Энциклопедия мобильной связи

Приборы для измерения постоянных токов. Перед измерением следует подготовить имеющийся у вас измерительный прибор к работе

Измерение постоянных токов чаще всего производится магнитоэлектрическими гальванометрами, микроамперметрами, миллиамперметрами и амперметрами, основной частью которых является магнитоэлектрический измерительный механизм (измеритель). Устройство одной из распространённых конструкций стрелочного измерителя показано на рис. 1. Измеритель содержит подковообразный магнит 1. В воздушном зазоре между его полюсными наконечниками 2 и неподвижным цилиндрическим сердечником 5, выполненными из магнитномягкого материала, создаётся равномерное магнитное поле, линии индукции которого перпендикулярны к поверхности сердечника. В этом зазоре помещается рамка 4, намотанная тонким медным изолированным проводом (диаметром 0,02...0,2 мм) на лёгком бумажном или алюминиевом каркасе прямоугольной формы. Рамка может поворачиваться вместе с осью 6 и стрелкой 10, конец которой перемещается над шкалой. Плоские спиральные пружины 5 служат для создания момента, противодействующего повороту рамки, а также для подвода тока к рамке. Одна пружина закреплена между осью и корпусом. Вторая пружина одним концом прикреплена к оси, а другим - к рычагу корректора 7, вилка которого охватывает эксцентричный стержень винта 8. Вращением этого винта достигается установка стрелки на нулевое деление шкалы. Противовесы 9 служат для уравновешивания подвижной части измерителя с целью стабилизации положения стрелки при изменении положения прибора.

Рис. 1. Устройство магнитоэлектрического измерительного механизма.

Измеряемый ток, проходя по виткам рамки, взаимодействует с магнитным полем постоянного магнита. Создаваемый при этом вращающий момент, направление которого определяется известным правилом левой руки, вызывает поворот рамки на такой угол, при котором он уравновешивается противодействующим моментом, возникающим при закручивании пружин 5. Благодаря равномерности постоянного магнитного поля в воздушном зазоре вращающий момент, а следовательно, и угол отклонения стрелки оказываются пропорциональными току, протекающему через рамку. Поэтому магнитоэлектрические приборы имеют равномерные шкалы. Другие величины, влияющие на значение вращающего момента магнитная индукция в воздушном зазоре, число витков и площадь рамки - остаются постоянными и в совокупности с силой упругости пружин определяют чувствительность измерителя.

При повороте рамки в её алюминиевом каркасе индуцируются токи, взаимодействие которых с полем постоянного магнита создаёт тормозной момент, быстро успокаивающий подвижную часть измерителя (время успокоения не превышает 3 с).

Измерители характеризуются тремя электрическими параметрами: а) током полного отклонения Iи, вызывающим отклонение стрелки до конца шкалы; б) напряжением полного отклонения Uи, т. е. напряжением на рамке измерителя, создающим в её цепи ток Iи; в) внутренним сопротивлением Rи, которое является сопротивлением рамки. Эти параметры взаимосвязаны законом Ома:

В радиоизмерительных приборах применяют различные типы магнитоэлектрических измерителей, ток полного отклонения которых обычно лежит в пределах 10...1000 мкА. Измерители, у которых ток полного отклонения не превышает 50-100 мкА, считаются высокочувствительными.

Некоторые измерители снабжаются магнитным шунтом в виде стальной пластинки, которую можно приближать к торцовым поверхностям полюсных наконечников и магнита или удалять от них. При этом будет соответственно уменьшаться или возрастать в небольших пределах ток полного отклонения I, вследствие изменения воздействующего на рамку магнитного потока из-за ответвления части полного магнитного потока через шунт.

Напряжение полного отклонения Uи для большинства измерителей лежит в пределах 30-300 мВ. Сопротивление рамки Rи зависит от периметра рамки, числа витков и диаметра провода. Чем чувствительнее измеритель, тем больше витков из более тонкого провода имеет его рамка и тем больше её сопротивление. Повышение чувствительности измерителей достигается также применением более мощных магнитов, бескаркасных рамок, пружин с малым противодействующим моментом и подвеской подвижной части на растяжках (двух тонких нитях).

В чувствительных измерителях с бескаркасными рамками стрелка, отклоняясь под действием проходящего по рамке тока, совершает ряд колебаний, прежде чем остановиться в положении равновесия. Для уменьшения времени успокоения стрелки рамку шунтируют резистором с сопротивлением порядка тысяч или сотен Ом. Роль последнего иногда выполняет электрическая схема прибора, включённая параллельно рамке.

Измерители с подвижными рамками позволяют получить угол полного отклонения стрелки до 90-100°. Малогабаритные измерители иногда выполняются с неподвижной рамкой и подвижным магнитом, укреплённым на одной оси со стрелкой. При этом удаётся увеличить угол полного отклонения стрелки до 240°.

Особо чувствительные измерители, служащие для измерений весьма малых токов (менее 0,01 мкА) и напряжений (менее 1 мкВ), называются гальванометрами. Они часто применяются в качестве нуль-индикаторов (индикаторов отсутствия в цепи тока или напряжения) при измерениях методами сравнения. По способу отсчёта различают гальванометры стрелочные и зеркальные; в последних отсчётная риска на шкале создаётся с помощью светового луча и зеркальца, укреплённого на подвижной части прибора.

Магнитоэлектрические измерители пригодны для измерений только на постоянном токе. Изменение направления тока в рамке приводите изменению направления вращающего момента и отклонению стрелки в обратную сторону. При включении измерителя в цепь переменного тока с частотой до 5-7 Гц стрелка будет непрерывно колебаться около нуля шкалы с этой частотой. При большей частоте тока подвижная система вследствие своей инерционности не успевает следовать за изменениями тока и стрелка остаётся в нулевом положении. Если через измеритель протекает пульсирующий ток, то отклонение стрелки определяется постоянной составляющей этого тока. Чтобы исключить при этом дрожание стрелки, измеритель шунтируют конденсатором большой ёмкости.

Измерители, предназначенные для работы в цепи постоянного тока, направление которого неизменно, имеют одностороннюю шкалу, одним из концов которой служит нулевое деление. Для получения правильного отклонения стрелки необходимо, чтобы ток протекал через рамку в направлении от зажима с обозначением «+» к зажиму с обозначением «-». Измерители, предназначенные для работы в цепях постоянного тока, направление которого может изменяться, снабжаются двусторонней шкалой, нулевое деление которой обычно располагается посредине; при протекании тока в приборе от зажима «+» к зажиму «-» стрелка отклоняется вправо.

Магнитоэлектрические измерители выдерживают кратковременную перегрузку, достигающую 10-кратного значения тока Iи, и 3-кратную длительную перегрузку. Они не чувствительны к внешним магнитным полям (из-за наличия сильного внутреннего магнитного поля), потребляют при измерениях небольшую мощность и могут быть выполнены всех классов точности.

Для измерений на переменном токе магнитоэлектрические измерители применяют совместно с полупроводниковыми, электронными, фотоэлектрическими или термопреобразователями ; в совокупности они образуют соответственно выпрямительные, электронные, фотоэлектрические или термоэлектрические приборы.

