Энциклопедия мобильной связи

Цифровой измеритель напряжения и тока. Схема цифрового измерителя тока и напряжения

Что можно сделать на основе небольшого микроконтроллера Attiny13? Много чего. Например измеритель напряжения, тока, температуры, с выводом результатов на дисплей типа HD44780. Так давайте и соберём это универсальное устройство, которое можно успешно использовать в качестве модуля в блоках питания, зарядках, УМЗЧ и в тех местах, где не требуется очень высокая точность. Размер платы всего 35 х 16 мм.

Схема измерителя U, I, T на Attiny13

  • Диапазон измерения напряжения 0-99V с разрешением 0.1 V.
  • Диапазон измерения тока 0-9.99А с разрешением 10 мА.
  • Диапазон измерения температуры 0-99C с разрешением 0.1C.
  • Потребление тока самого измерителя 35 мА.

Прежде всего надо знать, в каком диапазоне напряжения прибор будет работать. Чтобы это установить, необходимо рассчитать делитель напряжения. Например, для получения измерения 10 В, делитель должен составлять 1/10 (мы умножаем x 10 потому что напряжение будет в 10 раз больше от базового 1 В), для 30 В будет 1/30 и так далее. Затем необходимо настроить программу, для данного диапазона. Эти 30 В умножаем по 640, а результат разделим на 1023. Полученное число приблизительно записывается в начале программы, постоянной напряжения и надо скомпилировать программу (для диапазона 100 В, 8,2к).

Измерение тока также мы можем настроить подобным образом, дать другой делитель, другой диапазон, и перечислить, но не буду этого описывать. Здесь нет аналоговой калибровки температуры, потому что она показалась совершенно лишней.

Корректируем экспериментально в программе, за это отвечает константа const temp. Резистор 1К между массой и выходом датчика устанавливает напряжение, снизить его можно даже до 100 Ом.

Как работает схема

К точкам V и V+ на плате приложено напряжение, которое мы хотим измерить, к точке GND присоединяемся входом массы блока питания, а к точке В - выход массы (измерение происходит на массе). Между точками GND и V - присоединяется шунт. Питание измерителя осуществляется от точки V и V+ через стабилизатор 7805. На плате есть место на стабилизатор в корпусе TO252, но с успехом можно использовать и более крупный стабилизатор 78L05 в корпусе TO92. Максимальное напряжение, которое можно указать для точки V и V+, для обычной 7805 будет до 35В, для 78L05 будет, конечно, меньше, но не больше 30. Для того, чтобы измерять большие напряжения, чип необходимо пополнить отдельно - на стороне печати, следует прервать путь под потенциометром регулировки напряжения, а питание подать до точки А. Система работает с дисплеем 16х1 с контроллером HD44780 или 16х2.

Видео работы измерителя

При прошивке микроконтроллера необходимо задать pin reset как обычный pin (включить fusebit RSTDISBL). Перед выполнением этой операции убедитесь, что все хорошо установили, что после выключения сбрасывается, и нет доступа к процессору обычным программатором! Исходники, а также вся остальная документация и файлы, размещены

Один из самых простых способов измерения тока в электрической цепи - это измерение падения напряжения на резисторе, включенном последовательно с нагрузкой. Но при прохождении тока через этот резистор, на нем выделяется бесполезная мощность в виде тепла, поэтому оно выбирается минимально возможной величины, что в свою очередь влечет за собой последующее усиление сигнала. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки.

Схема измерения тока нагрузки в отрицательном полюсе приведена на рисунке 1.

Эта схема и часть информации заимствована из журнала «Компоненты и технологии» №10 за 2006г. Михаил Пушкарев [email protected]
Преимущества:
низкое входное синфазное напряжение;
входной и выходной сигнал имеют общую «землю»;
простота реализации с одним источником питания.
Недостатки:
нагрузка не имеет непосредственной связи с «землей»;
отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит много ОУ, предназначенных для работы с однополярным питанием. Схема измерения тока с применением операционного уси¬лителя приведена на рис. 1. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется двухполярное питание усилителя.

Измерение тока в положительном полюсе нагрузки


Достоинства:
нагрузка заземлена;
обнаруживается короткое замыкание в нагрузке.
Недостатки:
высокое синфазное входное напряжение (зачастую очень высокое);
необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).
Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

В схеме на рис. 2 можно применить любой из подходящих по допустимому напряжению питания операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

Но есть ОУ, которые способны работать при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 3, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В. Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. Для измерения тока в положительном полюсе есть и специализированные микросхемы, например — INA138 и INA168.

INA138 и INA168

— высоковольтные, униполярные мониторы тока. Широкий диапазон входных напряжений, низкий потребляемый ток и малые габариты — SOT23, позволяют использовать эту микросхему во многих схемах. Напряжение источника питания от 2.7 В до 36 В для INA138 и от 2.7 В до 60 В для INA168. Входной ток — не более 25мкA, что позволяет производить измерение падения напряжения на шунте с минимальной ошибкой. Микросхемы являются преобразователями ток — напряжение с коэффициентом преобразования от1 до 100 и более. INA138 и INA168 в корпусах SOT23-5 имеют диапазон рабочих температур -40°C к +125°C.
Типовая схема включения взята из документации на эти микросхемы и показана на рисунке 4.

OPA454

— новый недорогой высоковольтный операционный усилитель компании Texas Instruments с выходным током более 50 мА и полосой пропускания 2,5 МГц. Одно из преимуществ — высокая стабильность OPA454 при единичном коэффициенте усиления.

Внутри ОУ организована защита от превышения температуры и перегрузки по току. Работоспособность ИС сохраняется в широком диапазоне напряжений питания от ±5 до ±50 В или, в случае однополярного питания, от 10 до 100 В (максимум 120 В). У OPA454 существует дополнительный вывод «Status Flag» — статусный выход ОУ с открытым стоком, — что позволяет работать с логикой любого уровня. Этот высоковольтный операционный усилитель обладает высокой точностью, широким диапазоном выходных напряжений, не вызывает проблем при инвертировании фазы, которые часто встречаются при работе с простыми усилителями.
Технические особенности OPA454:
Широкий диапазон питающих напряжений от ±5 В (10 В) до ±50 В (100 В)
(предельно до 120 В)
Большой максимальный выходной ток > ±50 мА
Широкий диапазон рабочих температур от -40 до 85°С (предельно от -55 до 125°С)
Корпусное исполнение SOIC или HSOP (PowerPADTM)
Данные на микросхему приведены в «Новости электроники» №7 за 2008г. Сергей Пичугин

Усилитель сигнала токового шунта на основной шине питания.

