного питания оно составляет 13.5-13.8 В. Напряжение тока заряда у обычных автомобильных и специальных для ИБП рассчитано на различные значения. После того как Вы подсоедините автомобильный аккумулятор к системе резервного электропитания, то результат будет виден такой - постоянно батарея будет недозаряжена. Высокое внутреннее сопротивление имеется у максимально заряженной батареи, так как потребляется небольшой ток при работе с ИБП. С разряженными аккумуляторами дела состоят с точностью наоборот. В конечном итоге присоединение автомобильного аккумулятора может привести к кипению электролита, так как будет потребляться постоянно ток и аккумулятор не будет до конца заряжаться.

    Заглядываем в статью википедии о свинцово-кислотных аккумуляторах и видим, что ЭДС заряженного аккумулятора 2.11-2.17В, для 6 банок это получается 12,66-13,02В. Смотрим на аккумулятор для ИБП и видим надписи о рекомендуемых значениях напряжений: в режим постоянного подзаряда 13.5-13.8В, в циклическом режиме 14.4-15.0В. Смотрим на полностью заряженный автомобильный аккумулятор, видим 12.7В, заводим двигатель, напряжение поднимается до 14.2. Получается что 14.2В - это не напряжение автомобильного аккумулятора, а напряжение которым его заряжает автомобильный генератор. Но разве в автомобиле предусмотрена какая-либо схема заряда аккумулятора? В общем мне показался данный довод несостоятельным.
    Второе отличие - временной этап работы и равномерное выделение электрического тока за счет пластин, которые встроены внутри аккумуляторной батареи. Средняя толщина электрода (пластины) у автомобильного аккумулятора составляет примерно 1-1.2 мм, а у специализированных для ИБП 2-2.5 мм. Движение электронов происходит на менее толстой поверхности. Если подключить автомобильный аккумулятор к источнику бесперебойного питания, то пластины которые находятся внутри быстро разрушатся из-за длительного функционирования цикла.

    Если бы в автомобиле не было сигнализации и магнитолы, то наверное можно было бы поверить в то, что автомобильный аккумулятор не способен длительное время отдавать малые или средние токи, но ведь они питаются от того же аккумулятора. И это не говоря о том, что автомобиль в принципе может некоторое время двигаться без генератора, только лишь на заряде аккумулятора, и после этого достаточно будет просто зарядить аккумулятор и он продолжит работать. По поводу толщины пластин сложно что либо сказать, разве что в аккумуляторах от ИБП некоторым попадаются нанотехнологические вставки из стекла. Стекло добавляет толщины пластинам и вес батареи, правда в химических реакциях не участвует.

    И третье важное отличие - в процессе заряда аккумулятора выделяется водород. Когда батарея установлена под капотом автомобиля, то водород быстро улетучивается и не представляет никакой опасности. Так как источник бесперебойного питания установлен как правило в замкнутом пространстве, то газ начнет скапливаться, а смесь водорода с кислородом образует взрывоопасную смесь, которая может детонировать от любой искры (даже от включения света). Аккумулятор для ИБП полностью герметизирован, в процессе работы он не выделяет водород в атмосферу, а рециркулирует в пространстве батареи.

    Данный довод мне сразу показался подозрительным, ввиду того, что мне не доводилось видеть герметичных аккумуляторов в ИБП. Если посмотреть на аккумулятор, то можно увидеть небольшие отверстия для отвода газов, в отличии от автомобильных аккумуляторов, они закрыты резиновыми колпачками и замурованы под пластиковые заглушки, но вовсе не герметично. Если снять пластиковые заглушки и поставить аккумулятор на зарядку, то некоторые резиновые колпачки весело улетят в неизвестном направлении. Значит вода всё таки распадается на кислород и водород, и простой резиновый колпачок не заставит их преобразоваться обратно в воду, а после определённого давления газы всё равно выйдут наружу. Впрочем ладно, если за несколько лет эксплуатации автомобильного аккумулятора в закрытом шкафу ничего не взорвалось, то в проветриваемом подвале и на балконе наверняка проблем с накоплением водорода не возникнет.

    Автомобильные аккумуляторы имеют разбавленный электролит, а так как в жидкой среде все процессы протекают быстро, то срок службы этих батарей намного меньше чем у специализированных для ИБП. Внутри АКБ для источников бесперебойного питания находится губчатый материал, который пропитан электролитом. И поэтому ток самозаряда получается небольшим. И когда система перейдет на функционирование от аккумулятора, то батареи для ИБП проработают больше.

