Энциклопедия мобильной связи

Глобальные сети с коммутацией пакетов. Коммутируемые пакетные сети X.25

Номенклатура гидротурбин

Для удобства подбора гидротурбин при проектировании ГЭС необходимо иметь их стандартизированную классификацию. В настоящее время наиболее распространенные поворотно-лопастные и радиально-осевые турбины стандартизованы. Разработана номенклатура турбин, охватывающая диапазон напоров от 5 до 500 м при мощности турбины до 800 МВт. Номенклатура содержит по восемь типов турбин систем ПЛ и РО:

ПЛ15, ПЛ20, ПЛ30, ПЛ40, ПЛ50, ПЛ60, ПЛ70,ПЛ80;

РО45, РО75, РО115, РО170, РО230, РО310, РО400, РО500.

Тип турбины объединяет семейство различных по размерам и мощности, но геометрически подобных турбин. Цифра в написании типа турбины означает максимальный напор в метрах, при котором турбина может работать. Так, тип турбины ПЛ15 означает: поворотно-лопастная турбина, рассчитанная на работу при напоре до 15 м. Для каждого типа турбины в справочных материалах номенклатуры приводятся главные универсальные характеристики.

Пропеллерные, двухперовые, диагональные турбины и горизонтальные поворотно-лопастные турбины для капсульных гидроагрегатов (ПЛК) не стандартизованы. В обозначении типа диагональной турбины дополнительно в знаменателе указывается угол наклона оси поворота лопастей в градусах. Например, тип турбины Д70/60 означает: диагональная турбина, рассчитанная на работу при напоре до 70 м, угол наклона оси поворота лопастей составляет 60 0 .

Для всех типов турбин при их маркировке в знаменателе дополнительной цифрой указывается номер лопастной системы, а через тире указываются также: буквой - вид расположения турбины и цифрой - диаметр рабочего колеса в сантиметрах. Например, маркировка ПЛ20/811 - В - 800 означает, что турбина является поворотно-лопастной, рассчитана на работу при напоре до 20 м, имеет лопастную систему с номером 811, рабочее положение турбины - вертикальное, диаметр рабочего колеса - 800 см.

Сети Х.25 являются самыми первыми сетями с коммутацией пакетов, использованными для объединения корпоративных сетей. Первоначально сети разрабатывались для низкоскоростной передачи данных по линиям связи с большим уровнем помех, и использовались для подключения банкоматов, кассовых терминалов, принимающих кредитные карточки, и для соединения сетей предприятий между собой. Долгое время сеть Х.25 была единственной широко распространенной коммерческой сетью (сеть Internet, как коммерческая стала эксплуатироваться совсем недавно), поэтому для корпоративных пользователей выбора не было. В настоящее время сеть X.25 продолжает успешно эксплуатироваться, используя высоко-скоростные цифровые линии связи для соединения своих коммутаторов. Так, в частности, большинство банков и промышленных предприятий запада используют сеть X.25 для организации удаленного доступа к своим сетям.



Сеть Х.25 состоит из коммутаторов, соединенных между собой по схеме "точка-точка", и работаю-щих с установлением виртуального канала. Для связи коммутаторов могут использоваться цифровые линии PDH / SDH или аналоговые модемы, работающие по выделенной линии. Компьютеры (маршрутизаторы), поддерживающие интерфейс X.25, могут подключаться к коммутатору непосредственно, а менее интеллек-туальные терминалы (банкоматы, кассовые аппараты) – при помощи специального устройства PAD (Packet Assembler Disassembler). PAD может быть встроенным в коммутатор или удаленным. Терминалы получают доступ ко встроенному PAD по телефонной сети с помощью модемов (встроенный PAD также подключает-ся к телефонной сети с помощью нескольких модемов). Удаленный PAD представляет собой небольшое автономное устройство, находящееся в помещении клиента и подключенное к коммутатору через выделен-ную линию. К удаленному PAD терминалы подключаются через COM-порт (интерфейс RS-232C). Один PAD обычно обеспечивает доступ для 8, 16 или 24 терминалов. Терминалы не имеют конечных адресов в сети Х.25 - адрес присваивается только порту PAD.

Адресация в сетях Х.25 строится по следующему принципу: в адресе используются десятичные цифры, длина адреса не может превышать 16 цифр. Если сеть Х.25 не связана с внешним миром, то она может использовать любой адрес. Если же сеть X.25 планирует связываться с другими сетями, то необходимо придерживаться международного стандарта адресации (стандарт Х.121 - International Data Numbers, IDN).

рис. 7.5. Формат адреса в сети X.25

Из приведенного на рис. 7.5 формата адреса видно, что в одной стране может быть только 10 сетей Х.25. Если же требуется пронумеровать больше, чем 10 сетей, то одной стране дается несколько кодов. Например, Россия имела до 1995 года один код - 250, а в 1995 году ей был выделен еще один код - 251.

В адресе могут использоваться не только цифры, но и произвольные символы (для этого к адресу надо добавить специальный префикс), что позволяет универсальным коммутаторам, например коммутато-рам сети ISDN, работать с пакетами сети Х.25.

Основным недостатком сети X.25 является то, что она не дает гарантий пропускной способности сети. Максимум на что она способна – это устанавливать приоритеты для отдельных виртуальных каналов. Поэтому сеть X.25 используется только для передачи компьютерных данных с небольшой пульсацией трафика, и не пригодна для передачи трафика, чувствительного к задержкам (например, голоса). Решением этой проблемы занимаются сети Frame Relay и ATM.

Глобальные сети с коммутацией пакетов

Лекция №11.

Сети X.25 являются самыми первыми сетями с коммутацией пакетов, использованных для объединения корпоративных сетей. Первоначально сети разрабатывались для низкоскоростной передачи данных по линиям связи с большим уровнем помех, и использовались для подключения банкоматов, кассовых терминалов, принимающих кредитные карточки, и для соединения сетей предприятий между собой.

Долгое время сеть X.25 была единственной широко распространенной коммерческой сетью (сеть Internet, как коммерческая стала эксплуатироваться совсем недавно), поэтому для корпоративных пользователей выбора не было.

В настоящее время, сеть X.25 продолжает успешно эксплуатироваться, используя высокоскоростные цифровые линии связи для соединения своих коммутаторов. Так, в частности, большинство банков и промышленных предприятий запада используют сеть X.25 для организации удаленного доступа к своим сетям.

Сеть X.25 состоит из коммутаторов, соединенных между собой по схеме «точка-точка», и работающих с установлением виртуального канала. Для связи коммутаторов могут использоваться цифровые линии PDH/SDH или аналоговые модемы, работающие по выделенной линии.

Компьютеры (маршрутизаторы), поддерживающие интерфейс X.25, могут подключаться к коммутатору непосредственно, а менее интеллектуальные терминалы (банкоматы, кассовые аппараты) – при помощи специального устройства PAD (Packet Assembler Disassembler). PAD может быть встроенным в коммутатор или удаленным. Терминалы получают доступ ко встроенному PAD по телефонной сети с помощью модемов (встроенный PAD также подключается к телефонной сети с помощью нескольких модемов). Удаленный PAD представляет собой небольшое автономное устройство, находящиеся в помещении клиента и подключенное к коммутатору через выделенную линию. К удаленному PAD терминалы подключаются через COM-порт (интерфейс RS-232C).

Один PAD обычно обеспечивает доступ для 8, 16 и 24 терминалов .

Терминалы не имеют конечных адресов в сети X.25 – адрес присваивается только порту PAD.

Адресация в сетях X.25 строиться по следующему принципу : в адресе используются десятичные цифры, длина адреса не может превышать 16 цифр . Если сеть X.25 не связана с внешним миром, то она может использовать любой адрес. Если же сеть X.25 планирует связаться с другими сетями, то необходимо придерживаться международного стандарта адресации (стандарт X.121 – International Data Numbers, IDN).

Формат адреса в сети X.25 представляет собой следующее:

4 цифры – код идентификации сети (Data Network Identification Code, DNIC), 3 цифры – определяют страну, в которой находится сеть X.25, 1 цифра – номер сети X.25 в данной стране, остальные цифры – номер национального терминала (National Terminal Number, NTN) (соответствуют адресу компьютера в сети).

Из приведенного формата, очевидно, что в одной стране может быть только 10 сетей X.25. Если требуется пронумеровать больше чем 10 сетей, то одной стране дается несколько кодов. Например, Россия имела до 1995 года один код – 250, а в 1995 году ей был выделен еще один код – 251.

В адресе могут использоваться не только цифры, но и произвольные символы (для этого к адресу нужно добавить специальный префикс), что позволяет универсальным коммутаторам, например коммутаторам сети ISDN, работать с пакетами сети X.25.

Основным недостатком сети X.25 является то, что она не дает гарантийной пропускной способности сети. Максимум на что она способна – это устанавливать приоритеты для отдельных виртуальных каналов. Поэтому сеть X.25 используется только для передачи трафика, чувствительного к задержкам (например, голоса). Решением этой проблемы занимаются сети Frame Relay и ATM.

Курсовая работа

Характеристика сетей и технологий Х.25

Введение

Основная часть

Глобальные сети с коммутацией пакетов

Принципы построения и возможности сети Х.25

Оценка преимуществ и недостатков сети Х.25

Заключение

Глоссарий

Список использованных источников

Приложения

Введение

глобальная сеть коммутация пакет

В 1976 году был принят стандарт X.25, который стал основой всемирной системы PSPDN (Packet-Switched Public Data Networks), базирующейся на 7-уровневой модели ISO OSI(Open System Interconnection). Стандарт X.25 был усовершенствован в 1984. Рекомендация Х.25 определяет интерфейс "пользователь-сеть" для сети PSPDN. Более точно: Х.25 определяет двухточечный, специализированный (выделенная линия), полнодуплексный интерфейс между пакетным терминальным оборудованием пользователя (Data Terminal Equipment, DTE) и оконечным оборудованием линии передачи данных (Data Circuit terminating Equipment, DCE) в сети PSPDN. Интерфейс Х.25 содержит три протокольных уровня, которые примерно соответствуют трем нижним уровням эталонной модели OSI.