В радиолюбительской практике для схем, параметры которых не столь жесткие, подойдут дешевые сдвоенные ОУ LM358, допускающие работу с входными напряжениями до 32В. На рисунке 5 показана одна из многих типовых схем включения микросхемы LM358 в качестве монитора тока нагрузки. Кстати не во всех «даташитах» имеются схемы ее включения. По всей вероятности эта схема явилась прототипом схемы, приведенной в журнале «Радио» И. Нечаевым и о которой я упоминал в статье «Индикатор предельного тока ».
Приведенные схемы очень удобно применять в самодельных БП для контроля, телеметрии и измерения тока нагрузки, для построения схем защиты от коротких замыканий. Датчик тока в этих схемах может иметь очень маленькое сопротивление и отпадает необходимость подгонки этого резистора, как это делается в случае обычного амперметра. Например, напряжение на резисторе R3, в схеме на рисунке 5 равно: Vo = R3∙R1∙IL / R2 т.е. Vo = 1000∙0,1∙1A / 100 = 1В. Одному амперу тока, протекающему через датчик, соответствует один вольт падения напряжения на резисторе R3. Величина этого соотношения зависит от величины всех резисторов входящих в схему преобразователя. Отсюда следует, что сделав резистор R2 подстроечным, можно спокойно им компенсировать разброс сопротивления резистора R1. Это относится и к схемам, показанным на рисунках 2 и 3. В схеме, представленной на рис. 4, можно изменять сопротивление нагрузочного резистора RL. Для уменьшения провала выходного напряжения блока питания, сопротивление датчика тока – резистор R1 в схеме на рис.5 вообще лучше взять равным 0,01 Ом, изменив при этом номинал резистора R2 на 10 Ом или увеличив номинал резистора R3 до 10кОм.

. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА .

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный . Приборы, служащие для измерения тока, называют амперметрами , миллиамперметрами и микроамперметрами . Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми .

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1 », а около второго «PА2 ».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой , то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m , 20m , 200m , 10А . Например. На пределе «20m » можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1 , а в разрыв цепи включим мультиметр РА1 . Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA »;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m », диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m », который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8 », что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m ».

Отключаем питание. Переводим переключатель на предел «20m ». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица . Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А ». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А », еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А » сразу же переставляйте плюсовой (красный) щуп на свое штатное место . Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Измерение постоянных токов чаще всего производится магнитоэлектрическими гальванометрами, микроамперметрами, миллиамперметрами и амперметрами, основной частью которых является магнитоэлектрический измерительный механизм (измеритель). Устройство одной из распространённых конструкций стрелочного измерителя показано на рис. 1. Измеритель содержит подковообразный магнит 1. В воздушном зазоре между его полюсными наконечниками 2 и неподвижным цилиндрическим сердечником 5, выполненными из магнитномягкого материала, создаётся равномерное магнитное поле, линии индукции которого перпендикулярны к поверхности сердечника. В этом зазоре помещается рамка 4, намотанная тонким медным изолированным проводом (диаметром 0,02...0,2 мм) на лёгком бумажном или алюминиевом каркасе прямоугольной формы. Рамка может поворачиваться вместе с осью 6 и стрелкой 10, конец которой перемещается над шкалой. Плоские спиральные пружины 5 служат для создания момента, противодействующего повороту рамки, а также для подвода тока к рамке. Одна пружина закреплена между осью и корпусом. Вторая пружина одним концом прикреплена к оси, а другим - к рычагу корректора 7, вилка которого охватывает эксцентричный стержень винта 8. Вращением этого винта достигается установка стрелки на нулевое деление шкалы. Противовесы 9 служат для уравновешивания подвижной части измерителя с целью стабилизации положения стрелки при изменении положения прибора.

Рис. 1. Устройство магнитоэлектрического измерительного механизма.

Измеряемый ток, проходя по виткам рамки, взаимодействует с магнитным полем постоянного магнита. Создаваемый при этом вращающий момент, направление которого определяется известным правилом левой руки, вызывает поворот рамки на такой угол, при котором он уравновешивается противодействующим моментом, возникающим при закручивании пружин 5. Благодаря равномерности постоянного магнитного поля в воздушном зазоре вращающий момент, а следовательно, и угол отклонения стрелки оказываются пропорциональными току, протекающему через рамку. Поэтому магнитоэлектрические приборы имеют равномерные шкалы. Другие величины, влияющие на значение вращающего момента магнитная индукция в воздушном зазоре, число витков и площадь рамки - остаются постоянными и в совокупности с силой упругости пружин определяют чувствительность измерителя.

При повороте рамки в её алюминиевом каркасе индуцируются токи, взаимодействие которых с полем постоянного магнита создаёт тормозной момент, быстро успокаивающий подвижную часть измерителя (время успокоения не превышает 3 с).

Измерители характеризуются тремя электрическими параметрами: а) током полного отклонения Iи, вызывающим отклонение стрелки до конца шкалы; б) напряжением полного отклонения Uи, т. е. напряжением на рамке измерителя, создающим в её цепи ток Iи; в) внутренним сопротивлением Rи, которое является сопротивлением рамки. Эти параметры взаимосвязаны законом Ома:

В радиоизмерительных приборах применяют различные типы магнитоэлектрических измерителей, ток полного отклонения которых обычно лежит в пределах 10...1000 мкА. Измерители, у которых ток полного отклонения не превышает 50-100 мкА, считаются высокочувствительными.

Некоторые измерители снабжаются магнитным шунтом в виде стальной пластинки, которую можно приближать к торцовым поверхностям полюсных наконечников и магнита или удалять от них. При этом будет соответственно уменьшаться или возрастать в небольших пределах ток полного отклонения I, вследствие изменения воздействующего на рамку магнитного потока из-за ответвления части полного магнитного потока через шунт.

Напряжение полного отклонения Uи для большинства измерителей лежит в пределах 30-300 мВ. Сопротивление рамки Rи зависит от периметра рамки, числа витков и диаметра провода. Чем чувствительнее измеритель, тем больше витков из более тонкого провода имеет его рамка и тем больше её сопротивление. Повышение чувствительности измерителей достигается также применением более мощных магнитов, бескаркасных рамок, пружин с малым противодействующим моментом и подвеской подвижной части на растяжках (двух тонких нитях).