    Действительно, в автомобильном аккумуляторе электролит находится в жидком состоянии, а в специализированных аккумуляторах для домашних ИБП им пропитан пористый материал, и если перевернуть его с открытыми заглушками, то ничего из него не выльется, это позволяет размещать его внутри ИБП в любом положении, хоть вверх ногами (хотя и не рекомендуется). Как это связано с током саморазряда, полностью электролита и скоростью протекания химических реакций - я не знаю, но вероятнее всего, что никак.

    И не стоит забывать о том, что автомобильный аккумулятор работает в суровых условиях, от него несколько раз в день требуют больших токов, несколько месяцев в году это сопровождается очень низкими температурами, а несколько месяцев высокими, кроме того он испытывает вибрационные и ударные нагрузки во время движения автомобиля, а генератор заряжает его без какого либо контроля, и хорошо, если владелец следит за его состоянием.

    Так же, некоторые высказывают сомнение по поводу того, что ИБП в состоянии зарядить автомобильный аккумулятор, ведь у него значительно большая ёмкость. Но ведь увеличив ёмкость, мы получаем увеличение длительности работы от батареи, странно ожидать, что последующая зарядка будет производиться за прежнее время.

    Прочитав ещё несколько статей о вреде использования автомобильного аккумулятора в быту, стало понятно, что ничего не понятно. Но, учитывая предшествующий положительный опыт, было решено выбрать вариант с большей ёмкостью, т.е. автомобильные аккумуляторы. Для одного ИБП были выбраны самые дешёвые аккумуляторы от Тюменского Медведя на 75Ач, для второго АКБ фирмы BRAVO на 90Ач примерно за ту же стоимость. И вот сейчас, спустя почти год эксплуатации решил попробовать замерить ёмкость аккумуляторов, чтобы понять, насколько всё плохо.

    Результаты замеров

    Параметр АКБ №1 АКБ №2
    Модель BRAVO 6CT-90VL Tyumen Batbear 75
    Ёмкость, макс. ток 90Ач, 760А 75Ач, 610А
    Стоимость на момент покупки 2200 руб 2400 руб
    Дата установки 9 ноября 2014 11 ноября 2014
    ИБП APC Smart-UPS 3000VA, 2700Вт, 230В, чистый синус 50Гц +-3 Гц
    насос газового котла, насос тёплого пола,
    насос скважины с водой, морозильная камера,
    холодильная камера, освещение
    освещение, холодильник
    Циклов заряда-разряда 330+ 10
    Производилась калибровка нет да
    Дата контрольного замера 31 августа 2015 1 сентября 2015
    Контрольный разряд 4 часа 20 минут, 37.22Ач 9 часов, 55.7Ач
    Напряжение после разряда 45.0В под нагрузкой, 48.7В без нагрузки 44.6В под нагрузкой, 46.3В без нагрузки
    Контрольный заряд 9 часов, 37.32Ач 14 часов, 52.28Ач
    Напряжение после заряда 55.4В, плюс-минус 0.02В на каждой батареи
    Уровень электролита Визуально не изменился, уровень выше пластин с запасом
    Графики процесса разрядки-зарядки по данным самого ИБП можно посмотреть и . Одна линия показывает напряжение на батарее, вторая мощность нагрузки в процентах.

    Хотя я не уверен, что правильно произвёл замер, но лучше способа, чем включить цифровой ватт-метр в разрыв между АКБ и ИБП, я придумать не смог. Сомнения в корректности замеров у меня возникли из-за того, что не смотря на постоянно включенную нагрузку, ИБП потреблял ток периодами (3-5 секунд потребление нарастает до номинала и опускается до нуля, 1-2 секунды потребления нет), возможно это связано с тем, что по аккумуляторному входу установлена пара ёмких конденсаторов, которые сглаживают нагрузку на АКБ. Зарядка производится примерно таким же образом (некоторое время подаётся ток, затем пара секунд перерыв). После полной зарядки ИБП продолжает периодически подавать ток на АКБ в районе 1А.