В измерительных приборах иногда используют электромагнитные, электродинамические и ферродинамические измерители, которые пригодны для непосредственного измерения как постоянных токов, так и среднеквадратических значений переменных токов, имеющих частоту до 2,5 кГц. Однако измерители этих типов значительно уступают магнитоэлектрическим в отношении чувствительности, точности и потребляемой при измерениях мощности. Кроме того, они имеют неравномерную шкалу, сжатую в начальной части, и чувствительны к воздействию внешних магнитных полей, для ослабления которых приходится использовать магнитные экраны и усложнять конструкцию приборов.

Определение электрических параметров магнитоэлектрических измерителей

При использовании в качестве измерителя магнитоэлектрического прибора измерительного механизма неизвестного типа параметры последнего - ток полного отклонения Iи и внутреннее сопротивление Rи - приходится определять опытным путём.

Рис. 2. Схемы измерения электрических параметров магнитоэлектрических измерителей

Сопротивление рамки Rи можно приближённо замерить омметром, имеющим необходимый предел измерений. При проверке высокочувствительных измерителей нужно соблюдать осторожность, так как большой ток омметра может их повредить. Если используется многопредельный батарейный омметр, то измерение следует начинать с наиболее высокоомного предела, при котором ток в цепи питания омметра наименьший. Переход на другие пределы допускается лишь в том случае, если это не вызывает зашкаливания стрелки измерителя.

Достаточно точно параметры измерителя могут быть определены по схеме на рис. 2, а. Схему питают от источника постоянного напряжения Б через резистор R1, служащий для ограничения тока в цепи. Реостатом R2 добиваются отклонения стрелки измерителя И на всю шкалу. При этом значение тока Iи отсчитывают по образцовому (опорному) микроамперметру (миллиамперметру) μА (При наладке, поверке и градуировке средств измерений в случае отсутствия образцовых приборов и мер применяют рабочие приборы и меры более высокого класса точности, чем испытуемые; такие приборы и меры будем называть опорными). Затем параллельно измерителю подключают опорный магазин сопротивлений Rо, изменением сопротивления которого добиваются уменьшения тока через измеритель ровно в два раза по сравнению с током в общей цепи. Это будет иметь место при сопротивлении Rо = Rи. Вместо магазина сопротивлений можно применить любой переменный резистор с последующим измерением его сопротивления Rо = Rи с помощью омметра или моста постоянного тока. Возможно также включение параллельно измерителю нерегулируемого резистора с известным сопротивлением R, желательно близким к предполагаемому сопротивлению Rи; тогда значение последнего определяется по формуле

Rи =(I/I1 - 1) * R,

где I и I1 - токи, отсчитываемые соответственно по приборам μA и И.

Если измеритель И имеет равномерную шкалу, содержащую αп делений, то можно применить схему, приведённую на рис. 2, б. Искомые параметры измерителя вычисляются по формулам:

Iи = U/(R1+R2) * αп/α1 ; Rи = (α2 * R2)/(α1-α2) - R1 ,

где U - напряжение питания, отсчитываемое по вольтметру V, α1 и α2 - отсчёты по шкале измерителя при установке переключателя В соответственно в положения 1 и 2, a R1 и R2 - известные сопротивления резисторов, которые берутся примерно одинаковых номиналов. Погрешность измерений тем меньше, чем ближе отсчёт α1 к концу шкалы, что достигается соответствующим выбором сопротивления

Магнитоэлектрические миллиамперметры и амперметры

Магнитоэлектрические измерители при непосредственном включении в электрические цепи могут быть применены лишь в качестве микроамперметров постоянного тока с пределом измерения, равным току полного отклонения Iи. Для расширения предела измерения измеритель И включают в цепь тока параллельно шунту - резистору малого сопротивления Rш (рис. 3); при этом через измеритель будет протекать лишь часть измеряемого тока и тем меньшая, чем меньше сопротивление Rш по сравнению с сопротивлением измерителя Rи. При радиоэлектронных измерениях максимально необходимый предел измерения постоянных токов редко превосходит 1000 мА (1 А).

При выбранном предельном значении измеряемого тока Iп через измеритель должен протекать ток полного отклонения Iи; это будет иметь место при сопротивлении шунта

Rш = Rи:(Iп/Iи - 1). (1)

Например, при необходимости расширения предела измерений микроамперметра типа М260, имеющего параметры Iп = 0,2 мА и Rи = 900 Ом, до значения Iп = 20 мА необходимо применить шунт сопротивлением Rш = 900 /(100-1) = 9,09 Ом.

Рис. 3. Схема градуировки магнитоэлектрического миллиамперметра (амперметра)

Шунты к миллиамперметрам изготовляются из манганиновой или константановой проволоки. Благодаря высокому удельному сопротивлению материала размеры шунтов получаются небольшими, что позволяет включать их непосредственно между зажимами прибора внутри или снаружи его кожуха. Если известно значение тока Iп (в амперах), то диаметр проволоки шунта d (в миллиметрах) выбирают из условия

d >= 0,92 I п 0,5 , (2)

при выполнении которого плотность тока в шунте не превышает 1,5 А/мм 2 . Например, шунт миллиамперметра с пределом измерения Iп = 20 мА должен изготовляться из проволоки диаметром 0,13 мм.

Подобрав проволоку подходящего диаметра d (в миллиметрах), длина её (в метрах), необходимая для изготовления шунта сопротивлением Rш (в омах), приближённо находится по формуле

L = (1,5...1,9)d 2 * Rш (3)

и точно подгоняется при включении прибора по схеме на рис. 3 последовательно с опорным миллиамперметром mА.

Шунты на большие токи (к амперметрам) обычно изготовляются из листового манганина. Для исключения влияния переходных сопротивлений контактов и сопротивлений соединительных проводников такие шунты имеют четыре зажима (рис. 4, а). Наружные массивные зажимы называются токовыми и служат для включения шунта в цепь измеряемого тока. Внутренние зажимы называются потенциальными и предназначены для подключения измерителя. Подобная конструкция также исключает возможность повреждения измерителя большим током при случайном отключении шунта.

Для уменьшения температурной погрешности измерений, вызываемой различной зависимостью от температуры сопротивлений рамки измерителя и шунта, последовательно с измерителем включают манганиновый резистор Rк (рис. 4, б); погрешность снижается во столько раз, во сколько увеличивается сопротивление цепи измерителя. Еще лучшие результаты достигаются при включении терморезистора Rк с отрицательным температурным коэффициентом сопротивления. При расчёте прибора с температурной компенсацией под сопротивлением Rи в расчётных формулах следует понимать суммарное сопротивление измерителя и резистора Rк.

Рис. 4. Схемы включения шунта на большие токи (а) и элемента температурной компенсации (б)

С учётом влияния шунта внутреннее сопротивление миллиамперметра (амперметра)

Rма = RиRш/(Rи+Rш). (4)

Для обеспечения достаточно высокой точности в широком диапазоне измеряемых токов прибор должен иметь несколько пределов измерений; это достигается применением ряда переключаемых шунтов, рассчитанных на различные значения предельного тока Iп.

Переходным множителем шкалы N называют отношение верхних предельных значений двух смежных пределов измерений. При N = 10, как, например, в четырёхпредельном миллиамперметре с пределами 1, 10, 100 и 1000 мА, шкала прибора, выполненная для одного из пределов (1 мА), может быть легко применена для измерения токов на остальных пределах посредством умножения отсчёта на соответствующий множитель 10, 100 или 1000. При этом диапазон измерений будет достигать 90% диапазона показаний, что приведёт к заметному возрастанию погрешности измерения тех значений токов, которым соответствуют отсчёты на начальных участках шкал.