В чувствительных измерителях с бескаркасными рамками стрелка, отклоняясь под действием проходящего по рамке тока, совершает ряд колебаний, прежде чем остановиться в положении равновесия. Для уменьшения времени успокоения стрелки рамку шунтируют резистором с сопротивлением порядка тысяч или сотен Ом. Роль последнего иногда выполняет электрическая схема прибора, включённая параллельно рамке.

Измерители с подвижными рамками позволяют получить угол полного отклонения стрелки до 90-100°. Малогабаритные измерители иногда выполняются с неподвижной рамкой и подвижным магнитом, укреплённым на одной оси со стрелкой. При этом удаётся увеличить угол полного отклонения стрелки до 240°.

Особо чувствительные измерители, служащие для измерений весьма малых токов (менее 0,01 мкА) и напряжений (менее 1 мкВ), называются гальванометрами. Они часто применяются в качестве нуль-индикаторов (индикаторов отсутствия в цепи тока или напряжения) при измерениях методами сравнения. По способу отсчёта различают гальванометры стрелочные и зеркальные; в последних отсчётная риска на шкале создаётся с помощью светового луча и зеркальца, укреплённого на подвижной части прибора.

Магнитоэлектрические измерители пригодны для измерений только на постоянном токе. Изменение направления тока в рамке приводите изменению направления вращающего момента и отклонению стрелки в обратную сторону. При включении измерителя в цепь переменного тока с частотой до 5-7 Гц стрелка будет непрерывно колебаться около нуля шкалы с этой частотой. При большей частоте тока подвижная система вследствие своей инерционности не успевает следовать за изменениями тока и стрелка остаётся в нулевом положении. Если через измеритель протекает пульсирующий ток, то отклонение стрелки определяется постоянной составляющей этого тока. Чтобы исключить при этом дрожание стрелки, измеритель шунтируют конденсатором большой ёмкости.

Измерители, предназначенные для работы в цепи постоянного тока, направление которого неизменно, имеют одностороннюю шкалу, одним из концов которой служит нулевое деление. Для получения правильного отклонения стрелки необходимо, чтобы ток протекал через рамку в направлении от зажима с обозначением «+» к зажиму с обозначением «-». Измерители, предназначенные для работы в цепях постоянного тока, направление которого может изменяться, снабжаются двусторонней шкалой, нулевое деление которой обычно располагается посредине; при протекании тока в приборе от зажима «+» к зажиму «-» стрелка отклоняется вправо.

Магнитоэлектрические измерители выдерживают кратковременную перегрузку, достигающую 10-кратного значения тока Iи, и 3-кратную длительную перегрузку. Они не чувствительны к внешним магнитным полям (из-за наличия сильного внутреннего магнитного поля), потребляют при измерениях небольшую мощность и могут быть выполнены всех классов точности.

Для измерений на переменном токе магнитоэлектрические измерители применяют совместно с полупроводниковыми, электронными, фотоэлектрическими или термопреобразователями ; в совокупности они образуют соответственно выпрямительные, электронные, фотоэлектрические или термоэлектрические приборы.

В измерительных приборах иногда используют электромагнитные, электродинамические и ферродинамические измерители, которые пригодны для непосредственного измерения как постоянных токов, так и среднеквадратических значений переменных токов, имеющих частоту до 2,5 кГц. Однако измерители этих типов значительно уступают магнитоэлектрическим в отношении чувствительности, точности и потребляемой при измерениях мощности. Кроме того, они имеют неравномерную шкалу, сжатую в начальной части, и чувствительны к воздействию внешних магнитных полей, для ослабления которых приходится использовать магнитные экраны и усложнять конструкцию приборов.

Определение электрических параметров магнитоэлектрических измерителей

При использовании в качестве измерителя магнитоэлектрического прибора измерительного механизма неизвестного типа параметры последнего - ток полного отклонения Iи и внутреннее сопротивление Rи - приходится определять опытным путём.

Рис. 2. Схемы измерения электрических параметров магнитоэлектрических измерителей

Сопротивление рамки Rи можно приближённо замерить омметром, имеющим необходимый предел измерений. При проверке высокочувствительных измерителей нужно соблюдать осторожность, так как большой ток омметра может их повредить. Если используется многопредельный батарейный омметр, то измерение следует начинать с наиболее высокоомного предела, при котором ток в цепи питания омметра наименьший. Переход на другие пределы допускается лишь в том случае, если это не вызывает зашкаливания стрелки измерителя.

Достаточно точно параметры измерителя могут быть определены по схеме на рис. 2, а. Схему питают от источника постоянного напряжения Б через резистор R1, служащий для ограничения тока в цепи. Реостатом R2 добиваются отклонения стрелки измерителя И на всю шкалу. При этом значение тока Iи отсчитывают по образцовому (опорному) микроамперметру (миллиамперметру) μА (При наладке, поверке и градуировке средств измерений в случае отсутствия образцовых приборов и мер применяют рабочие приборы и меры более высокого класса точности, чем испытуемые; такие приборы и меры будем называть опорными). Затем параллельно измерителю подключают опорный магазин сопротивлений Rо, изменением сопротивления которого добиваются уменьшения тока через измеритель ровно в два раза по сравнению с током в общей цепи. Это будет иметь место при сопротивлении Rо = Rи. Вместо магазина сопротивлений можно применить любой переменный резистор с последующим измерением его сопротивления Rо = Rи с помощью омметра или моста постоянного тока. Возможно также включение параллельно измерителю нерегулируемого резистора с известным сопротивлением R, желательно близким к предполагаемому сопротивлению Rи; тогда значение последнего определяется по формуле

Rи =(I/I1 - 1) * R,

где I и I1 - токи, отсчитываемые соответственно по приборам μA и И.

Если измеритель И имеет равномерную шкалу, содержащую αп делений, то можно применить схему, приведённую на рис. 2, б. Искомые параметры измерителя вычисляются по формулам:

Iи = U/(R1+R2) * αп/α1 ; Rи = (α2 * R2)/(α1-α2) - R1 ,

где U - напряжение питания, отсчитываемое по вольтметру V, α1 и α2 - отсчёты по шкале измерителя при установке переключателя В соответственно в положения 1 и 2, a R1 и R2 - известные сопротивления резисторов, которые берутся примерно одинаковых номиналов. Погрешность измерений тем меньше, чем ближе отсчёт α1 к концу шкалы, что достигается соответствующим выбором сопротивления

Магнитоэлектрические миллиамперметры и амперметры

Магнитоэлектрические измерители при непосредственном включении в электрические цепи могут быть применены лишь в качестве микроамперметров постоянного тока с пределом измерения, равным току полного отклонения Iи. Для расширения предела измерения измеритель И включают в цепь тока параллельно шунту - резистору малого сопротивления Rш (рис. 3); при этом через измеритель будет протекать лишь часть измеряемого тока и тем меньшая, чем меньше сопротивление Rш по сравнению с сопротивлением измерителя Rи. При радиоэлектронных измерениях максимально необходимый предел измерения постоянных токов редко превосходит 1000 мА (1 А).