    Не смотря на то, что один бесперебойник нещадно насиловал аккумуляторы каждый день почти полностью разряжая их, а затем вновь заряжая, а второй работал в штатном режиме и разряжал АКБ только при отключениях электричества, спустя год они по-прежнему работают и держат нагрузку. Специализированные аккумуляторы в ИБП, что стоящие с завода, что купленные в процессе эксплуатации не жили у меня даже этого времени, они просто высыхали и переставали держать заявленную ёмкость. В общем я не смог ответить для себя на вопрос, почему же автомобильные аккумуляторы не годятся для использования в ИБП, но через год я постараюсь повторить измерения и сравнить результаты.
    Добавить метки

    Для резервирования питания ответственных энергопотребителей используют параллельное соединение нескольких источников питания, исключая при этом взаимное влияние одного источника на другой.
    При повреждении или отключении одного из нескольких питающих устройств нагрузка автоматически и без разрыва цепи питания подключится к источнику питания, напряжение которого выше остальных. Обычно в цепях постоянного тока для разделения питающих цепей используют полупроводниковые диоды. Эти диоды препятствуют влиянию одного источника питания на другой. В то же время на этих диодах нерационально расходуется некоторая доля энергии источника питания. В этой связи в схемах резервирования стоит использовать диоды с минимальным падением напряжения на переходе. Обычно это германиевые диоды.
    В первую очередь питание на нагрузку подают с основного источника, имеющего обычно (для реализации функции самопереключения на резервное питание) более высокое напряжение. В качестве такого источника чаще всего используют сетевое напряжение (через блок питания). В качестве источника резервного питания обычно используют батарею или аккумулятор, имеющие напряжение заведомо меньшее, чем у основного источника питания.
    Самые простые и очевидные схемы резервирования источников постоянного тока показаны на рис. 10.1 и 10.2. Подобным образом можно подключить неограниченное количество источников питания к ответственному радиоэлектронному оборудованию.
    Схема резервирования источников питания (рис. 10.2) отличается тем, что роль диодов, разделяющих источники питания, выполняют светодиоды. Свечение светодиода индицирует задействованный источник питания (обычно имеющий более высокое напряжение). Недостатком подобного схемного решения является то, что максимальный ток, потребляемый нагрузкой, невелик и непревышает максимально допустимого прямого тока через свето-диод.

    Рис. 10.1. Основная схема резервирования источников питания

    Рис. 10.2. Схема резервирования источников питания с использованием светодиодов

    Рис. 10.3. Схема резервирования источника питания охранного устройства

    Кроме того, на светодиоде падает около двух вольт, необходимых для его работы. Световая индикация неустойчива при несущественной разности напряжений питания.
    Схема авторезервирования источника питания для ответственного оборудования - охранного устройства - приведена на рис. 10.3. На схеме условно показан основной - сетевой источник питания. На его выходе - нагрузке RH и конденсаторе С2 - формируется стабильное напряжение 12 6 или более! Батарея резервного питания GB1 подключена к сопротивлению нагрузки через цепочку диодов VD1 и VD2. Поскольку разность напряжения на этих диодах минимальна, ток через диоды в нагрузку не протекает. Однако, стоит отключиться основному
    источнику питающего напряжения, как диоды откроются. Таким образом питание подается на нагрузку без перебоев.
    Светодиод HL1 индицирует исправное состояние резервного источника питания, а диод VD2 не допускает питание светодио-да от источника основного питания.
    Схему можно изменить таким образом, чтобы два светодио-да независимо друг от друга индицировали рабочее состояние обоих источников питания. Для этого достаточно схему (рис. 10.3) дополнить элементами индикации.
    Устройство для автоматического включения резервной батареи питания описано в патенте ГДР № 271600 , а его схема показана на рис. 10.4.

    Рис. 10.4. Схема устройства для автоматического включения резервной батареи питания