Рис. 5. Шкалы многопредельных магнитоэлектрических миллиамперметров

С целью повышения точности измерений в некоторых приборах предельные значения измеряемых токов выбирают из ряда чисел 1, 5, 20, 100, 500 и т. д., применяя для отсчёта общую шкалу с несколькими рядами числовых отметок (рис. 5, а). Иногда предельные значения выбирают из ряда чисел 1, 3, 10, 30, 100 и т. д., что позволяет исключить отсчёт по первой трети шкалы; однако при этом шкала должна иметь два ряда отметок, проградуированных в значениях, кратных соответственно 3 и 10 (рис. 5, б).

Переключение шунтов, необходимое для перехода от одного предела измерений к другому, может осуществляться посредством переключателя при использовании на всех пределах общих входных зажимов (рис. 6) или с помощью системы разрезных гнёзд, половинки которых замыкаются между собой металлическим штепселем измерительного шнура (рис. 7). Особенностью схем на рис. 6, б, и 7, б является то, что в состав шунта каждого предела измерений входят резисторы шунтов других, менее чувствительных пределов.

Рис. 6. Схемы многопредельных миллиамперметров с переключателями пределов измерений.

При переключении под током предела измерений прибора возможно повреждение измерителя, если он окажется кратковременно включённым без шунта в цепь измеряемого тока. Во избежание этого конструкция переключателей (рис. 6) должна обеспечивать переход с одного контакта на другой без разрыва цепи. Соответственно конструкция разрезных гнёзд (рис. 7) должна позволять штепселю измерительного шнура при включении первоначально замыкаться с шунтом, а затем с цепью измерителя.

Рис. 7. Схемы многопредельных миллиамперметров со штепсельно-гнездовой коммутацией пределов измерений.

С целью предохранения измерителя от опасных перегрузок параллельно ему иногда ставят кнопку Кн с размыкающим контактом (рис. 7, б); измеритель включается в схему лишь при нажатой кнопке. Эффективным способом защиты чувствительных измерителей является шунтирование их (в прямом направлении) специально подобранными полупроводниковыми диодами; при этом, однако, возможно нарушение равномерности шкалы.

По сравнению с приборами, имеющими переключаемые шунты, более надёжными в работе являются многопредельные приборы с универсальными шунтами. Универсальный шунт представляет собой группу последовательно соединённых резисторов, образующих вместе с измерителем замкнутую цепь (рис. 8). Для подключения к исследуемой цепи используется общий минусовый зажим и зажим, соединённый с одним из отводов шунта. При этом образуются две параллельные ветви. Например, при установке переключателя В в положение 2 (рис. 8, а) в одну ветвь входят резисторы действующего участка шунта, имеющего сопротивление Rш.д = Rш2 + Rш3, во второй ветви последовательно с измерителем включён резистор Rш1. Сопротивление Rш.д должно быть таким, чтобы при предельном измеряемом токе Iп через измеритель протекал ток полного отклонения Iи. В общем случае

Rш.д = (Rш + Rи) (Iи/Iп). (5)

где Rш = Rш1 + Rш2 + Rш3 + ... есть полное сопротивление шунта.

Универсальный шунт в целом выполняет функцию действующего шунта на пределе 1, которому отвечает наименьшее предельное значение измеряемого тока Iп1; его сопротивление можно подсчитать по формуле (1). Если выбраны пределы измерений Iп2 = = N12*Iп1; Iп3 = N23*Iп2; Iп4 = N34*Iп3 и т. д., то сопротивления отдельных участков шунта определятся выражениями:

Rш2 + Rш3 + RШ4 + ... = Rш/N12;

Rш3 + Rш4 + ... = Rш/(N12*N23);

Rш4 + ... = Rш/(N12*N23*N34) и т. д. Разность сопротивлений из двух смежных равенств позволяет определить сопротивления отдельных компонентов шунта Rш1, Rш2, Rш3 и т. д.

Рис. 8. Схемы многопредельных миллиамперметров с универсальными шунтами

Из приведённых выше выражений видно, что переходные множители N12, N23, N34 и т. д. целиком определяются отношением сопротивлений отдельных участков шунта и совершенно не зависят от данных измерителя. Поэтому один и тот же универсальный шунт, присоединённый параллельно различным измерителям, будет изменять их пределы в одинаковое число раз; при этом исходный предел измерений определится формулой

Iп1 = Iи*(Rи/Rш + 1). (6)

Из схем на рис. 8 видно, что в приборах с универсальными шунтами пределы измерений могут выбираться как с помощью переключателей, так и посредством гнёзд обычного типа. Нарушение контакта в этих схемах безопасно для измерителя. Если примерное значение подлежащего измерению тока неизвестно, то перед подключением многопредельного прибора к исследуемой цепи следует устанавливать наибольший верхний предел измерений,

Градуировка магнитоэлектрических миллиамперметров и амперметров

Градуировка измерительного прибора заключается в определении его градуировочной характеристики, т. е. зависимости между значениями измеряемой величины и показаниями отсчётного устройства, выраженной в виде таблицы, графика или формулы. Практически градуировка стрелочного прибора завершается нанесением на его шкалу делений, отвечающих определённым численным значениям измеряемой величины.

Для магнитоэлектрических приборов, имеющих равномерные шкалы, основной задачей градуировки является установление соответствия конечного деления шкалы предельному значению измеряемой величины, что может быть выполнено с помощью схемы, подобной приведённой на рис. 3. Градуируемый прибор подключается к зажимам 1 и 2. Реостатом R в цепи, питаемой источником постоянного тока, устанавливают по опорному прибору mА предельное значение тока Iп и отмечают точку шкалы, до которой отклоняется стрелка измерителя И. Если градуируемый прибор имеет один предел, то за конечную точку шкалы может быть принята любая точка вблизи упора, ограничивающего перемещение стрелки. В многопредельных приборах с кратными шкалами такой произвольный выбор конца шкалы можно производить лишь на одном пределе, принимаемом за исходный.

Если стрелка при токе Iп не находится на конечном делении шкалы, необходима регулировка прибора. В однопредельных приборах или на исходном пределе многопредельного прибора эта регулировка может быть произведена с помощью магнитного шунта. При отсутствии последнего регулировку осуществляют подгонкой сопротивлений шунтов. Если при токе Iп стрелка не доходит до конечного деления, то сопротивление шунта Rш следует увеличить; при зашкаливании стрелки сопротивление шунта уменьшают.

При градуировке многопредельных приборов, работающих по схемам, приведённым на рис. 6, б, 7, б и 8, подгонка шунтов должна проводиться в определённом порядке, начиная с сопротивления шунта Rш, соответствующего наибольшему предельному току Iп3; затем последовательно подгоняются сопротивления шунтов Rш2 и Rш1. При переключении пределов может потребоваться замена опорного прибора, верхний предел измерений которого во всех случаях должен быть равен или несколько превышать предельное значение градуируемой шкалы.