При выбранном предельном значении измеряемого тока Iп через измеритель должен протекать ток полного отклонения Iи; это будет иметь место при сопротивлении шунта

Rш = Rи:(Iп/Iи - 1). (1)

Например, при необходимости расширения предела измерений микроамперметра типа М260, имеющего параметры Iп = 0,2 мА и Rи = 900 Ом, до значения Iп = 20 мА необходимо применить шунт сопротивлением Rш = 900 /(100-1) = 9,09 Ом.

Рис. 3. Схема градуировки магнитоэлектрического миллиамперметра (амперметра)

Шунты к миллиамперметрам изготовляются из манганиновой или константановой проволоки. Благодаря высокому удельному сопротивлению материала размеры шунтов получаются небольшими, что позволяет включать их непосредственно между зажимами прибора внутри или снаружи его кожуха. Если известно значение тока Iп (в амперах), то диаметр проволоки шунта d (в миллиметрах) выбирают из условия

d >= 0,92 I п 0,5 , (2)

при выполнении которого плотность тока в шунте не превышает 1,5 А/мм 2 . Например, шунт миллиамперметра с пределом измерения Iп = 20 мА должен изготовляться из проволоки диаметром 0,13 мм.

Подобрав проволоку подходящего диаметра d (в миллиметрах), длина её (в метрах), необходимая для изготовления шунта сопротивлением Rш (в омах), приближённо находится по формуле

L = (1,5...1,9)d 2 * Rш (3)

и точно подгоняется при включении прибора по схеме на рис. 3 последовательно с опорным миллиамперметром mА.

Шунты на большие токи (к амперметрам) обычно изготовляются из листового манганина. Для исключения влияния переходных сопротивлений контактов и сопротивлений соединительных проводников такие шунты имеют четыре зажима (рис. 4, а). Наружные массивные зажимы называются токовыми и служат для включения шунта в цепь измеряемого тока. Внутренние зажимы называются потенциальными и предназначены для подключения измерителя. Подобная конструкция также исключает возможность повреждения измерителя большим током при случайном отключении шунта.

Для уменьшения температурной погрешности измерений, вызываемой различной зависимостью от температуры сопротивлений рамки измерителя и шунта, последовательно с измерителем включают манганиновый резистор Rк (рис. 4, б); погрешность снижается во столько раз, во сколько увеличивается сопротивление цепи измерителя. Еще лучшие результаты достигаются при включении терморезистора Rк с отрицательным температурным коэффициентом сопротивления. При расчёте прибора с температурной компенсацией под сопротивлением Rи в расчётных формулах следует понимать суммарное сопротивление измерителя и резистора Rк.

Рис. 4. Схемы включения шунта на большие токи (а) и элемента температурной компенсации (б)

С учётом влияния шунта внутреннее сопротивление миллиамперметра (амперметра)

Rма = RиRш/(Rи+Rш). (4)

Для обеспечения достаточно высокой точности в широком диапазоне измеряемых токов прибор должен иметь несколько пределов измерений; это достигается применением ряда переключаемых шунтов, рассчитанных на различные значения предельного тока Iп.

Переходным множителем шкалы N называют отношение верхних предельных значений двух смежных пределов измерений. При N = 10, как, например, в четырёхпредельном миллиамперметре с пределами 1, 10, 100 и 1000 мА, шкала прибора, выполненная для одного из пределов (1 мА), может быть легко применена для измерения токов на остальных пределах посредством умножения отсчёта на соответствующий множитель 10, 100 или 1000. При этом диапазон измерений будет достигать 90% диапазона показаний, что приведёт к заметному возрастанию погрешности измерения тех значений токов, которым соответствуют отсчёты на начальных участках шкал.

Рис. 5. Шкалы многопредельных магнитоэлектрических миллиамперметров

С целью повышения точности измерений в некоторых приборах предельные значения измеряемых токов выбирают из ряда чисел 1, 5, 20, 100, 500 и т. д., применяя для отсчёта общую шкалу с несколькими рядами числовых отметок (рис. 5, а). Иногда предельные значения выбирают из ряда чисел 1, 3, 10, 30, 100 и т. д., что позволяет исключить отсчёт по первой трети шкалы; однако при этом шкала должна иметь два ряда отметок, проградуированных в значениях, кратных соответственно 3 и 10 (рис. 5, б).

Переключение шунтов, необходимое для перехода от одного предела измерений к другому, может осуществляться посредством переключателя при использовании на всех пределах общих входных зажимов (рис. 6) или с помощью системы разрезных гнёзд, половинки которых замыкаются между собой металлическим штепселем измерительного шнура (рис. 7). Особенностью схем на рис. 6, б, и 7, б является то, что в состав шунта каждого предела измерений входят резисторы шунтов других, менее чувствительных пределов.

Рис. 6. Схемы многопредельных миллиамперметров с переключателями пределов измерений.

При переключении под током предела измерений прибора возможно повреждение измерителя, если он окажется кратковременно включённым без шунта в цепь измеряемого тока. Во избежание этого конструкция переключателей (рис. 6) должна обеспечивать переход с одного контакта на другой без разрыва цепи. Соответственно конструкция разрезных гнёзд (рис. 7) должна позволять штепселю измерительного шнура при включении первоначально замыкаться с шунтом, а затем с цепью измерителя.

Рис. 7. Схемы многопредельных миллиамперметров со штепсельно-гнездовой коммутацией пределов измерений.

С целью предохранения измерителя от опасных перегрузок параллельно ему иногда ставят кнопку Кн с размыкающим контактом (рис. 7, б); измеритель включается в схему лишь при нажатой кнопке. Эффективным способом защиты чувствительных измерителей является шунтирование их (в прямом направлении) специально подобранными полупроводниковыми диодами; при этом, однако, возможно нарушение равномерности шкалы.