    В исходном (штатном) режиме ток от источника основного питания Еа через светодиод-индикатор тока нагрузки поступает в нагрузку. Транзистор VT1 открыт, транзистор VT2 закрыт, резервная батарея питания Еь отключена. Как только произойдет отключение основного источника питания, светодиод HL1 погаснет, закроется транзистор VT1 и, соответственно, откроется транзистор VT2. Батарея Еь подключится к нагрузке.
    Недостатком устройства является то, что максимальный ток через нагрузку не может превышать максимально допустимого тока через светодиод. Кроме того, на самом светодиоде теряется до 2 В. Если пожертвовать функцией индикации и заменить светодиод на германиевый диод, рассчитанный на повышенный ток, это ограничение снимется.
    Для нормальной работы телефонных автоматических определителей номера (АОН) необходимым условием является
    использование резервного источника питания. Схема одного из них показана на рис. 10.5.
    Когда источник питания включают в сеть, срабатывает реле К1, которое одновременно является датчиком разряда аккумулятора GB1. Через резистор R2 протекает зарядный ток 5... 10 мА. При отключении сетевого напряжения устройство получает питание от аккумулятора GB1, однако, если напряжение на аккумуляторе упадет ниже 6,5 В, реле отключится. Контакты реле разомкнут цепь питания и защитят таким образом аккумулятор от дальнейшего разряда.

    Рис. 10.5. Схема автоматического включения резервного источника питания для АОНа

    Аккумуляторная батарея состоит из шести элементов Д-0,55. Ее ресурса хватает для автономной работы телефона в течение часа.
    В схеме использовано реле РЭС-64А РС4.569.724.
    Налаживают устройство подбором резистора R1, которым устанавливают напряжение отпускания реле К1. Подбором R2 устанавливают величину зарядного тока. Для исключения перезаряда аккумулятора рекомендуется снизить величину зарядного тока до 0,2 мА.
    Автоматический перевод питания нагрузки, например, радиоприемника, на резервное батарейное питание при отключении сетевого источника питания позволяет осуществить устройство по схеме на рис. 10.6 . Режим работы устройства индицируется свечением светодиода: зеленый цвет -- работа в штатном режиме; красный - в аварийном (на батареях).
    Особенностью индикатора является то, что при работе от батареи ее разряд через подключенный основной блок питания исключен за счет использования диода в цепи затвора полевого транзистора.
    Для того чтобы при работе устройства от блока питания не происходила подпитка нагрузки от батареи, выходное напряжение блока питания должно на 0, 7... 0, 8 В превышать напряжение батареи.

    Рис. 10.6. Схема автоматического переключения нагрузки на резервное питание с индикацией

    Рис. 10.7. Схема автоматического коммутатора питания

    Дальнейшим развитием предыдущего устройства является автоматический коммутатор питания (рис. 10.7) . Устройство предназначено для установки в любые носимые и переносные устройства (приемники, плейеры, магнитофоны), имеющие внутренние источники питания. Автоматический коммутатор питания позволяет автоматически переходить от внутреннего к внешнему питанию и обратно.
    В исходном состоянии, когда внешний источник питания отключен, реле К1 обесточено, и через его нормально замкнутые контакты напряжение подается с батареи GB1 на нагрузку RH и через диод VD1 на нижний по схеме (красный) диод HL1. При подключении внешнего источника питания реле К1 срабатывает, его контакты К1.1 устанавливаются в нижнее по схеме положение, и питание на нагрузку подается от внешнего источника. Так как на анод верхнего по схеме диода HL1 (зеленого цвета) подается напряжение на 2 В больше, чем на анод нижнего диода HL1 (красного цвета), двухцветный двуханодный светодиод HL1 светится зеленым цветом, указывая на режим работы от сети. При пропадании сетевого напряжения обмотка реле К1 обесточивается, и нагрузка автоматически переключается на работу от батареи GB1. Об этом сигнализирует индикатор HL1, меняя цвет свечения с зеленого на красный. Диод VD1 следует взять типа КД503, КД521 или КД510. Падение напряжения на нем в прямом включении должно быть не менее 0,7 б.-Тогда при свечении зеленого светодиода не будет подсвечиваться красный.
    Резистором R2 устанавливают ток через HL1, равный 20 мА. Реле К1 типа РЭС-15 (паспорт РС4.591.005) или другое с рабочим напряжением не более 5 В. Обычно срабатывание реле происходит при напряжении, на 30...40% меньшем его рабочего напряжения.
    При настройке устройства резистор R1 подбирают такой величины, чтобы реле К1 надежно срабатывало при напряжении 4 В. При использовании реле К1 других типов с напряжением срабатывания, близким к 4,5 В, резистор R1 можно исключить.
    При сетевом питании электронно-механических часов наблюдается неприятный эффект: при отключении сетевого напряжения происходит остановка хода часов.
    Более надежными и удобными в эксплуатации являются комбинированные блоки питания - сетевые блоки питания в сочетании с никель-кадмиевыми аккумуляторами Д-0,1 или Д-0,125 (рис. 10.8) .
    Здесь конденсаторы С1 и С2 выполняют функцию балластных реактивных элементов, гасящих избыточное напряжение сети. Резистор R2 служит для разрядки конденсаторов С1 и С2 при отключении устройства от сети.
    Если контакты выключателя SA1 замкнуты, то при отрицательной полуволне сетевого напряжения на верхнем (по схеме) проводе диод VD2 откроется, и через него будут заряжаться конденсаторы С1 и С2. При положительных же полуволнах конденсаторы станут перезаряжаться, ток потечет, в первую очередь, через открытый диод VD3 и начнет подзаряжаться аккумулятор GB1 и конденсатор СЗ. Напряжение на полностью заряженном аккумуляторе будет не менее 1,35 В, на светодиоде HL1 -- около 2 В. Поэтому светодиод начнет открываться и тем самым ограничивать зарядный ток аккумулятора. Следовательно, аккумулятор постоянно будет в заряженном состоянии.