Зная положения начального и конечного делений равномерной шкалы, легко определить положения всех промежуточных делений. Следует, однако, учитывать, что у некоторых магнитоэлектрических приборов вследствие конструктивных недостатков или особенностей измерительной схемы может не быть точной пропорциональности между угловым перемещением стрелки и измеряемым током. Поэтому желательно проверить градуировку шкалы в нескольких промежуточных точках, изменяя ток реостатом R. Резистор Rо служит для ограничения тока в цепи.

Градуировка должна выполняться при полностью собранном приборе, находящемся в нормальных рабочих условиях. Полученные опорные точки наносятся на поверхность шкалы остро отточенным карандашом (при снятом с кожуха измерителя стекле) или фиксируются по отметкам имеющейся шкалы прибора. Если старая шкала измерителя негодна, то изготовляется новая шкала из плотной гладкой бумаги, которая наклеивается на место старой шкалы клеем, стойким к сырости. Положение новой шкалы должно строго соответствовать положению, занимаемому старой шкалой при градуировке прибора. Хорошие результаты достигаются при вычерчивании шкалы чёрной тушью в увеличенном масштабе с последующим изготовлением её фотокопии требуемого размера.

Рассмотренные выше общие принципы градуировки приложимы к стрелочным измерительным приборам различного назначения.

Особенности измерения постоянных токов

Для измерения тока прибор (например, миллиамперметр) включают последовательно в исследуемую цепь; это приводит к возрастанию общего сопротивления цепи и уменьшению протекающего в ней тока. Степень этого уменьшения оценивается (в процентах) коэффициентом влияния миллиамперметра

Вма = 100*Rма/(Rма + Rц),

где Rц есть общее сопротивление цепи между точками подключения прибора (например, зажимами 1 и 2 на схеме рис. 3).

Умножая числитель и знаменатель правой части формулы на значение тока в цепи I и учитывая, что I*Rма есть падение напряжения на миллиамперметре Uма, а I (Rма + Rц) равно э.д.с. Е, действующей в исследуемой схеме, получаем

Вма = 100*Uма/Е.

В сложной (разветвлённой) цепи под э. д. с. Е нужно понимать напряжение холостого хода между точками разрыва цепи, к которым должен подключаться прибор.

Предельным значением напряжения Uма является падение напряжения на приборе Uп, вызывающее отклонение его стрелки до конечной отметки шкалы. Следовательно, предельно возможное значение коэффициента влияния при использовании данного прибора

Bп = 100Uп/E. (7)

Из приведённых формул следует, что чем меньше э. д. с. Е, тем сильнее влияет прибор на измеряемый ток. Например, если Uп/E = 0,1, то Вп = 10%, т. е. включение прибора может вызвать уменьшение тока в цепи на 10%; при Uп/E = 0,01 уменьшение тока не превосходит 1%. Поэтому при измерении тока накала радиоламп или эмиттерного тока транзисторов следует ожидать значительно большего изменения тока в цепи, чем при измерении анодных, экранных или коллекторных токов. Очевидно также, что при одинаковых пределах измерений меньшее влияние на измеряемый ток оказывает прибор, характеризуемый меньшим значением напряжения Uп. В многопредельных миллиамперметрах с переключаемыми шунтами (рис. 6 и 7) на всех пределах измерений максимальное падение напряжения на приборе одинаково и равно напряжению полного отклонения измерителя, т. е. Uп = Uи = Iи/Rи, а мощность, потребляемая прибором, ограничивается значением

Рп = IиUи = Iп*Iи*Rи. В миллиамперметрах с универсальными шунтами (рис. 8) падение напряжения на приборе равно Iи*Iи лишь на исходном пределе 1. На других пределах оно возрастает до значения Uп ≈ Iи*(Rп + Rш) (при увеличении потребляемой прибором мощности в (Rи + Rш)/Rи раз), так как представляет собой сумму падений напряжений на измерителе и включённом последовательно с ним участке шунта. Следовательно, прибор с универсальным шунтом при прочих равных условиях сильнее влияет на режим исследуемых цепей, чем прибор с переключаемыми шунтами.

Если взять полное сопротивление универсального шунта Rш >> Rи, то низший предел миллиамперметра будет близок к Iи, однако на других пределах падение напряжения на приборе может оказаться чрезмерно большим. Если же взять сопротивление Rш небольшим, то возрастёт наименьший предельный ток Iп1 прибора. Поэтому в каждом конкретном случае необходимо решать вопрос о допустимом значении сопротивления шунта Rш.

При включении магнитоэлектрического прибора в цепь пульсирующего или импульсного тока с целью измерения постоянной составляющей этого тока необходимо параллельно прибору присоединить конденсатор большой ёмкости, имеющий для переменной составляющей тока сопротивление, значительно меньшее внутреннего сопротивления прибора Rма. С целью устранения влияния ёмкости прибора относительно корпуса исследуемой установки место включения прибора в высокочастотные цепи выбирают таким образом, чтобы один из его зажимов непосредственно или через конденсатор большой ёмкости соединялся с корпусом.

В некоторых случаях в различные цепи исследуемого радиоэлектронного устройства включают постоянные шунты, что позволяет с помощью одного и того же магнитоэлектрического измерителя поочерёдно контролировать токи в этих цепях без их разрыва.

Задача 1. Рассчитать схему миллиамперметра с универсальным шунтом (рис. 8) на три предела измерений: 0,2; 2 и 20 мА при переходном множителе N = 10. Измеритель прибора - микроамперметр типа М94 - имеет данные: Iи= 150 мкА = 0,15 мА, Rи = 850 Ом, Uи = Iи/Rи = 0,128 В. Для каждого предела найти падение напряжения на приборе при предельном токе, а также максимально возможное влияние прибора на измеряемый ток, если в цепи последнего действует э. д. с. Е = 20 В.

1. На пределе 1 (Iп1 = 0,2 мА) шунтом к измерителю является универсальный шунт в целом. Полное сопротивление последнего, определённое по формуле (1), Rш = 2550 Ом.

Падение напряжения на приборе при предельном токе Uп1 = Uи = 0,128 В. Предельно возможный коэффициент влияния миллиамперметра Вп1 = (Uп1/E)*100= 0,64%.

2. Для предела 2 (Iп2 = 2 мА) сопротивление шунтирующего участка универсального шунта Rш2+ Rш3 = Rш/N = 255 Ом. Следовательно, сопротивление Rш1 = Rш - (Rш2 + Rш3) = 2295 Ом.

Предельное падение напряжения на приборе Uп2 = Iи/(Rи + Rш1) = 0,727 В. Предельный коэффициент влияния Вп2 = 100*Uп2/E = 3,63%.

3. Для предела 3 (Iп3 = 20 мА) Rш3 = Rш/N 2 = 25,5 Ом; Rш2 = 255-25,5 = 229,5 Ом; Uп3 = Iп*(Rи + Rш1 + Rш2) = 0,761 В; Вп3 = 100*п3/Е = 3,80%.

Задача 2. Рассчитать схему миллиамперметра с универсальным шунтом на три предела измерений: 5, 50 и 500 мА. Измеритель прибора - микроамперметр типа М260М - имеет данные: Iи = 500 мкА, Rи = 150 Ом. Определить влияние прибора на измеряемый ток, если измерения на пределах 5 и 50 мА производятся в цепях, в которых действуют э. д. с. не менее 200 В, а на пределе 500 мА - в цепи накала радиолампы, питаемой от батареи с э.д.с. 6 В.