По сравнению с приборами, имеющими переключаемые шунты, более надёжными в работе являются многопредельные приборы с универсальными шунтами. Универсальный шунт представляет собой группу последовательно соединённых резисторов, образующих вместе с измерителем замкнутую цепь (рис. 8). Для подключения к исследуемой цепи используется общий минусовый зажим и зажим, соединённый с одним из отводов шунта. При этом образуются две параллельные ветви. Например, при установке переключателя В в положение 2 (рис. 8, а) в одну ветвь входят резисторы действующего участка шунта, имеющего сопротивление Rш.д = Rш2 + Rш3, во второй ветви последовательно с измерителем включён резистор Rш1. Сопротивление Rш.д должно быть таким, чтобы при предельном измеряемом токе Iп через измеритель протекал ток полного отклонения Iи. В общем случае

Rш.д = (Rш + Rи) (Iи/Iп). (5)

где Rш = Rш1 + Rш2 + Rш3 + ... есть полное сопротивление шунта.

Универсальный шунт в целом выполняет функцию действующего шунта на пределе 1, которому отвечает наименьшее предельное значение измеряемого тока Iп1; его сопротивление можно подсчитать по формуле (1). Если выбраны пределы измерений Iп2 = = N12*Iп1; Iп3 = N23*Iп2; Iп4 = N34*Iп3 и т. д., то сопротивления отдельных участков шунта определятся выражениями:

Rш2 + Rш3 + RШ4 + ... = Rш/N12;

Rш3 + Rш4 + ... = Rш/(N12*N23);

Rш4 + ... = Rш/(N12*N23*N34) и т. д. Разность сопротивлений из двух смежных равенств позволяет определить сопротивления отдельных компонентов шунта Rш1, Rш2, Rш3 и т. д.

Рис. 8. Схемы многопредельных миллиамперметров с универсальными шунтами

Из приведённых выше выражений видно, что переходные множители N12, N23, N34 и т. д. целиком определяются отношением сопротивлений отдельных участков шунта и совершенно не зависят от данных измерителя. Поэтому один и тот же универсальный шунт, присоединённый параллельно различным измерителям, будет изменять их пределы в одинаковое число раз; при этом исходный предел измерений определится формулой

Iп1 = Iи*(Rи/Rш + 1). (6)

Из схем на рис. 8 видно, что в приборах с универсальными шунтами пределы измерений могут выбираться как с помощью переключателей, так и посредством гнёзд обычного типа. Нарушение контакта в этих схемах безопасно для измерителя. Если примерное значение подлежащего измерению тока неизвестно, то перед подключением многопредельного прибора к исследуемой цепи следует устанавливать наибольший верхний предел измерений,

Градуировка магнитоэлектрических миллиамперметров и амперметров

Градуировка измерительного прибора заключается в определении его градуировочной характеристики, т. е. зависимости между значениями измеряемой величины и показаниями отсчётного устройства, выраженной в виде таблицы, графика или формулы. Практически градуировка стрелочного прибора завершается нанесением на его шкалу делений, отвечающих определённым численным значениям измеряемой величины.

Для магнитоэлектрических приборов, имеющих равномерные шкалы, основной задачей градуировки является установление соответствия конечного деления шкалы предельному значению измеряемой величины, что может быть выполнено с помощью схемы, подобной приведённой на рис. 3. Градуируемый прибор подключается к зажимам 1 и 2. Реостатом R в цепи, питаемой источником постоянного тока, устанавливают по опорному прибору mА предельное значение тока Iп и отмечают точку шкалы, до которой отклоняется стрелка измерителя И. Если градуируемый прибор имеет один предел, то за конечную точку шкалы может быть принята любая точка вблизи упора, ограничивающего перемещение стрелки. В многопредельных приборах с кратными шкалами такой произвольный выбор конца шкалы можно производить лишь на одном пределе, принимаемом за исходный.

Если стрелка при токе Iп не находится на конечном делении шкалы, необходима регулировка прибора. В однопредельных приборах или на исходном пределе многопредельного прибора эта регулировка может быть произведена с помощью магнитного шунта. При отсутствии последнего регулировку осуществляют подгонкой сопротивлений шунтов. Если при токе Iп стрелка не доходит до конечного деления, то сопротивление шунта Rш следует увеличить; при зашкаливании стрелки сопротивление шунта уменьшают.

При градуировке многопредельных приборов, работающих по схемам, приведённым на рис. 6, б, 7, б и 8, подгонка шунтов должна проводиться в определённом порядке, начиная с сопротивления шунта Rш, соответствующего наибольшему предельному току Iп3; затем последовательно подгоняются сопротивления шунтов Rш2 и Rш1. При переключении пределов может потребоваться замена опорного прибора, верхний предел измерений которого во всех случаях должен быть равен или несколько превышать предельное значение градуируемой шкалы.

Зная положения начального и конечного делений равномерной шкалы, легко определить положения всех промежуточных делений. Следует, однако, учитывать, что у некоторых магнитоэлектрических приборов вследствие конструктивных недостатков или особенностей измерительной схемы может не быть точной пропорциональности между угловым перемещением стрелки и измеряемым током. Поэтому желательно проверить градуировку шкалы в нескольких промежуточных точках, изменяя ток реостатом R. Резистор Rо служит для ограничения тока в цепи.

Градуировка должна выполняться при полностью собранном приборе, находящемся в нормальных рабочих условиях. Полученные опорные точки наносятся на поверхность шкалы остро отточенным карандашом (при снятом с кожуха измерителя стекле) или фиксируются по отметкам имеющейся шкалы прибора. Если старая шкала измерителя негодна, то изготовляется новая шкала из плотной гладкой бумаги, которая наклеивается на место старой шкалы клеем, стойким к сырости. Положение новой шкалы должно строго соответствовать положению, занимаемому старой шкалой при градуировке прибора. Хорошие результаты достигаются при вычерчивании шкалы чёрной тушью в увеличенном масштабе с последующим изготовлением её фотокопии требуемого размера.

Рассмотренные выше общие принципы градуировки приложимы к стрелочным измерительным приборам различного назначения.

Особенности измерения постоянных токов

Для измерения тока прибор (например, миллиамперметр) включают последовательно в исследуемую цепь; это приводит к возрастанию общего сопротивления цепи и уменьшению протекающего в ней тока. Степень этого уменьшения оценивается (в процентах) коэффициентом влияния миллиамперметра

Вма = 100*Rма/(Rма + Rц),

где Rц есть общее сопротивление цепи между точками подключения прибора (например, зажимами 1 и 2 на схеме рис. 3).