Со временем все большие и большие объемы трафика передавались по глобальным сетям. Трафик, порождаемый клиент-серверными приложениями, написанными для локально-сетевых сред, имеет, как правило, чрезвычайно неравномерный характер: значительная пропускная способность требуется в течение коротких интервалов времени. Передача такого трафика по выделенным линиям или по сети с временным разделением каналов не эффективна, поскольку большую часть времени доступная емкость расходуется впустую: временные слоты резервируются вне зависимости от того, передается информация или нет.

Х.25 и технологии, связанные с сетью PSPDN, постепенно заменялись более новыми технологиями (такими как ретрансляция кадров и ATM) и ровесниками интерфейса Х.25, переживающими свое возрождение (такими как TCP/IP)

Основными требованиями к такой технологии являются:

·высокая скорость:

·низкие задержки;

·разделение портов и

·разделение полосы пропускания на основе виртуальных каналов..25-коммутация пакетов обладает последними двумя. Х.25 важна по причинам, выходящим за пределы чисто технических вопросов. С точки зрения стандартизации, рекомендация Х.25 и родственные с ней представляют одно из самых полных решений, когда-либо построенных на основе стандартов. Фактически это законченные стандарты сети PSPDN, которые дали толчок всем операторам связи по всему миру к строительству сетей PSPDN и связыванию их в действительно глобальную сеть передачи данных.

Цель курсовой работы - провести оценку характеристик и возможностей сети X.25.

Задачи данной работы - ознакомиться с основами технологии X.25, с принципами ее построения и функционирования, провести оценку возможностей данной технологии, ее преимущества и недостатки, а также решить задачу анализа и синтеза для сети передачи данных.

Курсовая работа структурирована следующим образом. В разделе 1 рассмотрены типы глобальных сетей с коммутацией пакетов, произведен краткий обзор технологии X.25. Раздел 2 посвящён рассмотрению основных возможностей, принципов построения и функционирования сети X.25. В разделе 3 произведена оценка преимуществ данной технологии, а так же ее недостатков.

1. Глобальные сети с коммутацией пакетов

1 Общие сведения

Глобальные сети характеризуются двумя типами технологий соединений:

·сеть "точка - точка" (point-to-point);

·сеть "облако" (cloud).

В сети с технологий "точка - точка" каждым двум узлам выделяется отдельная линия, а для объединения N узлов требуется N(N - 1)/2 линий связи. В этом случае получаем высокую пропускную способность и большие расходы на линии связи и интерфейсное оборудование.

Более экономичной технологией сетей WAN(Wide Area Networks) являются сети типа "облако". В этом случае для подключения одного узла требуется только одна линия.

По принципу коммутации технология "облако" разделяется на:

·коммутацию каналов (в телефонных линиях связи);

·коммутацию сообщений (в E-mail);

·коммутацию пакетов (в сетях IP, X.25), кадров (в сетях Frame Relay), ячеек (в сетях ATM).

В сетях с коммутацией каналов обеспечивается прямое физическое соединение между двумя узлами только в течение сеанса связи. Достоинством сетей коммутации каналов является возможность передачи аудиоинформации и видеоинформации без задержек.

Кроме того, преимуществом этой технологии является простота ее реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей (в узлах коммутации образуются очереди).

В сетях с пакетной коммутацией (Packet-Switched Network, PSN) осуществляется обмен небольшими пакетами фиксированной структуры, поэтому в узлах коммутации не создаются очереди. К достоинствам сетей с коммутацией каналов относятся: эффективность использования сети, надежность, быстрое соединение.

Основным недостатком сетей с пакетной коммутацией является временные задержки пакетов в узлах сети (промежуточном коммуникационном оборудовании), что затрудняет передачу аудиоинформации и видеоинформации, которые чувствительные к задержкам. Технология коммутации кадров (ретрансляция кадров), а особенно коммутация ячеек устраняют эти недостатки сетей с коммутацией пакетов и обеспечивают качественную передачу данных, аудио - и видеоинформации.

Сети с коммутацией каналов представляют для сетей с коммутацией пакетов услуги физического уровня. Аналоговые и цифровые линии применяются в качестве магистралей сетей с коммутацией пакетов, сообщений и кадров. К глобальным сетям с коммутацией пакетов относятся: сети IP; X.25; Frame Relay; ATM.

Коммутация пакетов в сетях PSN осуществляется двумя способами:

Первый способ ориентирован на предварительное образование виртуальных каналов. Существуют два типа виртуальных каналов: коммутируемые и постоянные. Виртуальным каналом называется логическое соединение, осуществляемое по различным существующим физическим каналам, которое обеспечивает надежный двухсторонний обмен данными между двумя узлами.

Коммутируемый виртуальный канал обмена данными требует установления (устанавливается динамически), поддержания и завершения сеанса связи каждый раз при обмене данными между узлами. Постоянный виртуальный канал устанавливается вручную и не требует сеанса связи, узлы могут обмениваться данными в любой момент, так как постоянное виртуальное соединение всегда активно.

Второй способ основан на технологии дейтограмм, т.е. на самостоятельном продвижении пакетов в пакетных сетях без установления логических каналов. В сетях с передачей дейтограмм маршрутизация пакетов осуществляется на пакетной основе. Пакеты снабжены адресом назначения, и они независимо друг от друга движутся в узлы назначения. Таким образом, множество пакетов, которые принадлежат одному сообщению, могут перемещаться к узлу назначения различными маршрутами.

Маршрутизация в глобальных сетях TCP/IP осуществляется на основе IP-протокола, т.е. основана на самостоятельном продвижении пакетов. Принцип маршрутизации в глобальных сетях: X.25, Frame Relay, ATM основан на предварительном образовании виртуального канала и передаче в пункт назначения пакетов, кадров или ячеек по этому каналу, т.е. по одному маршруту.

2 Сети X.25

Сети Х.25 являются первой сетью с коммутацией пакетов и на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Сетевой протокол X.25 предназначен для передачи данных между компьютерами по телефонным сетям. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий) и обеспечивают передачу данных со скоростью до 64 Кбит/с. Х.25 хорошо работает на линиях связи низкого качества благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровнях.

Стандарт Х.25 определяет интерфейс "пользователь - сеть" в сетях передачи данных общего пользования или интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования. Другими словами Х.25 определяет двухточечный интерфейс (выделенную линию) между пакетным терминальным оборудованием DTE и оконечным оборудованием передачи данных DCE.

На рисунке 1 представлена структурная схема сети X.25, где изображены основные элементы:

.DTE (data terminal equipment) - аппаратура передачи данных (кассовые аппараты, банкоматов, терминалы бронирования билетов, ПК, т.е. конечное оборудование пользователей).

.DCE (data circuit-terminating equipment) - оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети).

.PSE (packet switching exchange) - коммутаторы пакетов.

Рисунок 1 Структурная схема сети X.25

Интерфейс Х.25 обеспечивает:

.доступ удаленному пользователю к главному компьютеру;

.доступ удаленному ПК к локальной сети;

.связь удаленной сети с другой удаленной сетью.

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой. Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль протокола сигнализации.

На физическом уровне Х.25 используются аналоговые выделенные линии, которые обеспечивают двухточечное соединение. Могут использоваться аналоговые телефонные линии, а также цифровые выделенные линии. На сетевом уровне нет контроля достоверности и управления потоком. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis.

На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры. Контроль ошибок производится во всех узлах сети. При обнаружении ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B, который работает только с двухточечными каналами связи, поэтому адресация не требуется.

Сетевой уровень Х.25 реализуется протоколом уровня пакета(Packet-Layer Protocol, PLP). На сетевом уровне кадры объединяются в один поток, а общий поток разбивается на пакеты. Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации.

2. Принципы построения и возможности сети Х.25

1 Принцип коммутации пакетов с использованием техники виртуальных каналов в сети X.25

Смысл создания виртуального канала состоит в том, что маршрутизация пакетов между коммутаторами сети на основании таблиц маршрутизации происходит только один раз - при создании виртуального канала (имеется в виду создание коммутируемого виртуального канала, поскольку создание постоянного виртуального канала осуществляется вручную и не требует передачи пакетов по сети).

После создания виртуального канала передача пакетов коммутаторами происходит на основании так называемых номеров или идентификаторов виртуальных каналов(Virtual Channel Identifier, VCI). Каждому виртуальному каналу присваивается значение VCI на этапе создания - это значение имеет локальный характер - каждый коммутатор самостоятельно нумерует новый виртуальный канал. Кроме нумерации виртуального канала, каждый коммутатор при создании этого канала автоматически настраивает так называемые таблицы коммутации портов - эти таблицы описывают, на какой порт нужно передать пришедший пакет, если он имеет определенный номер VCI. Так что после прокладки виртуального канала через сеть коммутаторы больше не используют для пакетов этого соединения таблицу маршрутизации, а продвигают пакеты на основании номеров VCI небольшой разрядности.

Сами таблицы коммутации портов также включают обычно меньше записей, чем таблицы маршрутизации, так как хранят данные только о действующих на данный момент соединениях, проходящих через данный порт.