Ответ: Rш= 16,67 Ом; Rш1 = 15 Ом; Rш2= 1,5 Ом; Rш3=0,17 Ом; Uп1 = 75 мВ; Вп1 = 0,037%; Uп2 = 82,5 мВ; Вп2 = 0,041%; Uп3 = 83 мВ; Вп3= 1,4%.

Ответ: 1) Rш1 = 16,67 Ом; Rш2 = 1,52 0м; Rш3=0,15 Ом; 2) Rш1 =15,15 Ом; Rш2= 1,37 Ом; Rш3 = 0,15 Ом.

Транзисторные микроамперметры постоянного тока

При необходимости измерения весьма малых токов, значительно меньших тока полного отклонения Iи имеющегося магнитоэлектрического измерителя, последний применяют совместно с усилителем постоянного тока. Наиболее простыми и экономичными являются усилители на биполярных транзисторах. Усиления тока можно добиться при включении транзисторов по схемам с общим эмиттером и общим коллектором, однако первая схема предпочтительнее, поскольку она обеспечивает меньшее входное сопротивление усилителя.

Рис. 9. Схемы однотранзисторных микроамперметров постоянного тока

Простейшая схема однотранзисторного микроамперметра, питаемого от источника с э.д.с. Е = 1,5...4,5 В, показана на рис. 9, а, сплошными линиями. Током базы Iб является измеряемый ток, при некотором номинальном значении которого Iн в цепи коллектора протекает ток Iк, равный току полного отклонения Iи измерителя И. Статический коэффициент передачи тока Вст = Iк/Iб = Iи/Iн, откуда номинальный измеряемый ток Iн = Iи/Bст. Например, при использовании транзистора типа ГТ115А, имеющего Вст = 60, и измерителя типа М261 с током Iи = 500 мкА номинальный ток Iн = 500/60 ≈ 8,3 мкА. Поскольку зависимость между токами Iк и Iб близка к линейной, то шкала измерителя, проградуированная в значениях измеряемого тока, будет почти равномерной (за исключением небольшого начального участка шкалы до 10% её длины). Включением специально подобранного шунта между входными зажимами можно повысить предельный измеряемый ток до удобного для расчётов значения (например, до 10 мкА).

В реальных схемах транзисторных микроамперметров принимают меры, направленные к стабилизации режима работы и коррекции возможных его отклонений. Прежде всего недопустимо (особенно при повышенном напряжении питания) размыкание цепи базы транзистора, которое может иметь место в процессе измерений. Поэтому базу соединяют с эмиттером через резистор небольшого сопротивления либо, как это показано штриховой линией на рис. 9, а, с отрицательным полюсом источника посредством резистора Rб с сопротивлением порядка сотен килоом. В последнем случае к базе подводится напряжение смещения, которое задаёт режим работы усилителя. Затем с целью подгонки требуемого номинального тока (предположим, 10 мкА для приведённого выше примера) параллельно измерителю (или последовательно с ним) включают подстроечный резистор Rш = (2...5) Rи.

Следует учесть, что при отсутствии измеряемого тока через измеритель будет протекать начальный ток коллектора Iк.н, достигающий 5-20 мкА и обусловленный наличием неуправляемого обратного тока коллектора Iк.о и тока в цепи базового резистора Rб. Действие тока Iк.н можно компенсировать установкой стрелки измерителя на нуль механическим корректором прибора. Однако рациональнее перед началом измерений производить электрическую установку нуля, например, с помощью вспомогательного элемента питания Е0 и реостата R0 = (5...10) Rи, создавая в цепи измерителя компенсационный ток I0, равный по значению, но обратный по направлению току Iк.н. Вместо двух источников питания можно применить один (рис. 9, б), включив параллельно ему делитель напряжения из двух резисторов R1 и R2 с сопротивлениями порядка сотен ом. При этом образуется схема моста постоянного тока (см. Мостовой метод измерения электрических сопротивлений), который уравновешивается изменением сопротивления одного из плеч (R0).

Необходимость усложнения исходной схемы однотранзисторного усилителя приводит к тому, что коэффициент усиления по току

Ki = Uи/Iн (8)

оказывается меньше коэффициента передачи тока Вст используемого транзистора. Более того, надежную работу транзисторного микроамперметра удаётся обеспечить лишь при условии выбора Ki << Вст.

Как известно, параметры транзистора существенно зависят от температуры окружающей среды. Изменение последней приводит к самопроизвольным колебаниям (дрейфу) обратного тока коллектора Iк.о, который в германиевых транзисторах возрастает почти в 2 раза на каждые 10 К увеличения температуры. Это вызывает заметное изменение коэффициента усиления по току Кi и входного сопротивления усилителя, что может привести к полному нарушению градуировочной характеристики прибора. Следует также учитывать и наблюдаемое с течением времени необратимое изменение параметров («старение») транзисторов, что создаёт необходимость в периодической проверке и коррекции градуировочной характеристики транзисторного прибора.

Если изменение тока Iк.o можно в какой-то степени компенсировать установкой нуля перед началом измерений, то для стабилизации коэффициента усиления Ki приходится принимать специальные меры. Так, смещение на базу (рис. 9, б) подают посредством делителя напряжения из резисторов Rб1 и Rб2, причём в качестве последнего иногда используют термистор, имеющий отрицательный температурный коэффициент сопротивления. Термистор можно заменить диодом Д, включённым параллельно резистору Rб1. С повышением температуры обратное сопротивление диода уменьшается, что приводит к такому перераспределению напряжений между электродами транзистора, которое противодействует возрастанию тока коллектора. В том же направлении действует и отрицательная обратная связь между коллектором и базой, появляющаяся благодаря подключению к коллектору (а не к минусу питания) вывода резистора Rб2. Наиболее эффективное действие оказывает отрицательная обратная связь, возникающая при включении в цепь эмиттера резистора Rэ.

Повышение устойчивости работы усилителя посредством применения достаточно глубокой отрицательной обратной связи приводит к малому отношению коэффициентов Ki/Bст. Поэтому для получения коэффициента усиления Ki, равного нескольким десяткам, приходится подбирать для микроамперметра германиевый транзистор с высоким коэффициентом передачи тока: Вст = 120...200.

В микроамперметрах возможно применение кремниевых транзисторов, которые по сравнению с германиевыми обладают параметрами, более стабильными как во времени, так и в отношении температурных влияний. Однако коэффициент Вст у кремниевых транзисторов обычно невелик. Повысить его можно путём использования схемы составного транзистора (рис. 9, в); последний имеет коэффициент передачи тока Вст примерно равный произведению соответствующих коэффициентов составляющих его транзисторов, т. е. Вст ≈ Вст1*Вст2. Однако обратный ток коллектора составного транзистора:

Iк.о ≈ Iк.о2 + Bст2*Iк.о1

значительно превышает соответствующие токи его компонентов и подвержен заметным температурным колебаниям, что приводит к необходимости стабилизации режима усилителя.