Умножая числитель и знаменатель правой части формулы на значение тока в цепи I и учитывая, что I*Rма есть падение напряжения на миллиамперметре Uма, а I (Rма + Rц) равно э.д.с. Е, действующей в исследуемой схеме, получаем

Вма = 100*Uма/Е.

В сложной (разветвлённой) цепи под э. д. с. Е нужно понимать напряжение холостого хода между точками разрыва цепи, к которым должен подключаться прибор.

Предельным значением напряжения Uма является падение напряжения на приборе Uп, вызывающее отклонение его стрелки до конечной отметки шкалы. Следовательно, предельно возможное значение коэффициента влияния при использовании данного прибора

Bп = 100Uп/E. (7)

Из приведённых формул следует, что чем меньше э. д. с. Е, тем сильнее влияет прибор на измеряемый ток. Например, если Uп/E = 0,1, то Вп = 10%, т. е. включение прибора может вызвать уменьшение тока в цепи на 10%; при Uп/E = 0,01 уменьшение тока не превосходит 1%. Поэтому при измерении тока накала радиоламп или эмиттерного тока транзисторов следует ожидать значительно большего изменения тока в цепи, чем при измерении анодных, экранных или коллекторных токов. Очевидно также, что при одинаковых пределах измерений меньшее влияние на измеряемый ток оказывает прибор, характеризуемый меньшим значением напряжения Uп. В многопредельных миллиамперметрах с переключаемыми шунтами (рис. 6 и 7) на всех пределах измерений максимальное падение напряжения на приборе одинаково и равно напряжению полного отклонения измерителя, т. е. Uп = Uи = Iи/Rи, а мощность, потребляемая прибором, ограничивается значением

Рп = IиUи = Iп*Iи*Rи. В миллиамперметрах с универсальными шунтами (рис. 8) падение напряжения на приборе равно Iи*Iи лишь на исходном пределе 1. На других пределах оно возрастает до значения Uп ≈ Iи*(Rп + Rш) (при увеличении потребляемой прибором мощности в (Rи + Rш)/Rи раз), так как представляет собой сумму падений напряжений на измерителе и включённом последовательно с ним участке шунта. Следовательно, прибор с универсальным шунтом при прочих равных условиях сильнее влияет на режим исследуемых цепей, чем прибор с переключаемыми шунтами.

Если взять полное сопротивление универсального шунта Rш >> Rи, то низший предел миллиамперметра будет близок к Iи, однако на других пределах падение напряжения на приборе может оказаться чрезмерно большим. Если же взять сопротивление Rш небольшим, то возрастёт наименьший предельный ток Iп1 прибора. Поэтому в каждом конкретном случае необходимо решать вопрос о допустимом значении сопротивления шунта Rш.

При включении магнитоэлектрического прибора в цепь пульсирующего или импульсного тока с целью измерения постоянной составляющей этого тока необходимо параллельно прибору присоединить конденсатор большой ёмкости, имеющий для переменной составляющей тока сопротивление, значительно меньшее внутреннего сопротивления прибора Rма. С целью устранения влияния ёмкости прибора относительно корпуса исследуемой установки место включения прибора в высокочастотные цепи выбирают таким образом, чтобы один из его зажимов непосредственно или через конденсатор большой ёмкости соединялся с корпусом.

В некоторых случаях в различные цепи исследуемого радиоэлектронного устройства включают постоянные шунты, что позволяет с помощью одного и того же магнитоэлектрического измерителя поочерёдно контролировать токи в этих цепях без их разрыва.

Задача 1. Рассчитать схему миллиамперметра с универсальным шунтом (рис. 8) на три предела измерений: 0,2; 2 и 20 мА при переходном множителе N = 10. Измеритель прибора - микроамперметр типа М94 - имеет данные: Iи= 150 мкА = 0,15 мА, Rи = 850 Ом, Uи = Iи/Rи = 0,128 В. Для каждого предела найти падение напряжения на приборе при предельном токе, а также максимально возможное влияние прибора на измеряемый ток, если в цепи последнего действует э. д. с. Е = 20 В.

1. На пределе 1 (Iп1 = 0,2 мА) шунтом к измерителю является универсальный шунт в целом. Полное сопротивление последнего, определённое по формуле (1), Rш = 2550 Ом.

Падение напряжения на приборе при предельном токе Uп1 = Uи = 0,128 В. Предельно возможный коэффициент влияния миллиамперметра Вп1 = (Uп1/E)*100= 0,64%.

2. Для предела 2 (Iп2 = 2 мА) сопротивление шунтирующего участка универсального шунта Rш2+ Rш3 = Rш/N = 255 Ом. Следовательно, сопротивление Rш1 = Rш - (Rш2 + Rш3) = 2295 Ом.

Предельное падение напряжения на приборе Uп2 = Iи/(Rи + Rш1) = 0,727 В. Предельный коэффициент влияния Вп2 = 100*Uп2/E = 3,63%.

3. Для предела 3 (Iп3 = 20 мА) Rш3 = Rш/N 2 = 25,5 Ом; Rш2 = 255-25,5 = 229,5 Ом; Uп3 = Iп*(Rи + Rш1 + Rш2) = 0,761 В; Вп3 = 100*п3/Е = 3,80%.

Задача 2. Рассчитать схему миллиамперметра с универсальным шунтом на три предела измерений: 5, 50 и 500 мА. Измеритель прибора - микроамперметр типа М260М - имеет данные: Iи = 500 мкА, Rи = 150 Ом. Определить влияние прибора на измеряемый ток, если измерения на пределах 5 и 50 мА производятся в цепях, в которых действуют э. д. с. не менее 200 В, а на пределе 500 мА - в цепи накала радиолампы, питаемой от батареи с э.д.с. 6 В.

Ответ: Rш= 16,67 Ом; Rш1 = 15 Ом; Rш2= 1,5 Ом; Rш3=0,17 Ом; Uп1 = 75 мВ; Вп1 = 0,037%; Uп2 = 82,5 мВ; Вп2 = 0,041%; Uп3 = 83 мВ; Вп3= 1,4%.

Ответ: 1) Rш1 = 16,67 Ом; Rш2 = 1,52 0м; Rш3=0,15 Ом; 2) Rш1 =15,15 Ом; Rш2= 1,37 Ом; Rш3 = 0,15 Ом.