На Сетевом уровне для вышележащих уровней сервис с установлением соединений обеспечивает протокол Х.25 уровня пакета (Packet-Layer Protocol, PLP). Поэтому на данном уровне определены процедуры установления виртуальных данных по виртуальным соединениям и разрыва виртуальных соединений. В протоколе PLP виртуальные соединения идентифицируются номером логического канала (Logical Channel Number, LCN), записанным в заголовке каждого пакета, относящегося к определенному вызову. Протокол Х.25 PLP является статически мультиплексируемым протоколом, т.е. через один канал связи протокола LAP-B канального уровня может быть одновременно установлено множество виртуальных соединений. Виртуальные соединения отличаются друг от друга уникальным I номером LCN.

Протокол PLP определяет следующие режимы:

Режим передачи данных, который используется при обмене данными через виртуальные цепи. В этом режиме выполняется контроль ошибок и управление потоком.

Режим ожидания используется, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит.

Сброс соединения используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

2.2 Характеристики и особенности сетей X.25

2.1 Особенности сетей Х.25

Технология Х.25 имеет несколько существенных признаков, отличающих ее от других технологий. Наличие в структуре сети специального устройства - PAD (Packet Assembler Disassembler), предназначенного для выполнения операции сборки нескольких низкоскоростных потоков байт от алфавитно-цифровых терминалов в пакеты, передаваемые по сети и направляемые компьютерам для обработки.

Наличие трехуровневого стека протоколов с использованием на канальном и сетевом уровнях протоколов с установлением соединения, управляющих потоками данных и исправляющих ошибки.

Ориентация на однородные стеки транспортных протоколов во всех узлах сети - сетевой уровень рассчитан на работу только с одним протоколом канального уровня и не может подобно протоколу IP объединять разнородные сети. Сеть Х.25 состоит из коммутаторов (Switches, S), расположенных в различных географических точках и соединенных высокоскоростными выделенными каналами. Выделенные каналы могут быть как цифровыми, так и аналоговыми.

2.2 Структура сети Х.25

Ниже на рисунке 4 приведена структура сети Х 25.

Асинхронные старт-стопные терминалы подключаются к сети через устройства PAD. Они могут быть встроенными или удаленными. Встроенный PAD обычно расположен в стойке коммутатора. Терминалы получают доступ ко встроенному устройству PAD по телефонной сети с помощью модемов с асинхронным интерфейсом. Встроенный PAD также подключается к телефонной сети с помощью нескольких модемов с асинхронным интерфейсом. Удаленный PAD представляет собой небольшое автономное устройство, подключенное к коммутатору через выделенный канал связи Х.25.

Рисунок 2 Структура сети X.25

К основным функциям PAD, определенных стандартом Х.З, относятся:

·сборка символов, полученных от асинхронных терминалов, в пакеты;

·разборка полей данных в пакетах и вывод данных на асинхронные терминалы;

·управление процедурами установления соединения и разъединения по сети Х.25 с нужным компьютером;

·передача символов, включающих старт-стопные сигналы и биты проверки на четность, по требованию асинхронного терминала;

·продвижение пакетов при наличии соответствующих условий, таких как заполнение пакета, истечение времени ожидания и др.

Терминалы не имеют конечных адресов сети Х.25. Адрес присваивается порту PAD, который подключен к коммутатору пакетов Х.25 с помощью выделенного канала.

2.2.3 Адресация в сетях Х.25

Если сеть Х.25 не связана с внешним миром, то она может использовать адрес любой длины (в пределах формата поля адреса) и давать адресам произвольные значения. Максимальная длина поля адреса в пакете Х.25 составляет 16 байт.

Рекомендация Х.121 CCITT определяет международную систему нумерации адресов для сетей передачи данных общего пользования. Если сеть Х.25 хочет обмениваться данными с другими сетями Х.25, то в ней нужно придерживаться адресации стандарта Х.121.

Адреса Х.121 (называемые также International Data Numbers, IDN) имеют разную длину, которая может доходить до 14 десятичных знаков. Первые четыре цифры IDN называют кодом идентификации сети (Data Network Identification Code, DNIC). DNIC поделен на две части; первая часть (3 цифры) определяет страну, в которой находится сеть, а вторая - номер сети Х.25 в данной стране. Таким образом, внутри каждой страны можно организовать только 10 сетей Х.25. Если же требуется перенумеровать больше, чем 10 сетей для одной страны, проблема решается тем, что одной стране дается несколько кодов. Остальные цифры называются номером национального терминала (National Terminal Numbe, NTN). Эти цифры позволяют идентифицировать определенный DTE в сети Х.25.

Международные сети Х.25 могут также использовать международный стандарт нумерации абонентов ISO 7498.

2.4 Стек протоколов сети Х.25

Стандарты сетей Х.25 описывают 3 уровня протоколов. На рисунке 5 показан стек протоколов сети Х.25.

Рисунок 3 Стек протоколов сети Х.25

2.4.1 Протокол канального уровня LAP-B

На канальном уровне обычно используется протокол LAP-B. Этот протокол обеспечивает сбалансированный режим работы, то есть оба узла, участвующих в соединении, равноправны. По протоколу LAP-В устанавливается соединение между пользовательским оборудованием DТЕ (компьютером, IP- или IPX-маршрутизатором) и коммутатором сети. Хотя стандарт это и не оговаривает, но по протоколу LAP-B возможно также установление соединения на канальном уровне внутри сети между непосредственно связанными коммутаторами.. Кадр LAP-B содержит одно однобайтовое адресное поле (а не два - DSAP и SSAP), в котором указывается не адрес службы верхнего уровня, а направление передачи кадра - 0x01 для направления команд от DTE к ВСЕ (в сеть) или ответов от ВСЕ к DTE (из сети) и 0x03 для направления ответов от DTE к ВСЕ или команд от ВСЕ к ВТЕ. Поддерживается как нормальный режим (с максимальным окном в 8 кадров и однобайтовым полем управления), так и расширенный режим (с максимальным окном в 128 кадров и двухбайтовым полем управления).

2.4.2 Протокол сетевого уровня X.25/3

Сетевой уровень Х.25/3 (в стандарте он назван не сетевым, а пакетным уровнем) реализуется с использованием 14 различных типов пакетов, по назначению аналогичных типам кадров протокола LAP-B. Так как надежную передачу данных обеспечивает протокол LAP-B, протокол Х.25/3 выполняет функции маршрутизации пакетов, установления и разрыва виртуального канала между конечными абонентами сети и управления потоком пакетов.

После установления соединения на канальном уровне конечный узел должен установить виртуальное соединение с другим конечным узлом сети. Для этого он в кадрах LAP-B посылает пакет Call Request протокола Х.25.

Рисунок 4 Формат пакета Call Request

Поля, расположенные в первых трех байтах заголовка пакета, используются во всех типах кадров протокола Х.25. Признаки Q и D и Modulo расположены в старшей части первого байта заголовка. Признак Q предназначен для распознавания на сетевом уровне типа информации в поле данных пакета. Признак D означает подтверждение приема пакета узлом назначения.

Признак «Modulo» говорит о том, по какому модулю - 8 или 128 -ведется нумерация пакетов. Значение 10 означает модуль 128, а 01- модуль 8.

Поле Номер логической группы (Lodical Group Number, LGN) содержит значение номера логической группы виртуального канала. Каналы образуют логические группы по функциональному признаку.

Поле Номер логического канала (Logical Channel Number, LCN) содержит номер виртуального канала, назначаемый узлом-источником (для коммутируемых виртуальных каналов) или администратором сети (для постоянных виртуальных каналов). Максимальное количество виртуальных каналов, проходящих через один порт, равно 256.

Поле Tim (Tyре) указывает тип пакета. Например, для пакета Call Request отведено значение типа, равное ОхОВ.

Следующие два поля определяют длину адресов назначения и источника (DA и SA) в пакете. Сами адреса назначения и источника занимают отведенное им количество байт в следующих двух полях.

Поля Длина поля услуг (Facilities length) и Услуги (Facilities) нужны для согласования дополнительных услуг, которые оказывает сеть абоненту.

Пакет Call Request принимается коммутатором сети и маршрутизируется на основании таблицы маршрутизации, прокладывая при этом виртуальный канал. Начальное значение номера виртуального канала задает пользователь в этом пакете в поле LCN (аналог поля VCI, упоминавшегося при объяснении принципа установления виртуальных каналов). Протокол маршрутизации для сетей Х.25 не определен.

Для сокращения размера адресных таблиц в коммутаторах в сетях Х.25 реализуется принцип агрегирования адресов. Все терминалы, имеющие общий префикс в адресе, подключаются при этом к общему входному коммутатору подсети, соответствующей значению префикса. Маски в коммутаторах не используются, а младшие разряды адреса, которые не нужны при маршрутизации, просто опускаются.

После установления виртуального канала конечные узлы обмениваются пакетами другого формата - формата пакетов данных (пакет Data). Этот формат похож на описанный формат пакета Call Request - первые три байта в нем имеют те же поля, а адресные поля и поля услуг отсутствуют.