Высокой устойчивости работы транзисторного микроамперметра легче достигнуть при выполнении его усилителя по балансной схеме с двумя обычными или составными транзисторами, специально подобранными по идентичности их параметров (в первую очередь - по примерному равенству коэффициентов Вст и токов Iк.o). Типовая схема подобного прибора с элементами стабилизации и коррекции приведена на рис. 10. Поскольку начальные коллекторные токи транзисторов примерно в одинаковой степени зависят от температуры и напряжения питания, а через измеритель они протекают в противоположных направлениях, компенсируя друг друга, то повышаются устойчивость нулевого положения стрелки измерителя и равномерность его шкалы. Глубокая отрицательная обратная связь, обеспечиваемая резисторами Rэ и Rб.к, повышает стабильность коэффициента усиления по току. Балансная схема повышает также чувствительность микроамперметра, поскольку измеряемый ток создаёт на входных электродах обоих транзисторов потенциалы различных знаков; в результате внутреннее сопротивление одного транзистора увеличивается, а другого - уменьшается, что усиливает разбаланс места постоянного тока, в диагональ которого включён измеритель И.

При налаживании балансного микроамперметра подстроечным потенциометром Rк осуществляют уравнивание потенциалов коллекторов, что контролируется по отсутствию показаний измерителя при замкнутых накоротко входных зажимах. Установка нуля в процессе эксплуатации производится потенциометром Rб посредством уравнивания токов баз при разомкнутых входных зажимах. Следует учитывать, что эти две регулировки взаимозависимы и при отладке прибора их необходимо несколько раз поочерёдно повторять.

Рис. 10. Балансная схема транзисторного микроамперметра

Входное сопротивление микроамперметра Rмка в основном определяется суммарным сопротивлением R = Rб1 + Rб2 + R6, действующим между базами транзисторов, и примерно составляет (0,8...0,9)*R; его точное определение, так же как и номинального предельного тока Iн, приходится осуществлять опытным путём. Подгонку требуемого значения номинального тока удобно производить с помощью шунтирующей цепочки резисторов сопротивление которой необходимо учитывать при определении входного сопротивления Rмка.

Стабильность входного сопротивления позволяет производить расширение предела измерений в направлении понижения чувствительности с помощью шунтов. Сопротивление шунта, необходимое для получения предельного измеряемого тока Iп,

Rш.п = Rмка*Iн/(Iп - Iн) = Rмка*Iи/(Ki*Iп - Iи) (9)

При указанных на схеме численных данных и использовании транзисторов с Вст ≈ 150 балансный микроамперметр имеет коэффициент усиления Ki ≈ 34 и посредством подстроечного резистора Rm может быть подогнан под номинальный ток Iн = 10 мкА. При необходимости получения номинального тока примерно 1 мкА усилитель дополняется вторым каскадом, который часто выполняется по схеме эмиттерного повторителя, что облегчает согласование выходного сопротивления усилителя с малым сопротивлением измерителя И.

Что можно сделать на основе небольшого микроконтроллера Attiny13? Много чего. Например измеритель напряжения, тока, температуры, с выводом результатов на дисплей типа HD44780. Так давайте и соберём это универсальное устройство, которое можно успешно использовать в качестве модуля в блоках питания, зарядках, УМЗЧ и в тех местах, где не требуется очень высокая точность. Размер платы всего 35 х 16 мм.

Схема измерителя U, I, T на Attiny13

  • Диапазон измерения напряжения 0-99V с разрешением 0.1 V.
  • Диапазон измерения тока 0-9.99А с разрешением 10 мА.
  • Диапазон измерения температуры 0-99C с разрешением 0.1C.
  • Потребление тока самого измерителя 35 мА.

Прежде всего надо знать, в каком диапазоне напряжения прибор будет работать. Чтобы это установить, необходимо рассчитать делитель напряжения. Например, для получения измерения 10 В, делитель должен составлять 1/10 (мы умножаем x 10 потому что напряжение будет в 10 раз больше от базового 1 В), для 30 В будет 1/30 и так далее. Затем необходимо настроить программу, для данного диапазона. Эти 30 В умножаем по 640, а результат разделим на 1023. Полученное число приблизительно записывается в начале программы, постоянной напряжения и надо скомпилировать программу (для диапазона 100 В, 8,2к).

Измерение тока также мы можем настроить подобным образом, дать другой делитель, другой диапазон, и перечислить, но не буду этого описывать. Здесь нет аналоговой калибровки температуры, потому что она показалась совершенно лишней.

Корректируем экспериментально в программе, за это отвечает константа const temp. Резистор 1К между массой и выходом датчика устанавливает напряжение, снизить его можно даже до 100 Ом.

Как работает схема

К точкам V и V+ на плате приложено напряжение, которое мы хотим измерить, к точке GND присоединяемся входом массы блока питания, а к точке В - выход массы (измерение происходит на массе). Между точками GND и V - присоединяется шунт. Питание измерителя осуществляется от точки V и V+ через стабилизатор 7805. На плате есть место на стабилизатор в корпусе TO252, но с успехом можно использовать и более крупный стабилизатор 78L05 в корпусе TO92. Максимальное напряжение, которое можно указать для точки V и V+, для обычной 7805 будет до 35В, для 78L05 будет, конечно, меньше, но не больше 30. Для того, чтобы измерять большие напряжения, чип необходимо пополнить отдельно - на стороне печати, следует прервать путь под потенциометром регулировки напряжения, а питание подать до точки А. Система работает с дисплеем 16х1 с контроллером HD44780 или 16х2.

Видео работы измерителя

При прошивке микроконтроллера необходимо задать pin reset как обычный pin (включить fusebit RSTDISBL). Перед выполнением этой операции убедитесь, что все хорошо установили, что после выключения сбрасывается, и нет доступа к процессору обычным программатором! Исходники, а также вся остальная документация и файлы, размещены

Измерение, контроль и регулирование тока - распространенные задачи в различных приложениях электроники. Предлагаемая вниманию читателей статья представляет собой обзор схемотехнических решений и компонентов, применяемых для этих целей.

Один из способов измерения тока в электрической цепи - это измерение падения напряжения на токоизмерительном резисторе (шунте) известного сопротивления, включенном последовательно с нагрузкой. Чтобы сопротивление шунта оказывало минимальное воздействие на режим работы нагрузки, оно выбирается минимально возможной величины, что предполагает последующее усиление сигнала.

В таблице 1 перечислены производители электронных компонентов, выпускающие как специализированные изделия, предназначенные для контроля тока, так и микросхемы усилителей, подходящих для этой цели.

Таблица 1. Фирмы-производители микросхем-мониторов тока

Изготовитель
Analog Devices Inc.
Integration Associates Inc.
International Rectifier
Ixys Corp.
Linear Technology Corp.
Maxim Integrated Products
National Semiconductor
Semtech Corp.
Texas Instruments Inc.
Zetex Semiconductor

Специализированные микросхемы для контроля (измерения) тока производителями названы Low-Side Current Sense Monitor (Amplifier) и High-Side Current Sense Monitor (Amplifier). Буквальный перевод этих терминов на русский язык дает такие же загадочные названия, как «южный мост» в материнской плате компьютера.

Фирма Maxim определяет High-side current sensing как измерение тока по падению напряжения на резисторе, включенном между источником питания и нагрузкой, а Low-side current sensing - как измерение тока по падению напряжения на резисторе, включенном между нагрузкой и общим проводом («землей»).