    Рис. 10.8. Комбинированный блок питания электронно-механических часов

    При наличии напряжения в сети часы питаются от нее во время положительных полупериодов, а во время отрицательных полупериодов - энергией, запасенной аккумулятором GB1 и конденсатором СЗ. При пропадании сетевого напряжения источником питания становится аккумулятор.
    Освещение циферблата включают размыканием контактов выключателя SA1. В этом случае ток зарядки и разрядки конденсаторов С1 и С2 протекает через нити накала ламп EL1 и EL2, и они начинают светиться. А ранее замкнутый двуханодный стабилитрон VD1 теперь выполняет две функции: ограничивает напряжение на лампах до значения, при котором они светятся с небольшим недокалом, а в случае перегорания нити накала одной из ламп пропускает через себя зарядно-разрядный ток конденсаторов, что предотвращает нарушение работы блока питания в целом.
    Двуханодный стабилитрон VD1 типа КС213Б можно заменить на два включенных встречно-последовательно стабилитрона Д814Д, КС213Ж, КС512А. Светодиод HL1 - АЛ341 с прямым падением напряжения при токе 10 мА - 1,9...2,1 В. Лампы накаливания EL1 и EL2 типа СМН6,3-20 (на напряжение 6,3 В и ток и м/ч; или аналогичные, корпус выключателя SA1 должен быть надежно изолирован от сети.
    В блоке питания для электронных часов (рис. 10.9) гашение избыточного сетевого напряжения осуществляется резисторами R1 и R2 . Это не самое экономичное решение проблемы, но при малых токах потребления вполне оправдано. Кроме того, при случайном касании выхода выпрямителя максимальный ток через тело человека не достигнет опасных значений (не более 4 мА), поскольку величина ограничивающих ток резисторов достаточно велика.

    Рис. 10.9. Схема резервированного питания электронных часов

    С выхода стабилизатора (аналога стабилитрона и, одновременно, индикатора включения - светодиода HL1) напряжение питания через германиевый диод VD5 подается на электронные часы. В случае отключения сетевого напряжения часы получают питание от батареи GB1, при наличии сетевого напряжения ток выпрямителя подзаряжает элемент питания. В схеме не использован конденсатор фильтра. Роль конденсатора фильтра большой емкости выполняет сам элемент питания.
    Электронно-механические часы обычно питают от одного гальванического элемента напряжением 1,5 В. Предлагаемый источник бесперебойного питания (рис. 10.10) для кварцевых электронно-механических часов вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА . Напряжение, снимаемое с емкостного делителя С1 и С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.
    Рассмотренные ранее устройства автоматического перехода на резервное питания в случае отключения основного источника использовали в качестве базового (основного) источник постоянного тока. Менее известны схемы резервирования устройств, работающие на переменном токе. Схема одного из них, способного работать в цепях как постоянного, так и переменного тока приведена ниже .