2.2.5 Характеристики и возможности коммутаторов сетей X.25

Коммутаторы сетей Х.25 представляют собой гораздо более простые и дешевые устройства по сравнению с маршрутизаторами сетей TCP/IP. Это объясняется тем, что они не поддерживают процедур обмена маршрутной информацией и нахождения оптимальных маршрутов, а также не выполняют преобразований форматов кадров канальных протоколов. По принципу работы они ближе к коммутаторам локальных сетей, чем к маршрутизаторам. Однако работа, которую выполняют коммутаторы Х.25 над пришедшими кадрами, включает больше этапов, чем при продвижении кадров коммутаторами локальных сетей. Коммутатор Х.25 должен принять кадр LAP-B и ответить на него другим кадром LAP-B, в котором подтвердить получение кадра с конкретным номером. При утере или искажении кадра коммутатор должен организовать повторную передачу кадра. Если же с кадром LAP-B все в порядке, то коммутатор должен извлечь пакет Х.25, на основании номера виртуального канала определить выходной порт, а затем сформировать новый кадр LAP-В для дальнейшего продвижения пакета. Коммутаторы локальных сетей такой работой не занимаются и просто передают кадр в том виде, в котором он пришел, на выходной порт.

В результате производительность коммутаторов Х.25 оказывается обычно невысокой - несколько тысяч пакетов в секунду. Для низкоскоростных каналов доступа, которыми много лет пользовались абоненты этой сети (1200-9600 бит/с), такой производительности коммутаторов хватало для работы сети.

Гарантий пропускной способности сеть Х.25 не дает. Максимум, что может сделать сеть, - это приоритезировать трафик отдельных виртуальных каналов. Приоритет канала указывается в запросе на установление соединения в поле услуг.

Протоколы сетей Х.25 были специально разработаны для низкоскоростных линий с высоким уровнем помех. Именно такие линии составляют пока большую часть телекоммуникационной структуры нашей страны, поэтому сети Х.25 будут по-прежнему еще долго являться наиболее рациональным выбором для многих регионов

3. Оценка преимуществ и недостатков сети Х.25

Метод коммутации пакетов, лежащий в основе сетей X.25, определяет основные преимущества таких сетей, или другими словами, их область применения. Рассматриваемые сети позволяют в режиме реального времени разделять один и тот же физический канал нескольким абонентам в отличие например от случая использования пары модемов, соединенных через канал того или иного типа. Благодаря реализованному в сетях X.25 механизму разделения канала одновременно между несколькими пользователями во многих случаях оказывается экономически выгодней для передачи данных пользоваться сетью X.25, производя оплату за каждый байт переданной или полученной информации, а не оплачивать время использования телефонной линии. Особенно ощутимо это преимущество может быть для международных соединений.

Метод разделения физического канала между абонентами в сетях X.25 называют еще мультиплексированием канала, точнее "логическим" или "статистическим" мультиплексированием, изображенные на рисунке 9. Термин "логическое" мультиплексирование" вводится, чтобы отличить этот метод от временного разделения канала, например. При временном разделении канала каждому из разделяющих его абонентов выделятся в рамках каждой секунды строго определенное количество миллисекунд для передачи его информации. При статистическом разделении канала нет строго регламентированной степени загрузки каждым из абонентов канала в каждый определенный момент времени. Эффективность использования статистического мультиплексирования зависит от статистических или вероятностных характеристик мультиплексируемого потока информации. Известно, что использование сети X.25 эффективно для широкого спектра задач передачи данных. Среди них и обмен сообщениями между пользователями, и обращение большого количества пользователей к удаленной базе данных, а также к удаленному хосту электронной почты, связь локальных сетей (при скоростях обмена не более 512 Кбит/с), объединение удаленных кассовых аппаратов и банкоматов. Другими словами, все приложения, в которых трафик в сети не является равномерным во времени.

Рисунок 5 Метод разделения физического канала между абонентами

Одно из самых важных достоинств сетей построенных на протоколах, описанных в рекомендации X.25, состоит в том что они позволяют передавать оптимальным образом данные по каналам телефонной сети общего пользования (выделенным и коммутируемым). Под "оптимальностью" имеется в виду достижение максимально возможных на указанных каналах скорости и достоверности передачи данных.

При улучшении качества каналов становится возможным переход к сетям, базирующимся на других протоколах. Чтобы лучше понять это, можно рассмотреть пример протоколов, являющихся в определенном смысле дальнейшим развитием протоколов X.25, а именно протоколе Frame Relay.

Протокол Frame Relay рассчитан на каналы существенно более высокого качества, поэтому в них меньшее внимание уделяется защите от ошибок при передаче. Переповтор искаженных пакетов происходит только на всем участке: точка входа в сеть - точка выхода из сети. Если же искаженный кадр обнаруживается при приеме кадра на одном из внутренних участках сети, то этот кадр просто стирается без запроса его повторной передачи. Ясно, что в том случае, когда ошибок много, такой протокол обеспечит более низкие скорости передачи, чем протоколы X.25.

Большинство фирм, выпускающих сегодня оборудование сетей X.25, выпускает также и оборудование сетей Frame Relay. Часто в одном и том же изделии часть каналов может работать по стандарту X.25, а часть - по стандарту Frame Relay. Это очень удобно при создании магистральной сети, работающей скажем на оптоволоконных или спутниковых каналах связи и сопряжении ее с периферийной сетью, базирующейся на обычных телефонных каналах.

Эффективным механизмом оптимизации процесса передачи информации через сети X.25 является механизм альтернативной маршрутизации. Возможность задания помимо основного маршрута альтернативных, т.е. резервных, имеется в оборудовании X.25, производимом практически всеми фирмами. Различные образцы оборудования отличаются по алгоритму перехода к альтернативному маршруту, а также по количеству альтернативных маршрутов. В некоторых типах оборудования например переход к альтернативному маршруту происходит только в случае полного отказа одного из звеньев основного маршрута. В других переход от одного маршрута к другому происходит динамически в зависимости от загруженности маршрутов и решение принимается на основании многопараметрической формулы. За счет альтернативной маршрутизации могут быть значительно увеличена надежность работы сети. Однако это означает, что между любыми двумя точками подключения пользователя к сети должно быть по крайней мере два различных маршрута. В связи с этим построение сети по звездообразной схеме можно считать вырожденным случаем. К сожалению, такая топология сети еще достаточно часто используется в тех городах, в которых есть только один узел сети X.25, установленный в рамках той или иной сети общего пользования.

Когда X.25 создавался, преобладали аналоговые системы передачи данных и медные линии связи. Стремясь нивелировать невысокое качество каналов того времени, стандарт использует систему обнаружения и коррекции ошибок, что существенно повышает надежность связи, но зато замедляет общую скорость передачи данных. Кроме того, каждый коммутатор, через который проходит пакет информации, выполняет анализ его содержимого, что также требует времени и больших процессорных мощностей. С появлением оптоволоконных сетей столь высокие требования надежности, реализуемые X.25, стали излишними - достоинство протокола превратилось в его недостаток. Скорость передачи по протоколу Х.25 не превышает 64 Кб/с.

Можно сделать вывод, что основным недостатком сетей X.25 являются значительные задержки передачи пакетов, поэтому ее невозможно использовать для передачи голоса и видеоинформации.

Протоколом, призванным исправить недостатки X.25, стал Frame Relay. Он использует тот же принцип виртуальных каналов, однако анализ ошибок осуществляется только на пограничных точках сети, что привело к существенному увеличению скорости (в настоящее время - до 45 Мб/с). Существенным достоинством протокола стала возможность приоритезации разнородного трафика (включая данные, голос и видео), то есть пакетам различных приложений могут предоставляться различные классы обслуживания, благодаря чему пакеты с более высоким приоритетом доставляются "вне очереди". Основными недостатками технологии Frame Relay являются:

высокая стоимость качественных каналов связи;

не обеспечивается достоверность доставки кадров.

)

2)

3)

·

·

·

·поняли структуру Х.25.

·

·

·

Заключение

По результатам выполнения данной курсовой работы можно сделать следующие выводы:

)Техника виртуальных каналов, лежащая в основе построения сети X.25 заключается в разделении операций маршрутизации и коммутации пакетов. Первый пакет таких сетей содержит адрес вызываемого абонента и прокладывает виртуальный путь в сети, настраивая промежуточные коммутаторы. Остальные пакеты проходят по виртуальному каналу в режиме коммутации на основании номера виртуального канала, который является локальным адресом для каждого порта каждого коммутатора. Преимуществами являются: ускоренная коммутация пакетов по номеру виртуального канала, а также сокращение адресной части пакета, а значит, и избыточности заголовка. К недостаткам следует отнести невозможность распараллеливания потока данных между двумя абонентами по параллельным путям, а также неэффективность установления виртуального пути для кратковременных потоков данных.

6)Сети Х.25 относятся к одной из наиболее старых и отработанных технологий глобальных сетей. Трехуровневый стек протоколов сетей Х.25 хорошо работает на ненадежных зашумленных каналах связи, исправляя ошибки и управляя потоком данных на канальном и пакетном уровнях.

7)Сети Х.25 поддерживают групповое подключение к сети простых алфавитно-цифровых терминалов за счет включения в сеть специальных устройств PAD, каждое из которых представляет собой особый вид терминального сервера.

)На надежных волоконно-оптических каналах технология Х.25 становится избыточной и неэффективной, так как значительная часть работы ее протоколов ведется «вхолостую».

В данной курсовой работе описано:

·глобальные сети с коммутацией пакетов;

·узнали возможности сети Х.25;

·научились различать протоколы сети Х.25;

·поняли структуру Х.25.

·Одно из самых важных достоинств сетей построенных на протоколах, описанных в рекомендации X.25, состоит в том что они позволяют передавать оптимальным образом данные по каналам телефонной сети общего пользования (выделенным и коммутируемым). Под "оптимальностью" имеется в виду достижение максимально возможных на указанных каналах скорости и достоверности передачи данных.

·При улучшении качества каналов становится возможным переход к сетям, базирующимся на других протоколах. Чтобы лучше понять это, можно рассмотреть пример протоколов, являющихся в определенном смысле дальнейшим развитием протоколов X.25, а именно протоколе Frame Relay.