Транзисторные микроамперметры постоянного тока

При необходимости измерения весьма малых токов, значительно меньших тока полного отклонения Iи имеющегося магнитоэлектрического измерителя, последний применяют совместно с усилителем постоянного тока. Наиболее простыми и экономичными являются усилители на биполярных транзисторах. Усиления тока можно добиться при включении транзисторов по схемам с общим эмиттером и общим коллектором, однако первая схема предпочтительнее, поскольку она обеспечивает меньшее входное сопротивление усилителя.

Рис. 9. Схемы однотранзисторных микроамперметров постоянного тока

Простейшая схема однотранзисторного микроамперметра, питаемого от источника с э.д.с. Е = 1,5...4,5 В, показана на рис. 9, а, сплошными линиями. Током базы Iб является измеряемый ток, при некотором номинальном значении которого Iн в цепи коллектора протекает ток Iк, равный току полного отклонения Iи измерителя И. Статический коэффициент передачи тока Вст = Iк/Iб = Iи/Iн, откуда номинальный измеряемый ток Iн = Iи/Bст. Например, при использовании транзистора типа ГТ115А, имеющего Вст = 60, и измерителя типа М261 с током Iи = 500 мкА номинальный ток Iн = 500/60 ≈ 8,3 мкА. Поскольку зависимость между токами Iк и Iб близка к линейной, то шкала измерителя, проградуированная в значениях измеряемого тока, будет почти равномерной (за исключением небольшого начального участка шкалы до 10% её длины). Включением специально подобранного шунта между входными зажимами можно повысить предельный измеряемый ток до удобного для расчётов значения (например, до 10 мкА).

В реальных схемах транзисторных микроамперметров принимают меры, направленные к стабилизации режима работы и коррекции возможных его отклонений. Прежде всего недопустимо (особенно при повышенном напряжении питания) размыкание цепи базы транзистора, которое может иметь место в процессе измерений. Поэтому базу соединяют с эмиттером через резистор небольшого сопротивления либо, как это показано штриховой линией на рис. 9, а, с отрицательным полюсом источника посредством резистора Rб с сопротивлением порядка сотен килоом. В последнем случае к базе подводится напряжение смещения, которое задаёт режим работы усилителя. Затем с целью подгонки требуемого номинального тока (предположим, 10 мкА для приведённого выше примера) параллельно измерителю (или последовательно с ним) включают подстроечный резистор Rш = (2...5) Rи.

Следует учесть, что при отсутствии измеряемого тока через измеритель будет протекать начальный ток коллектора Iк.н, достигающий 5-20 мкА и обусловленный наличием неуправляемого обратного тока коллектора Iк.о и тока в цепи базового резистора Rб. Действие тока Iк.н можно компенсировать установкой стрелки измерителя на нуль механическим корректором прибора. Однако рациональнее перед началом измерений производить электрическую установку нуля, например, с помощью вспомогательного элемента питания Е0 и реостата R0 = (5...10) Rи, создавая в цепи измерителя компенсационный ток I0, равный по значению, но обратный по направлению току Iк.н. Вместо двух источников питания можно применить один (рис. 9, б), включив параллельно ему делитель напряжения из двух резисторов R1 и R2 с сопротивлениями порядка сотен ом. При этом образуется схема моста постоянного тока (см. Мостовой метод измерения электрических сопротивлений), который уравновешивается изменением сопротивления одного из плеч (R0).

Необходимость усложнения исходной схемы однотранзисторного усилителя приводит к тому, что коэффициент усиления по току

Ki = Uи/Iн (8)

оказывается меньше коэффициента передачи тока Вст используемого транзистора. Более того, надежную работу транзисторного микроамперметра удаётся обеспечить лишь при условии выбора Ki << Вст.

Как известно, параметры транзистора существенно зависят от температуры окружающей среды. Изменение последней приводит к самопроизвольным колебаниям (дрейфу) обратного тока коллектора Iк.о, который в германиевых транзисторах возрастает почти в 2 раза на каждые 10 К увеличения температуры. Это вызывает заметное изменение коэффициента усиления по току Кi и входного сопротивления усилителя, что может привести к полному нарушению градуировочной характеристики прибора. Следует также учитывать и наблюдаемое с течением времени необратимое изменение параметров («старение») транзисторов, что создаёт необходимость в периодической проверке и коррекции градуировочной характеристики транзисторного прибора.

Если изменение тока Iк.o можно в какой-то степени компенсировать установкой нуля перед началом измерений, то для стабилизации коэффициента усиления Ki приходится принимать специальные меры. Так, смещение на базу (рис. 9, б) подают посредством делителя напряжения из резисторов Rб1 и Rб2, причём в качестве последнего иногда используют термистор, имеющий отрицательный температурный коэффициент сопротивления. Термистор можно заменить диодом Д, включённым параллельно резистору Rб1. С повышением температуры обратное сопротивление диода уменьшается, что приводит к такому перераспределению напряжений между электродами транзистора, которое противодействует возрастанию тока коллектора. В том же направлении действует и отрицательная обратная связь между коллектором и базой, появляющаяся благодаря подключению к коллектору (а не к минусу питания) вывода резистора Rб2. Наиболее эффективное действие оказывает отрицательная обратная связь, возникающая при включении в цепь эмиттера резистора Rэ.

Повышение устойчивости работы усилителя посредством применения достаточно глубокой отрицательной обратной связи приводит к малому отношению коэффициентов Ki/Bст. Поэтому для получения коэффициента усиления Ki, равного нескольким десяткам, приходится подбирать для микроамперметра германиевый транзистор с высоким коэффициентом передачи тока: Вст = 120...200.

В микроамперметрах возможно применение кремниевых транзисторов, которые по сравнению с германиевыми обладают параметрами, более стабильными как во времени, так и в отношении температурных влияний. Однако коэффициент Вст у кремниевых транзисторов обычно невелик. Повысить его можно путём использования схемы составного транзистора (рис. 9, в); последний имеет коэффициент передачи тока Вст примерно равный произведению соответствующих коэффициентов составляющих его транзисторов, т. е. Вст ≈ Вст1*Вст2. Однако обратный ток коллектора составного транзистора:

Iк.о ≈ Iк.о2 + Bст2*Iк.о1

значительно превышает соответствующие токи его компонентов и подвержен заметным температурным колебаниям, что приводит к необходимости стабилизации режима усилителя.