    Рис. 10.10. Схема низковольтного источника бесперебойного питания

    Рис. 10.11. Схема включения источника резервного питания с гальванической развязко й

    Схема включения источника резервного питания с гальванической развязкой (ИР/7) питается от источника управляющего сигнала (рис. 10.11), потребляя при этом минимальный ток (доли мА). Управляющий сигнал поступает на резистивный делитель R1, R2. Стабилитрон VD6 и диоды VD1 - VD5 защищают вход устройства от перенапряжения и неправильного подключения полярности. ИР/7 отключен контактами реле К1.1. Напряжение, снимаемое с резистора R2 и стабилитрона VD6, поступает через диод VD5 на электролитический конденсатор С1 большой емкости. Этот конденсатор при первом включении устройства заряжается до 9... 10 В за 2.. .3 минуты, после чего схема готова к работе. Скорость заряда и потребляемый устройством ток определяются резистором R1. Транзистор VT1 закрыт падением напряжения на VD5.

    Через диод VD7 и резистор R4 устройство подключено к ИР/7.
    При отключении управляющего напряжения переход эмиттер - база входного транзистора устройства более не шунтируется. Транзисторы VT1 и VT2 открываются. Конденсатор С1 разряжается через реле К1 и транзистор VT2. Контакты К1.1 реле замыкаются, включая ИРП. Питание на схему поступает от ИРП. Одновременно контакты реле К1.2 могут управлять другой нагрузкой. Если на входе устройства вновь появляется управляющее напряжение, транзистор VT1 запирается. Соответственно, запирается и транзистор VT2. Реле К1 обесточивается, отключая своими контактами К1.1 ИРП. Напряжение на конденсаторе С1 сохраняется на уровне 9... 10 Б, и схема переходит в ждущий режим работы.

    Электрическая схема, представленная на рис. 1 , удобна в применении на даче и там, где электроэнергия пока еще поступает нестабильно. Простое устройство, собранное по рекомендуемой схеме, обеспечит автоматическое включение резервного освещения (или другой активной нагрузки мощностью до 10–12 Вт) при пропадании сетевого напряжения 220 В.

    Рис. 1

    Транзистор VT1 серии КТ825 (можно заменить указанный на схеме на транзистор КТ825 с буквенными индексами Д и Е) обеспечивает максимальную нагрузку до 25 Вт. Он должен быть установлен на радиатор с площадью охлаждения не менее 100 см2. Если планируется менее мощная нагрузка (до 5 Вт), то возможно применить в схеме управляющий транзистор типа КТ818АМ - КТ818ГМ.

    В качестве резервного источника питания используется автомобильный аккумулятор емкостью 55-190 А/ч. В качестве ламп резервного освещения используются автомобильные лампы накаливания.

    Принцип работы устройства

    Сетевой блок питания (БП) вырабатывает пониженное выпрямленное напряжение 13–14 В. В БП входят понижающий трансформатор и выпрямительный мост. Пульсации этого источника питания сглаживаются электролитическим конденсатором большой емкости С1. Напряжение с блока питания через диоды VD1, VD2 и ограничивающий резистор R1 беспрепятственно поступает к подключенному аккумулятору и заряжает его слабым током. При величине зарядного тока 80-110 мА автомобильная АКБ может находиться без вреда под зарядкой продолжительное время, примерно до десяти суток подряд. Падение напряжения на диоде VD2 создает обратное смещение для перехода база-эмиттер транзистора VT1. Транзистор находится в закрытом состоянии и нагрузка (EL1, EL2) обесточена. Переключатель S1 служит для принудительного включения аварийного режима. Это может понадобиться для разрядки АКБ или проверки системы резервного освещения (целостности ламп).

    Налаживание

    Устройство в налаживании не нуждается.

    Когда сетевая энергия отключается, стационарный источник питания обесточивается, и в цепь базы транзистора VT1 поступает ток через резистор R2, транзистор открывается и нагрузка питается от АКБ. Как только поступление энергии в сети возобновляется, транзистор VT1 закрывается, нагрузка выключаются, и аккумулятор заряжается по рассмотренной схеме.

    О деталях

    Резистор R1 марки МЛТ-2, резистор R2 - типа МЛТ-0,5. Аккумулятор и лампы нагрузки подключаются к устройству многожильными изолированными сетевыми проводами сечением не менее 1 мм и с минимальной длиной (для уменьшения потерь энергии в проводах). Конденсатор С1 марки К50-24, К50-3Б или другой на напряжение не менее 25 В.

    Оптимальный вариант для понижающего трансформатора сетевого источника питания - универсальный силовой трансформатор ТПП 127/220-50-12.

    Источник http://meandr.org/archives/25602



    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!