·Протокол Frame Relay рассчитан на каналы существенно более высокого качества, поэтому в них меньшее внимание уделяется защите от ошибок при передаче. Переповтор искаженных пакетов происходит только на всем участке: точка входа в сеть - точка выхода из сети. Если же искаженный кадр обнаруживается при приеме кадра на одном из внутренних участках сети, то этот кадр просто стирается без запроса его повторной передачи. Ясно, что в том случае, когда ошибок много, такой протокол обеспечит более низкие скорости передачи, чем протоколы X.25.

Глоссарий

№ п/пПонятиеОпределение1X.25Рекомендации ITU - TSS (ранее CCITT МККТТ), определяющие стандарты для коммуникационных протоколов доступа к сетям с коммутацией пакетов (packet data networks - PDN)2Глобальные сетиСети, объединяющие территориально рассредоточенные компьютеры, возможно находящиеся в различных городах и странах3Пакет Упорядоченная совокупность данных и управляющей информации, передаваемая через сеть как часть сообщения4Коммутация пакетовМетод передачи данных, при котором информация делится на дискретные фрагменты, называемые пакетами5ATM Стандартизованная ITU технология коммутации пакетов фиксированной длины - ячеек6Frame RelayВысокоскоростная технология, основанная на коммутации пакетов, для передачи данных между интеллектуальными оконечными устройствами типа маршрутизаторов или FRAD, работающих со скоростью от 56Kbps до 1.544Mbps7VCI Идентификатор виртуального канала8VPI Идентификатор виртуального пути9Протокол Формат описания передаваемых сообщений и правила, по которым происходит обмен информацией между двумя или несколькими системами10NTNномер национального терминала (National Terminal Numbe)

Список использованных источников

1 Олифер В.Г., Олифер Н.А. Компьютерные сети: Принципы, технологии, протоколы: Учебник для вузов изд. 2-е. Спб.: Питер, 2005. 864 с.2Брейман А.Д. Сети ЭВМ и телекоммуникации. Глобальные сети. Учебное пособие. М.: МГУПИ, 2006. 116 с.3Савостицкий Ю.А. История развития глобальных компьютерных сетей. Учебное пособие. М.: МИС, 2006. 512 с.4Шакин В.Н., Лившиц В.М. Принципы построения глобальных сетей и анализ их характеристик: Учебное пособие для слушателей ФПКП. М.: МИС, 2006. 375 с.5Вишневский В.М. Теоретические основы проектирования компьютерных сетей. М.: Техносфера, 2003. 219 с.6Платонов В. Глобальная информационная сеть. - М.: Проспект, 2006 Бройдо, Владимир Львович. Вычислительные системы, сети и телекоммуникации. СПб.: Питер, 2003. 688 с.7Репкин Д.Е. Глобальные сети как средство человеческого общения. - М.: АНО «ИТО», 2007. 75 с.8Зингеренко Ю.А. Основы построения телекоммуникационных систем и сетей. Спб.: СпбГУ ИТМО, 2005. 143 с.9Мур М., Притеки Т., Риггс К., Сауфвик П. Телекоммуникации. Руководство для начинающих. СПб.: БХВ-Петербург, 2005. - 624 с.10Глобальные сети // lectures.net.ru: сервер технологий сетей ЭВМ и телекоммуникаций. 2009. URL: http://lectures.net.ru/wan/(дата обращения: 5.11.2009)11Олифер В.Г., Олифер Н.А. Компьютерные сети: Принципы, технологии, протоколы: Учебник для вузов изд. 2-е. Спб.: Питер, 2006. 864 с.

Назначение и структура сетей Х.25

Сети Х.25 являются на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Основная причина такой ситуации состоит в том, что долгое время сети Х.25 были единственными доступными сетями с коммутацией пакетов коммерческого типа, в которых давались гарантии коэффициента готовности сети. Сеть Internet также имеет долгую историю существования, но как коммерческая сеть она начала эксплуатироваться совсем недавно, поэтому для корпоративных пользователей выбора не было. Кроме того, сети Х.25 хорошо работают на ненадежных линиях благодаря протоколам с установлением соединения и коррекцией ошибок на двух уровнях - канальном и сетевом.

Стандарт Х.25 «Интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования» был разработан комитетом CCITT в 1974 году и пересматривался несколько раз. Стандарт наилучшим образом подходит для передачи трафика низкой интенсивности, характерного для терминалов, и в меньшей степени соответствует более высоким требованиям трафика локальных сетей. Как видно из названия, стандарт не описывает внутреннее устройство сети Х.25, а только определяет пользовательский интерфейс с сетью. Взаимодействие двух сетей Х.25 определяет стандарт Х.75.

Технология сетей Х.25 имеет несколько существенных признаков, отличающих ее от других технологий.

    Наличие в структуре сети специального устройства - PAD (Packet Assembler Disassembler) , предназначенного для выполнения операции сборки нескольких низкоскоростных потоков байт от алфавитно-цифровых терминалов в пакеты, передаваемые по сети и направляемые компьютерам для обработки. Эти устройства имеют также русскоязычное название «Сборщик-разборщик пакетов», СРП .

    Наличие трехуровневого стека протоколов с использованием на канальном и сетевом уровнях протоколов с установлением соединения, управляющих потоками данных и исправляющих ошибки.

    Ориентация на однородные стеки транспортных протоколов во всех узлах сети - сетевой уровень рассчитан на работу только с одним протоколом канального уровня и не может подобно протоколу IP объединять разнородные сети. Сеть Х.25 состоит из коммутаторов (Switches, S), называемых также центрами коммутации пакетов (ЦКП) , расположенных в различных географических точках и соединенных высокоскоростными выделенными каналами. Выделенные каналы могут быть как цифровыми, так и аналоговыми.

Асинхронные старт-стопные терминалы подключаются к сети через устройства PAD. Они могут быть встроенными или удаленными. Встроенный PAD обычно расположен в стойке коммутатора. Терминалы получают доступ ко встроенному устройству PAD по телефонной сети с помощью модемов с асинхронным интерфейсом. Встроенный PAD также подключается к телефонной сети с помощью нескольких модемов с асинхронным интерфейсом. Удаленный PAD представляет собой небольшое автономное устройство, подключенное к коммутатору через выделенный канал связи Х.25. К удаленному устройству PAD терминалы подключаются по асинхронному интерфейсу, обычно для этой цели используется интерфейс RS-232C. Один PAD обычно обеспечивает доступ для 8, 16 или 24 асинхронных терминалов.

К основным функциям PAD, определенных стандартом Х.З, относятся:

    сборка символов, полученных от асинхронных терминалов, в пакеты;

    разборка полей данных в пакетах и вывод данных на асинхронные терминалы;

    управление процедурами установления соединения и разъединения по сети Х.25 с нужным компьютером;

    передача символов, включающих старт-стопные сигналы и биты проверки на четность, по требованию асинхронного терминала;

    продвижение пакетов при наличии соответствующих условий, таких как заполнение пакета, истечение времени ожидания и др.

Терминалы не имеют конечных адресов сети Х.25. Адрес присваивается порту PAD, который подключен к коммутатору пакетов Х.25 с помощью выделенного канала.

Несмотря на то что задача подключения «неинтеллектуальных» терминалов к удаленным компьютерам возникает сейчас достаточно редко, функции PAD все еще остаются востребованными. Устройства PAD часто используются для подключения к сетям Х.25 кассовых терминалов и банкоматов, имеющих асинхронный интерфейс RS-232.

Стандарт Х.28 определяет параметры терминала, а также протокол взаимодействия терминала с устройством PAD. При работе на терминале пользователь сначала проводит некоторый текстовый диалог с устройством PAD, используя стандартный набор символьных команд. PAD может работать с терминалом в двух режимах: управляющем и передачи данных. В управляющем режиме пользователь с помощью команд может указать адрес компьютера, с которым нужно установить соединение по сети Х.25, а также установить некоторые параметры работы PAD, например выбрать специальный символ для обозначения команды немедленной отправки пакета, установить режим эхо - ответов символов, набираемых на клавиатуре, от устройства PAD (при этом дисплей не будет отображать символы, набираемые на клавиатуре до тех пор, пока они не вернутся от PAD - это обычный локальный режим работы терминала с компьютером). При наборе комбинации клавиш Ctrl+P PAD переходит в режим передачи данных и воспринимает все последующие символы как данные, которые нужно передать в пакете Х.25 узлу назначения.

В сущности, протоколы Х.З и Х.28 определяют протокол эмуляции терминала, подобный протоколу telnet стека TCP/IP. Пользователь с помощью устройства PAD устанавливает соединение с нужным компьютером, а затем может вести уже диалог с операционный системой этого компьютера (в режиме передачи данных устройством PAD), запуская нужные программы и просматривая результаты их работы на своем экране, как и при локальном подключении терминала к компьютеру.

Компьютеры и локальные сети обычно подключаются к сети Х.25 непосредственно через адаптер Х.25 или маршрутизатор, поддерживающий на своих интерфейсах протоколы Х.25. Для управления устройствами PAD в сети существует протокол Х.29, с помощью которого узел сети может управлять и конфигурировать PAD удаленно, по сети. При необходимости передачи данных компьютеры, подключенные к сети Х.25 непосредственно, услугами PAD не пользуются, а самостоятельно устанавливают виртуальные каналы в сети и передают по ним данные в пакетах Х.25.

Адресация в сетях Х.25

Если сеть Х.25 не связана с внешним миром, то она может использовать адрес любой длины (в пределах формата поля адреса) и давать адресам произвольные значения. Максимальная длина поля адреса в пакете Х.25 составляет 16 байт.