Высокой устойчивости работы транзисторного микроамперметра легче достигнуть при выполнении его усилителя по балансной схеме с двумя обычными или составными транзисторами, специально подобранными по идентичности их параметров (в первую очередь - по примерному равенству коэффициентов Вст и токов Iк.o). Типовая схема подобного прибора с элементами стабилизации и коррекции приведена на рис. 10. Поскольку начальные коллекторные токи транзисторов примерно в одинаковой степени зависят от температуры и напряжения питания, а через измеритель они протекают в противоположных направлениях, компенсируя друг друга, то повышаются устойчивость нулевого положения стрелки измерителя и равномерность его шкалы. Глубокая отрицательная обратная связь, обеспечиваемая резисторами Rэ и Rб.к, повышает стабильность коэффициента усиления по току. Балансная схема повышает также чувствительность микроамперметра, поскольку измеряемый ток создаёт на входных электродах обоих транзисторов потенциалы различных знаков; в результате внутреннее сопротивление одного транзистора увеличивается, а другого - уменьшается, что усиливает разбаланс места постоянного тока, в диагональ которого включён измеритель И.

При налаживании балансного микроамперметра подстроечным потенциометром Rк осуществляют уравнивание потенциалов коллекторов, что контролируется по отсутствию показаний измерителя при замкнутых накоротко входных зажимах. Установка нуля в процессе эксплуатации производится потенциометром Rб посредством уравнивания токов баз при разомкнутых входных зажимах. Следует учитывать, что эти две регулировки взаимозависимы и при отладке прибора их необходимо несколько раз поочерёдно повторять.

Рис. 10. Балансная схема транзисторного микроамперметра

Входное сопротивление микроамперметра Rмка в основном определяется суммарным сопротивлением R = Rб1 + Rб2 + R6, действующим между базами транзисторов, и примерно составляет (0,8...0,9)*R; его точное определение, так же как и номинального предельного тока Iн, приходится осуществлять опытным путём. Подгонку требуемого значения номинального тока удобно производить с помощью шунтирующей цепочки резисторов сопротивление которой необходимо учитывать при определении входного сопротивления Rмка.

Стабильность входного сопротивления позволяет производить расширение предела измерений в направлении понижения чувствительности с помощью шунтов. Сопротивление шунта, необходимое для получения предельного измеряемого тока Iп,

Rш.п = Rмка*Iн/(Iп - Iн) = Rмка*Iи/(Ki*Iп - Iи) (9)

При указанных на схеме численных данных и использовании транзисторов с Вст ≈ 150 балансный микроамперметр имеет коэффициент усиления Ki ≈ 34 и посредством подстроечного резистора Rm может быть подогнан под номинальный ток Iн = 10 мкА. При необходимости получения номинального тока примерно 1 мкА усилитель дополняется вторым каскадом, который часто выполняется по схеме эмиттерного повторителя, что облегчает согласование выходного сопротивления усилителя с малым сопротивлением измерителя И.

Измерение силы тока (сокращено - измерение тока) полезное умение, которое не раз пригодится в жизни. Знать величину силы тока надо, когда следует определить потребляемую мощность. Для измерения тока применяется прибор под названием Амперметр.

Есть ток переменный и ток постоянный , следовательно, для их измерения применяются различные измерительные приборы. Ток всегда обозначается буквой I, а его сила измеряется в Амперах и обозначается буквой А. Например, I=2 А показывает, что сила тока в проверяемой цепи равняется 2 Амперам.

Рассмотрим подробно, как маркируются различные измерительные приборы для измерения разных видов токов.

  • На измерительном приборе для измерения постоянного тока перед буквой А наносится символ "-".
  • На измерительном приборе для измерения переменного тока, в том же месте наносится символ "~".
  • ~А прибор для измерения переменного тока.
  • -А прибор для измерения постоянного тока.

Вот фотография амперметра, предназначенного для измерения постоянного тока .

Соответственно закону, сила тока протекающего в замкнутой цепи, в любой его точке равна одной и той же величине. В итоге, чтобы измерить ток, надо разъединить цепь на любом участке удобным для подсоединения измерительного прибора.

Следует помнить, что величина напряжения присутствующего в электрической цепи , не оказывает никакого влияния на измерение тока . Источником тока может быть, как и бытовая электросеть на 220 В, так и батарейка на 1,5 В и т.д.

Собираясь измерять силу тока в цепи обратите тщательное внимание, какой ток протекает в цепи, постоянный или переменный. Возьмите соответствующий измерительный прибор и если не знаете предполагаемую силу тока в цепи, поставьте переключатель измерения силы тока в максимальное положение.

Рассмотрим подробно как измерить силу тока электроприбором.

Для безопасности измерения потребляемого тока электроприборами сделаем самодельный удлинитель с двумя розетками. После сборки получим удлинитель очень похожий на стандартный магазинный удлинитель.

Но если разобрать и сравнить между собой, самодельный и магазинный удлинитель, то во внутренней структуре четко увидим отличия. Выводы внутри розеток самодельного удлинителя соединены последовательно, а в магазином соединены параллельно.

На фотографии прекрасно видно, что верхние выводы соединены между собой проводом желтого цвета, а на нижние клеммы розеток подается сетевое напряжение.

Теперь приступаем к измерению тока, для этого вставляем в одну из розеток вилку электроприбора, а в другую розетку, щупы амперметры. Перед измерением тока , не забываем прочитанную информацию про то, как надо правильно и безопасно измерять ток.

Теперь рассмотрим как правильно интерпретировать показания стрелочного амперметра. При измерении потребляемого тока прибора стрелка амперметра остановилась на делении 50, переключатель был установлен на максимальный предел измерения в 3 Ампера. Шкала моего амперметра имеет 100 делений. Значит, легко определить измеренную силу тока по формуле (3/100) Х 50=1,5 Ампера.

Формула расчета мощности прибора по потребляемой силе тока.

Обладая данными о размере силы тока потребляемым любым электроприбором (телевизор, холодильник, утюг, сварка и т.д.), можно с легкостью определить, какая у этого электроприбора потребляемая мощность. В мире существует физическая закономерность, которому всегда подчиняется электричество. Первооткрыватели этой закономерности Эмиль Ленц и Джеймс Джоуль и в честь них, она теперь называется Закон Джоуля - Ленца.

  • I - сила тока, измеряемая в Амперах (А);
  • U - напряжение, измеряемое в Вольтах (В);
  • P - мощность, измеряемая в Ваттах (Вт).

Проведем один из расчетов тока.

Измерил ток потребления холодильника и он равняется 7 Амперам. Напряжение в сети равно 220 В. Следовательно, потребляемая мощность холодильника равняется 220 В Х 7 А=1540 Вт.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!