Воспользуемся для дальнейшего описания понятиями измерения тока в положительном и отрицательном полюсах нагрузки предполагая, что шина питания имеет положительный потенциал относительно общей шины, что справедливо для подавляющего большинства современных электронных схем. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки

Преимущества:

  • низкое входное синфазное напряжение;
  • входной и выходной сигнал имеют общую «землю»;
  • простота реализации с одним источником питания.

Недостатки:

  • нагрузка не имеет непосредственной связи с «землей»;
  • отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
  • возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит множество операционных усилителей, предназначенных для работы с однополярным питанием с входным синфазным напряжением, включающим потенциал общей шины, а также многие из инструментальных усилителей. По этой причине специализированные микросхемы Low-Side Sense Monitor (Amplifier) практически отсутствуют. Схемы измерения тока с применением операционного и инструментального усилителей приведены на рис. 1 и 2 соответственно. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется либо двухполярное питание усилителя, либо смещение уровня выходного сигнала подключением вывода REF инструментального усилителя к источнику опорного напряжения.

Рис. 1. Схема измерения тока в отрицательном полюсе с операционным усилителем

Рис. 2. Схема измерения тока в отрицательном полюсе с измерительным усилителем

Измерение тока в положительном полюсе нагрузки

  • обнаруживается короткое замыкание в нагрузке.
  • Недостатки:

    • высокое синфазное входное напряжение (зачастую очень высокое);
    • необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).

    Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

    В схеме на рис. 3 можно применить любой из подходящих по допустимому напряжению питания и точностным характеристикам операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

    Рис. 3. Схема измерения тока в положительном полюсе с операционным усилителем

    Так называемые Over-The-Top Rail-To-Rail Input и Output Amplifier (LT1494, LT1636, LT1637, LT1672, LT1782, LT1783, LT1784 от Linear Technology) работоспособны при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 4, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В.

    Рис. 4. Схема измерения тока в положительном полюсе с Over-The-Top операционным усилителем

    Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. На рис. 5 показана схема с применением LTC6800. Напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя (5,5 В).

    Рис. 5. Схема измерения тока в положительном полюсе с инструментальным усилителем LTC6800

    Дифференциальные усилители, подходящие для построения схем мониторов тока в положительном полюсе, перечислены в таблице 2. Некоторые из них имеют очень широкий диапазон входного синфазного напряжения, распространяющийся и в область отрицательных значений, что позволяет организовать при необходимости измерение тока и в нагрузке, подключенной к источнику питания отрицательной полярности. Рекордные показатели у LT1990, имеющего диапазон входного синфазного напряжения от –37 до 250 В при однополярном питании и ±250 В при двухполярном. Схема с его использованием изображена на рис. 6. Микросхемам AD629 и INA117 требуется двухполярное питание, при этом диапазон входного синфазного напряжения составляет ±270 В и ±200 В.

    Рис. 6. Схема измерения тока в положительном полюсе с дифференциальным усилителем LT1990

    Таблица 2. Дифференциальные усилители

    Интеграция практически всех необходимых компонентов в один кристалл привела к созданию специализированных микросхем мониторов тока. Как правило, эти микросхемы не обеспечивают точности, достижимой с использованием прецизионных усилителей. Однако для подавляющего большинства применений, особенно если требуется только контроль тока, а не измерение его точного значения, заявляемой производителями точности вполне достаточно.

    По выходному сигналу микросхемы можно разделить на три группы: с токовым выходом, потенциальным выходом и ШИМ-выходом.

    Характеристики микросхем c токовым выходом приведены в таблице 3. На рис. 7 показана схема с применением INA139, в которой кроме токового шунта требуется единственный внешний компонент - резистор R OUT . В схеме на рис. 8 с применением LTC6101HV, кроме того, необходим резистор R IN , включаемый в цепь встроенного источника тока.

    Рис. 7. Монитор тока в положительном полюсе с токовым выходом INA139

    Рис. 8. Монитор тока в положительном полюсе с токовым выходом LTC6101HV

    Таблица 3. Микросхемы мониторов тока с токовым выходом

    Поскольку выходное сопротивление схем достигает нескольких десятков килоом, схемы последующей обработки сигнала должны иметь высокое входное сопротивление.

    Особенность трехвыводных микросхем ZXCT1008 и ZXCT1009 от Zetex - протекание собственного тока потребления микросхемы через резистор R OUT , что, естественно, вносит дополнительную погрешность. Однако ввиду чрезвычайно малого собственного потребления эта погрешность незначительна, особенно в конце шкалы, и вполне приемлема. На рис. 9 показано применение ZXCT1009 в схеме зарядного устройства для Li-Ion аккумулятора.

    Рис. 9. Схема управления зарядным устройством

    В таблице 4 приведены характеристики микросхем-мониторов тока с потенциальным выходом. От мониторов тока с токовым выходом они отличаются тем, что содержат внутренний резистор R OUT , а часть из них имеет выходной усилитель, позволяющий уменьшить выходное сопротивление до единиц и даже долей ома. В качестве примера внутренней организации на рис. 10 показан монитор тока MAX4372.

    Рис. 10. Монитор тока в положительном полюсе с потенциальным выходом MAX4372

    Таблица 4. Микросхемы мониторов тока с потенциальным выходом

    При необходимости контролировать ток, который изменяет направление в зависимости от режима работы схемы, например, ток, протекающий через реверсируемый электродвигатель, или ток заряда–разряда аккумуляторной батареи, используются два монитора тока. Схема для последнего случая приведена на рис. 11. Здесь каждый монитор контролирует ток своего направления. Альтернативное решение - использование сдвоенного монитора тока MAX4377 или двунаправленного (Bidirectional) монитора тока, схема применения которого изображена на рис. 12. Опорное напряжение устанавливает уровень, относительно которого изменяется выходное напряжение. Выходной сигнал схемы увеличивается с ростом тока положительного направления и, соответственно, уменьшается с ростом тока отрицательного направления. Аналогичный результат можно получить с использованием дифференциальных и инструментальных усилителей, подключив вывод REF к источнику опорного напряжения, как показано на рис. 6.

    Рис. 11. Схема контроля тока заряда–разряда аккумулятора

    Рис. 12. Схема двунаправленного монитора тока

    Мониторы тока можно использовать и при напряжении источника питания, превышающем максимальное входное синфазное напряжение, как описано в документации . В последнем документе показано использование микросхемы MAX4172 с источником питания напряжением 100–250 В.

    Микросхемы - мониторы тока с минимальным значением входного синфазного напряжения, равным нулю, можно использовать для контроля тока в отрицательном полюсе нагрузки, а INA193–INA198 - и для контроля тока в нагрузке, включенной в цепь источника отрицательного напряжения до –16 В.

    Некоторые из мониторов тока обеспечивают дополнительные функции. Переключаемое усиление позволяет менять коэффициент передачи монитора «на лету», увеличивая точность измерения в начале шкалы. Наличие вывода отключения дает возможность экономить энергию, когда нет необходимости измерять ток. Встроенный источник опорного напряжения служит для задания либо выходного уровня двунаправленного монитора, либо порога срабатывания встроенных или внешних компараторов.

    Микросхема MAX4210 позволяет одновременно контролировать как ток, так и потребляемую нагрузкой мощность, а MAX4211 содержит еще и два компаратора для организации пороговых устройств.