Рекомендация Х.121 CCITT определяет международную систему нумерации адресов для сетей передачи данных общего пользования. Если сеть Х.25 хочет обмениваться данными с другими сетями Х.25, то в ней нужно придерживаться адресации стандарта Х.121.

Адреса Х.121 (называемые также International Data Numbers, IDN) имеют разную длину, которая может доходить до 14 десятичных знаков. Первые четыре цифры IDN называют кодом идентификации сети (Data Network Identification Code, DNIC) . DNIC поделен на две части; первая часть (3 цифры) определяет страну, в которой находится сеть, а вторая - номер сети Х.25 в данной стране. Таким образом, внутри каждой страны можно организовать только 10 сетей Х.25. Если же требуется перенумеровать больше, чем 10 сетей для одной страны, проблема решается тем, что одной стране дается несколько кодов. Например, Россия имела до 1995 года один код - 250, а в 1995 году ей был выделен еще один код - 251. Остальные цифры называются номером национального терминала (National Terminal Numbe, NTN) . Эти цифры позволяют идентифицировать определенный DTE в сети Х.25.

Международные сети Х.25 могут также использовать международный стандарт нумерации абонентов ISO 7498, описанный выше.

По стандарту ISO 7498 для нумерации сетей Х.25 к адресу в формате Х.121 добавляется только один байт префикса, несущий код 36 (использование в адресе только кодов десятичных цифр) или 37 (использование произвольных двоичных комбинаций). Этот код позволяет универсальным коммутаторам, например коммутаторам сети ISDN, поддерживающим также и коммутацию пакетов Х.25, автоматически распознавать тип адреса и правильно выполнять маршрутизацию запроса на установление соединения.

Стек протоколов сети Х.25

Стандарты сетей Х.25 описывают 3 уровня протоколов.

    На физическом уровне определены синхронные интерфейсы Х.21 и Х.21 bis к оборудованию передачи данных - либо DSU/CSU, если выделенный канал является цифровым, либо к синхронному модему, если канал выделенный.

    На канальном уровне используется подмножество протокола HDLC, обеспечивающее возможность автоматической передачи в случае возникновения ошибок в линии. Предусмотрен выбор из двух процедур доступа к каналу: LAP или LAP-B.

    На сетевом уровне определен протокол Х.25/3 обмена пакетами между оконечным оборудованием и сетью передачи данных.

Транспортный уровень может быть реализован в конечных узлах, но он стандартом не определяется.

Протокол физического уровня канала связи не оговорен, и это дает возможность использовать каналы разных стандартов.

На канальном уровне обычно используется протокол LAP-B. Этот протокол обеспечивает сбалансированный режим работы, то есть оба узла, участвующих в соединении, равноправны. По протоколу LAP-B устанавливается соединение между пользовательским оборудованием DTE (компьютером, IP- или IPX-маршрутизатором) и коммутатором сети. Хотя стандарт это и не оговаривает, но по протоколу LAP-B возможно также установление соединения на канальном уровне внутри сети между непосредственно связанными коммутаторами. Протокол LAP-B почти во всех отношениях идентичен протоколу LLC2, описанному в главе 3, кроме адресации. Кадр LAP-B содержит одно однобайтовое адресное поле (а не два - DSAP и SSAP), в котором указывается не адрес службы верхнего уровня, а направление передачи кадра - 0х01 для направления команд от DTE к DCE (в сеть) или ответов от DCE к DTE (из сети) и 0х03 для направления ответов от DTE к DCE или команд от DCE к DTE. Поддерживается как нормальный режим (с максимальным окном в 8 кадров и однобайтовым полем управления), так и расширенный режим (с максимальным окном в 128 кадров и двухбайтовым полем управления).

Сетевой уровень Х.25/3 (в стандарте он назван не сетевым, а пакетным уровнем) реализуется с использованием 14 различных типов пакетов, по назначению аналогичных типам кадров протокола LAP-B. Так как надежную передачу данных обеспечивает протокол LAP-B, протокол Х.25/3 выполняет функции маршрутизации пакетов, установления и разрыва виртуального канала между конечными абонентами сети и управления потоком пакетов.

После установления соединения на канальном уровне конечный узел должен установить виртуальное соединение с другим конечным узлом сети. Для этого он в кадрах LAP-B посылает пакет Call Request протокола X.25.

Поля, расположенные в первых трех байтах заголовка пакета, используются во всех типах кадров протокола Х.25. Признаки Q и D и Modulo расположены в старшей части первого байта заголовка. Признак Q предназначен для распознавания на сетевом уровне типа информации в поле данных пакета. При получении пакета информация, расположенная в поле данных, а также значение бита Q передается верхним уровням пользовательского стека протоколов (непосредственно транспортному уровню этого стека). Значение Q=1 означает управляющую пользовательскую информацию, а Q=0 - данные. Признак D означает подтверждение приема пакета узлом назначения. Обычный механизм подтверждения принятия пакетов с помощью квитанций имеет для протокола Х.25 только локальный смысл - прием пакета подтверждает ближайший коммутатор сети, через который конечный узел запросил и установил виртуальное соединение. Если же узел-источник запросил подтверждение приема конечным узлом, то это подтверждение индицируется установкой бита D (delivery confirmation) в пакетах, идущих от узла назначения.

Признак Modulo говорит о том, по какому модулю - 8 или 128 - ведется нумерация пакетов. Значение 10 означает модуль 128, а 01 - модуль 8.

Поле Номер логической группы (Lodical Group Number, LGN) содержит значение номера логической группы виртуального канала. Каналы образуют логические группы по функциональному признаку, например:

    постоянный виртуальный канал;

    коммутируемый виртуальный канал только для входящих сообщений (симплексный);

    коммутируемый виртуальный канал только для исходящих сообщений (симплексный);

    коммутируемый дуплексный виртуальный канал.

Максимальное количество логических групп - 12, хотя в конкретной сети допустимо и меньшее количество.

Поле Номер логического канала (Logical Channel Number, LCN) содержит номер виртуального канала, назначаемый узлом-источником (для коммутируемых виртуальных каналов) или администратором сети (для постоянных виртуальных каналов). Максимальное количество виртуальных каналов, проходящих через один порт, равно 256.

Поле Тип (Type) указывает тип пакета. Например, для пакета Call Request отведено значение типа, равное 0х0В. Младший бит этого поля определяет, является ли пакет управляющим (бит равен 1) или пакетом данных (бит равен 0). Значение 0х0В содержит 1 в младшем бите, поэтому это управляющий пакет, а остальные биты в этом случае определяют подтип пакета. В пакете данных остальные биты поля Type используются для переноса номеров квитанций N(S) и N(R).

Следующие два поля определяют длину адресов назначения и источника (DA и SA) в пакете. Запрос на установление виртуального канала указывает оба адреса. Первый адрес нужен для маршрутизации пакета Call Request, а второй - для принятия решения узлом назначения о возможности установления виртуального соединения с данным узлом-источником. Если узел назначения решает принять запрос, то он должен отправить пакет Call Accepted - «Запрос принят», в котором также указать оба адреса, поменяв их, естественно, местами. Адреса могут иметь произвольный формат или же соответствовать требованиям стандарта Х.121 или ISO 7498.

Сами адреса назначения и источника занимают отведенное им количество байт в следующих двух полях.

Поля Длина поля услуг (Facilities length) и Услуги (Facilities) нужны для согласования дополнительных услуг, которые оказывает сеть абоненту. Например, услуга «Идентификатор пользователя сети» позволяет задать идентификатор пользователя (отличный от его сетевого адреса), на основании которого могут оплачиваться счета за пользование сетью. Пользователь с помощью услуги «Согласование параметров управления потоком» может попросить сеть использовать нестандартные значения параметров протокола - размера окна, максимального размера поля данных пакета и т. п. Протокол Х.25 допускает следующие максимальные значения длины поля данных: 16,32, 64,128, 256,512 и 1024 байт. Предпочтительной является длина 128 байт.

Пакет Call Request принимается коммутатором сети и маршрутизируется на основании таблицы маршрутизации, прокладывая при этом виртуальный канал. Начальное значение номера виртуального канала задает пользователь в этом пакете в поле LCN (аналог поля VCI, упоминавшегося при объяснении принципа установления виртуальных каналов). Протокол маршрутизации для сетей Х.25 не определен.

Для сокращения размера адресных таблиц в коммутаторах в сетях Х.25 реализуется принцип агрегирования адресов. Все терминалы, имеющие общий префикс в адресе, подключаются при этом к общему входному коммутатору подсети, соответствующей значению префикса. Например, если путь ко всем терминалам, имеющим адреса с префиксом 250 720, пролегает через общий коммутатор К1, то в таблице маршрутизации коммутаторов, через которые проходит путь к коммутатору К1, помещается единственная запись - 250 720, которая соответствует как конечному узлу 250 720 11, так и конечному узлу 250 720 26. Маски в коммутаторах не используются, а младшие разряды адреса, которые не нужны при маршрутизации, просто опускаются.

После установления виртуального канала конечные узлы обмениваются пакетами другого формата - формата пакетов данных (пакет Data). Этот формат похож на описанный формат пакета Call Request - первые три байта в нем имеют те же поля, а адресные поля и поля услуг отсутствуют. Пакет данных не имеет поля, которое бы определяло тип переносимых в пакете данных, то есть поля, аналогичного полю Protocol в IP-пакете. Для устранения этого недостатка первый байт в поле данных всегда интерпретируется как признак типа данных.

Коммутаторы (ЦКП) сетей Х.25 представляют собой гораздо более простые и дешевые устройства по сравнению с маршрутизаторами сетей TCP/IP. Это объясняется тем, что они не поддерживают процедур обмена маршрутной информацией и нахождения оптимальных маршрутов, а также не выполняют преобразований форматов кадров канальных протоколов. По принципу работы они ближе к коммутаторам локальных сетей, чем к маршрутизаторам. Однако работа, которую выполняют коммутаторы Х.25 над пришедшими кадрами, включает больше этапов, чем при продвижении кадров коммутаторами локальных сетей. Коммутатор Х.25 должен принять кадр LAP-B и ответить на него другим кадром LAP-B, в котором подтвердить получение кадра с конкретным номером. При утере или искажении кадра коммутатор должен организовать повторную передачу кадра. Если же с кадром LAP-B все в порядке, то коммутатор должен извлечь пакет Х.25, на основании номера виртуального канала определить выходной порт, а затем сформировать новый кадр LAP-B для дальнейшего продвижения пакета. Коммутаторы локальных сетей такой работой не занимаются и просто передают кадр в том виде, в котором он пришел, на выходной порт.

В результате производительность коммутаторов Х.25 оказывается обычно невысокой - несколько тысяч пакетов в секунду. Для низкоскоростных каналов доступа, которыми много лет пользовались абоненты этой сети (1200-9600 бит/с), такой производительности коммутаторов хватало для работы сети.

Гарантий пропускной способности сеть Х.25 не дает. Максимум, что может сделать сеть, - это приоритезировать трафик отдельных виртуальных каналов. Приоритет канала указывается в запросе на установление соединения в поле услуг.

Протоколы сетей Х.25 были специально разработаны для низкоскоростных линий с высоким уровнем помех. Именно такие линии составляют пока большую часть телекоммуникационной структуры нашей страны, поэтому сети Х.25 будут по-прежнему еще долго являться наиболее рациональным выбором для многих регионов.

Фраза, вынесенная в заголовок данной статьи, в двух словах отображает сегодняшнюю ситуацию с технологией X.25. В западной прессе теперь очень трудно встретить рассмотрение проблем, связанных с использованием протокола X.25; более горячими темами сегодня в области территориальных сетей являются, например, технологии frame relay и ATM. Несмотря на это, даже в странах Запада самые передовые компании, выпускавшие ранее только высокоскоростное оборудование, дополняют свой спектр устройств оборудованием X.25. Пример тому - появление в нынешнем году в ассортименте оборудования фирмы StrataCom узлов X.25.

Особенно актуально рассмотрение решений технологий X.25 для России и сопредельных стран с аналогичной инфраструктурой каналов.

В этой статье мы обсудим протокол X.25 и связанный с ним стек протоколов, а также сети, базирующиеся на данной технологии. Наша задача показать, что представляют собой сети X.25 и почему широкому кругу пользователей выгодно использовать уже функционирующие магистральные сети X.25, а некоторым из них, представляющим крупные организации, даже строить свои собственные сети.

Мы будем называть сетями X.25, или сетями пакетной коммутации сети, доступ к которым производится в соответствии с рекомендациями МККТТ X.25 (в соответствии с X.3/X.28 в случае асинхронного доступа).

Итак, почему именно сети X.25? Дело в том, что на сегодняшний день, несмотря на появление новых, интегральных технологий сетей передачи данных/сетей связи, рассчитанных на высокоскоростные каналы связи, сети X.25 по-прежнему наиболее распространены.

Если рассматривать все имеющиеся сегодня сети передачи данных общего пользования, то окажется, что именно сети X.25 с наибольшим основанием могут быть уподоблены телефонным сетям. Точно так же, как подняв трубку телефонного аппарата, подключенного к ближайшей АТС, вы можете связаться с абонентом практически в любой точке мира, так и установив соединение вашего компьютера с ближайшим узлом сети X.25, вы сможете осуществить связь с любым из миллиона пользователей сетей X.25 по всему миру. Для этого вам надо лишь знать его сетевой адрес.

Что же такое сети X.25? Для чего они нужны? На базе какого оборудования и какой теории они строятся?

ПРОТОКОЛЫ СЕТЕЙ X.25

Сети X.25 получили свое название по имени рекомендации - "X.25", выпущенной МККТТ (Международный консультативный комитет по телефонии и телеграфии). Данная рекомендация описывает интерфейс доступа пользователя в сеть передачи данных и интерфейс взаимодействия с удаленным пользователем через сеть передачи данных.

Внутри же самой сети передача данных может происходить в соответствии с другими правилами. Ядро сети может быть построено и на более скоростных протоколах frame relay. Мы, однако, рассматривая вопросы построения сетей X.25 в рамках этой статьи, будем иметь в виду сети, передача данных внутри которых производится также по протоколам, описанным в рекомендации X.25. Именно таким образом и строится в настоящее время большинство корпоративных сетей X.25 в России.

Сегодня достигнут достаточно высокий уровень совместимости оборудования, выпускаемого различными фирмами, как в рамках одной сети, так и разнообразных сетей X.25. Наибольшие проблемы в области совместимости возникают в тех случаях, когда надо управлять из одного центра узлами сети, построенными на базе оборудования разных фирм. Однако, благодаря установке на оборудовании X.25 агентов SNMP, и эта проблема в ближайшем будущем будет, видимо, решена. Одновременно ведется работа по расширению возможностей протокола SNMP в части его соответствия задачам управления большими территориально-распределенными сетями.

Первый описывает уровни сигналов и логику взаимодействия в терминах физического интерфейса. (Те из читателей, которым приходилось, например, подключать модем к последовательному порту персонального компьютера через интерфейс RS-232/V.24, имеют представление об этом уровне.)

Второй (протокол доступа к каналу/процедура сбалансированного доступа к каналу, LAP/LAPB), с теми или иными модификациями, достаточно широко представлен сейчас в оборудовании массового спроса - например в модемах - протоколами типа сетевого протокола MNP компании Microcom, отвечающими за коррекцию ошибок при передаче информации по каналу связи, а также в локальных сетях на уровне управления логическим каналом LLC.

Этот уровень протоколов отвечает за эффективную и надежную передачу данных по соединению "точка-точка", т.е. между соседними узлами сети X.25. Данным протоколом обеспечивается коррекция ошибок при передаче между соседними узлами и управление потоком данных (если принимающая сторона не готова к получению данных, она извещает об этом передающую сторону, и та приостанавливает передачу). Кроме того, он определяет параметры, меняя значения которых, режим передачи можно оптимизировать по скорости в зависимости от протяженности канала между двумя точками (времени задержки в канале) и его качества (вероятности искажения информации при передаче).

Для реализации всех указанных выше функций в протоколах второго уровня вводится понятие "кадра" (frame). Кадром называется порция информации (битов), организованная определенным образом. Начинает кадр флаг, т.е. последовательность битов строго определенного вида, являющаяся разделителем между кадрами. Затем идет поле адреса, которое в случае двухточечного соединения представляет собой адрес А или адрес B. Далее следует поле типа кадра, указывающее на то, несет ли кадр в себе информацию или является чисто служебным (например тормозит поток информации или извещает передающую сторону о приеме/неприеме предыдущего кадра). В кадре имеется также поле номера кадра. Кадры нумеруются циклически. Это означает, что при достижении заданного порогового значения нумерация опять начинается с нуля. И наконец, заканчивается кадр контрольной последовательностью, подсчитываемой при передаче кадра по определенным правилам. По этой последовательности на приеме происходит проверка на предмет искажения информации при передаче кадра.

Длину кадра можно менять при настройке параметров протокола к физическим характеристикам линии. Чем короче кадр, тем меньше вероятность того, что он будет искажен при передаче. Однако если линия хорошего качества, то лучше работать с более длинными информационными кадрами, т.к. уменьшается процент избыточной информации, передаваемой по каналу (флаг, служебные поля кадра). Кроме того, число кадров, посылаемое передающей стороне без подтверждения от принимающей стороны, тоже можно менять. Данный параметр связан с так называемым "модулем нумерации", т.е. со значением порога, достигнув которого нумерация снова начинается с нуля. Это поле может быть задано равным в пределах от 8 (для тех каналов, задержка передачи информации в которых не слишком велика) до 128 (для спутниковых каналов, например, когда задержка при передаче информации по каналу велика).

И, наконец, третий уровень протоколов - сетевой. Он наиболее интересен в контексте обсуждения сетей X.25, так как их специфику, в первую очередь, определяет именно он.

Функционально данный протокол отвечает прежде всего за маршрутизацию в сети передачи данных X.25, т. е. за доведение информации от "точки входа" в сеть до "точки выхода" из нее. Со своей стороны протокол третьего уровня также структурирует информацию, иными словами, разбивает ее на "порции". На третьем уровне порция информации называется "пакетом" (packet). Структура пакета во многом аналогична структуре кадра. В пакете имеется свой модуль нумерации, собственные поля адреса, тип пакета, контрольная последовательность. При передаче пакет помещается в поле данных информационных кадров (кадров второго уровня). Функционально поля пакета отличаются от соответствующих полей кадра. Главным образом это касается поля адреса, которое в пакете состоит из 15 цифр; поле пакета должно обеспечивать идентификацию абонентов в рамках всех сетей пакетной коммутации по всему миру. Структуру сетевого адреса определяет рекомендация X.121.

Введя термин "пакет", мы можем перейти к следующему вопросу, а именно: как же происходит доставка информации от одного абонента до другого через сеть X.25? Для этого используется так называемый метод "коммутации пакетов" (packet switching), в связи с чем сети X.25 еще именуют сетями пакетной коммутации. Данный метод реализуется посредством установления между абонентами виртуальных, т.е. логических (в отличие от физических) соединений (virtual circuits). Для того чтобы передать информацию от абонента A к абоненту B, между ними прежде устанавливается виртуальное соединение, иначе - происходит обмен пакетами "запрос вызова" ("call request") - "вызов принят" ("call accept"). Только после этого между двумя абонентами может производиться обмен информацией.

Виртуальные соединения могут быть как постоянными (permanent), так и коммутируемыми (switched). Коммутируемое соединение, в отличие от постоянного виртуального соединения, устанавливается в каждом сеансе обмена информацией. Тут можно привести прямые аналогии из области телефонии. Действительно, если вы имеете выделенный ("постоянный") телефонный канал между двумя абонентами, то не надо каждый раз набирать номер вашего абонента, - достаточно лишь снять трубку телефона. Количество виртуальных соединений, одновременно поддерживаемых на базе одного физического канала, зависит от конкретного типа оборудования, используемого для обеспечения таких соединений. Что вполне понятно, т.к. для поддержки каждого соединения на этом оборудовании должен резервироваться определенный ресурс (например оперативная память).

ПРЕИМУЩЕСТВА СЕТЕЙ X.25

Метод коммутации пакетов, лежащий в основе сетей X.25, определяет основные преимущества таких сетей или, другими словами, их область применения. В чем же это преимущество? Рассматриваемые сети позволяют в режиме реального времени разделять один и тот же физический канал нескольким абонентам, в отличие, например, от случая использования пары модемов, соединенных через канал того или иного типа. На самом деле, если у вас и вашего абонента на компьютерах установлены модемы, вы можете обмениваться с ним информацией. Однако используемой телефонной линией одновременно с вами не сможет воспользоваться уже никто другой.

Благодаря реализованному в сетях X.25 механизму разделения канала сразу между несколькими пользователями, во многих случаях оказывается экономически выгодней производить оплату за каждый байт переданной или полученной информации, а не оплачивать время применения телефонной линии при передаче данных по сети X.25. Особенно ощутимо такое преимущество в случае международных соединений.

Метод разделения физического канала между абонентами в сетях X.25 называют еще мультиплексированием канала, точнее, "логическим" или "статистическим" мультиплексированием (Рис. 1). Термин "логическое мультиплексирование" вводится, чтобы отличить этот метод, например, от временного разделения канала. При временном разделении канала каждому из разделяющих его абонентов выделяется в каждую секунду строго определенное количество миллисекунд для передачи информации. При статистическом разделении канала нет строго регламентированной степени загрузки каждым из абонентов канала в данный момент времени.

Рисунок 1.
Мультиплексирование канала в сетях X.25.

Эффективность использования статистического мультиплексирования зависит от статистических или вероятностных характеристик мультиплексируемого потока информации. Означает ли это, что вам, прежде чем подключаться к уже действующей сети X.25 или начинать создавать свою сеть, необходимо проводить детальный анализ вероятностных характеристик потоков информации, циркулирующих в вашей системе? Конечно, нет. Такие расчеты уже проведены. Накоплен большой опыт использования сетей X.25. Известно, что использование сети X.25 эффективно для широкого спектра задач передачи данных. Среди них и обмен сообщениями между пользователями, и обращение большого количества пользователей к удаленной базе данных, а также к удаленному хосту электронной почты, связь локальных сетей (при скоростях обмена не более 512 Кбит/с), объединение удаленных кассовых аппаратов и банкоматов. Иными словами, все приложения, в которых трафик в сети не является равномерным во времени.

Какие еще преимущества дает сеть X.25? Может быть, одно из самых важных достоинств сетей, построенных на протоколах, описанных в рекомендации X.25, состоит в том, что они позволяют передавать данные по каналам телефонной сети общего пользования (выделенным и коммутируемым) оптимальным образом. Под "оптимальностью" имеется в виду достижение максимально возможных на указанных каналах скорости и достоверности передачи данных.

Эффективный механизм оптимизации процесса передачи информации через сети X.25 - это механизм альтернативной маршрутизации. Возможность задания помимо основного маршрута альтернативных, т.е. резервных, имеется в оборудовании X.25, производимом практически всеми фирмами. Различные образцы оборудования отличаются алгоритмами перехода к альтернативному маршруту, а также допустимым количеством таких маршрутов. В некоторых типах оборудования, например, переход к альтернативному маршруту происходит только в случае полного отказа одного из звеньев основного маршрута. В других же переход от одного маршрута к другому происходит динамически в зависимости от загруженности маршрутов, и решение принимается на основании многопараметрической формулы (оборудование фирмы Motorola ISG, например). За счет альтернативной маршрутизации может быть значительно увеличена надежность работы сети, а это значит, что между любыми двумя точками подключения пользователя к сети должно быть, по крайней мере, два различных маршрута. В связи с этим построение сети по звездообразной схеме можно считать вырожденным случаем. Правда, там, где есть только один узел сети X.25, установленный в рамках той или иной сети общего пользования, такая топология сети все еще используется довольно часто.

ДОСТУП ПОЛЬЗОВАТЕЛЕЙ К СЕТЯМ X.25. СБОРЩИКИ-РАЗБОРЩИКИ ПАКЕТОВ

Рассмотрим теперь, каким образом на практике реализуется доступ разных типов пользователей к сети X.25. Прежде всего, возможна организация доступа в пакетном режиме (рекомендации X.25). Для осуществления доступа с компьютера в сеть в пакетном режиме можно, например, установить в компьютер специальную плату, обеспечивающую обмен данными в соответствии со стандартом X.25.

Для подключения локальной сети через сеть X.25 используются также платы компаний Microdyne, Newport Systems Solutions и др. Кроме того, доступ из локальной сети в сеть X.25 может быть организован еще и при помощи мостов/маршрутизаторов удаленного доступа, поддерживающих протокол X.25 и выполненных в виде автономных устройств. Преимущества таких устройств над встраиваемыми в компьютер платами, помимо большей производительности, заключается в том, что они не требуют установки специального программного обеспечения, а сопрягаются с локальной сетью по стандартному интерфейсу, что позволяет реализовать более гибкие и универсальные решения.

Вообще, подключение пользовательского оборудования к сети в пакетном режиме очень удобно, когда требуется многопользовательский доступ к этому оборудованию через сеть.

Если же вам надо подключить компьютер к сети в монопольном режиме, то тогда подключение производится по другим стандартам. Это стандарты X.3, X.28, X.29, определяющие функционирование специальных устройств доступа в сеть - сборщиков/разборщиков пакетов - СРП (packet assembler/dissasembler-PAD). На практике термин "СРП" малоупотребим, поэтому и мы в качестве русскоязычного воспользуемся термином "ПАД".

ПАДы используются для доступа в сеть абонентов при асинхронном режиме обмена информацией, т.е. через, например, последовательный порт компьютера (непосредственно или c применением модемов). ПАД обычно имеет несколько асинхронных портов и один синхронный (порт X.25). ПАД накапливает поступающие через асинхронные порты данные, упаковывает их в пакеты и передает через порт X.25 (Рис. 2).

(1x1)

Рисунок 2.
Пример сложной сети X.25 с подключением устройств различного типа: от компьютеров до банковского терминального оборудования.

Конфигурируемые параметры ПАДа определяются выполняемыми задачами. Эти параметры описываются стандартом X.3. Совокупность параметров носит название "профайла" (profile); стандартный набор состоит из 22 параметров. Функциональное назначение данных параметров одинаково для всех ПАДов. В профайл входят параметры, задающие скорость обмена по асинхронному порту, параметры, характерные для текстовых редакторов (символ удаления знака и строки, символ вывода на экран предыдущей строки и т.п.), параметры, включающие режим автоматической добивки строки незначащими символами (для синхронизации с медленными терминалами), а также параметр, определяющий условие, при выполнении которого формирование пакета заканчивается.

УЗЛЫ СЕТИ X.25. ЦЕНТРЫ КОММУТАЦИИ ПАКЕТОВ

Параметры, описывающие канал X.25, являются немаловажными и для узловых элементов собственно сети X.25, называемых Центрами Коммутации Пакетов - ЦКП (или коммутатор пакетов, packet switch), однако ими список параметров ЦКП, конечно, не исчерпывается. В процессе конфигурации ЦКП обязательно требуется заполнить таблицу маршрутизации (routing table), позволяющую определить, на какой из портов ЦКП направляются поступившие в них пакеты в зависимости от адресов, содержащихся в этих пакетах. В таблице задаются как основные, так и альтернативные маршруты. Кроме того, важная функция некоторых ЦКП - это функция стыковки сетей (шлюза между сетями).

Действительно, в мире существует великое множество сетей X.25 и общего пользования, и частных, или иначе - корпоративных, ведомственных. Естественно, в различных сетях могут быть установлены разные значения параметров передачи по каналам X.25 (длина кадра и пакета, величины пакетов, система адресования и т.д.). Для того чтобы все эти сети могли стыковаться друг с другом, была разработана рекомендация X.75, определяющая правила согласования параметров при переходе из сети в сеть. Сопряжение вашей и соседних сетей рекомендуется производить через ЦКП, в котором с достаточной полнотой реализована поддержка шлюзовых функций, - такой ЦКП, например, должен уметь "транслировать" адреса при переходе из одной сети в другую. Эта функция обычно реализуется с помощью конфигурации специальной таблицы трансляции адресов в шлюзовом ЦКП. Для ЦКП, несопрягающихся с узлами другой сети пакетной коммутации, наличие шлюзовых функций не является обязательным.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!