    Монитор тока IA2410 может работать и как датчик температуры с переключением из режима монитора тока в режим контроля температуры подачей комбинации импульсов на вход SHDN.

    Мониторы тока с ШИМ-выходом

    Широтно-импульсная модуляция выходного сигнала имеет преимущества при сопряжении монитора тока с микропроцессором. Характеристики микросхем с ШИМ приведены в таблице 5, а пример применения монитора тока IR2175 для контроля тока фазы электродвигателя - на рис. 13.

    Рис. 13. Схема контроля тока с IR2175

    Таблица 5. Мониторы тока с ШИМ-выходом

    Следует упомянуть и правила выбора токоизмерительных шунтов. Естественно, что чем меньше сопротивление шунта, тем большее влияние оказывает сопротивление подводящих проводов. Для точных измерений используются четырехвыводные резисторы.

    Если особых требований к точности не предъявляется, шунт может быть выполнен в виде дорожки на печатной плате. При этом отклонение сопротивления от расчетного значения в серии изделий может достигать ±5%, кроме того, температурный коэффициент сопротивления меди достаточно велик. Последнее обстоятельство в некоторых случаях не является критичным. Например, микросхемы ZXCT1008–ZXCT1010 имеют отрицательный температурный дрейф коэффициента передачи в положительном диапазоне температур, что в некоторой степени компенсирует положительный температурный коэффициент сопротивления меди.

    Измерение переменного тока

    Linear Technology производит микросхемы прецизионных преобразователей среднеквадратичного значения переменного напряжения в постоянное - LTC1966 и LTC1967, характеристики которых приведены в таблице 6. Коэффициент передачи микросхем определяется формулой

    На рис. 14 изображена схема включения LTC1966 для измерения переменного тока с использованием трансформатора тока.

    Рис. 14. Схема измерения переменного тока с LTC1966

    Таблица 6. Микросхемы для измерения переменного тока

    Большое количество практических схем контроля и регулирования тока применения микросхем-мониторов тока приведено в документах .

    Существуют и другие микросхемы датчиков тока, основанные на использовании эффекта Холла и «гигантского» магниторезистивного эффекта. Они применяются для бесконтактного измерения тока. Тем не менее, рассмотрение их характеристик и применения выходит за рамки данной статьи.

    Литература

    1. AN-39. Current Measurement Applications Handbook. Zetex Semiconductor.
    2. AN-3331. High-Side Current-Sense Amplifier Operates at High Voltage. Maxim Integrated Products.
    3. AN-105. Current Sense Circuit Collection. Linear Technology.
    4. AN-746. High-Side Current-Sense Measurement: Circuits and Principles. Maxim Integrated Products.

    : сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

    СИЛА ТОКА является количественной характеристикой электрического тока- это физическая величина, равная количеству электричества, протекающего через сечение проводника за единицу времени. Измеряется в амперах.

    Для электропроводки в квартире сила тока играет огромную роль, потому что исходя из максимально возможного значения для отдельной линии, идущей от электрощита зависит сечение проводника и величина максимального тока автоматического выключателя, защищающего электрический кабель от повреждений в случае возникновения .

    Поэтому, если не правильно выбрано сечение и автоматический выключатель- его будет просто выбивать, а заменить его на более мощный просто не получится.

    Например, самые распространенные провода и кабеля в электропроводке сечением 1.5 квадратных миллиметра- из меди или 2.5- из алюминия. Они рассчитаны на максимальный ток 16 Ампер или подключение мощности не более 3 с половиной киловатт. Если Вы подключите мощные электропотребители превышающие эти пределы, то просто заменить автомат на 25 А нельзя- не выдержит электропроводка и придется от щита перекладывать медный кабель сечением 2. 5 кв. мм, который рассчитан на максимальный ток 25 А.

    Единицы измерения мощности электрического тока.

    Кроме Амперов, Мы часто сталкиваемся с понятием мощности электрического тока. Эта величина показывает работу тока, совершенную в единицу времени.

    Мощность равняется отношению совершенной работы ко времени, в течение которого она была совершена. Мощность измеряется в Ваттах и обозначается буквой Р. Высчитывается по формуле P = А х B, т. е. для того что бы узнать мощность- необходимо величину напряжения электросети умножить на потребляемый ток, подключенными к ней электроприборами, бытовой техникой, освещением и т. д.

    На электропотребителях часто на табличках или в паспорте только указывается потребляемая мощность, зная которую легко можно высчитать ток. Например, потребляемая мощность телевизором 110 Ватт. Что бы узнать величину потребляемого тока- делим мощность на напряжение 220 Вольт и получаем 0. 5 А.
    Но учтите, что это максимальная величина, в реальности она может быть меньше т. к. телевизор на низкой яркости и при других условиях будет меньше расходовать электроэнергии.

    Приборы для измерения электрического тока.

    Для того что бы узнать реальный расход электроэнергии с учетом работы в разных режимах для электроприборов, бытовой техники и т. п. — нам понадобятся электроизмерительные приборы:

    1. Амперметр — хорошо всем знакомый с практических уроков физики в школе (рисунок 1). Но в быту и профессионалами они не используются из-за непрактичности.
    2. Мультиметр — это электронное устройство выполняет многоразличных замеров, в том числе и силы тока (рисунок 2). Очень широко распространен, как среди электриков так и в быту. Как с его помощью измерять силу тока Я уже рассказывал .
    3. Тестер — то же самое практически, что и мультиметр, но без использования электронники со стрелкой, которая указывает величину измерения по делениям на экране. Сегодня редко можно встретить, но они широко использовались в советское время.
    4. Измерительные клещи электрика (рисунок 3), именно ими Я пользуюсь в своей работе, потому что они не требуют разрыва проводника для измерения, нет необходимости лезть под напряжение и отключать нагрузку. Ими измерять одно удовольствие- быстро и легко.

    Как правильно измерять силу тока.

    Для того что бы измерить силу для потребителей , необходимо один зажим от амперметра, тестера или мультиметра присоединить к плюсовой клемме аккумулятора или проводу от блока питания или трансформатора, а второй зажим- к проводу идущему к потребителю и после включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- делать замеры.

    Будьте аккуратны при размыкании работающей цепи возникает дуга, величина которой возрастает вместе с силой тока.

    Для того что бы измерить ток для потребителей подключаемых напрямую в розетку или к электрическому кабелю от домашней электросети, измерительное устройство переводится в режим измерения переменного тока с запасом по верхнему пределу. Далее тестер или мультиметр включаются в разрыв фазного провода. Что такое фаза читаем в .

    Все работы необходимо проводить только после снятия напряжения.

    После того как все готово, включаем и проверяем силу тока. Только следите, что бы Вы не касались оголенных контактов или проводов.

    Согласитесь, что выше описанные методы очень не удобны и да же опасны!

    Я уже давно в своей профессиональной деятельности электрика пользуюсь для измерения силы тока токоизмерительными клещами (на картинке справа). Они не редко идут в одном корпусе с мультиметром.

    Мерить ими просто- включаем и переводим в режим измерения переменного тока, затем разводим находящиеся сверху усы и пропускаем во внутрь фазный провод, после этого следим что бы они плотно прилегли к друг другу и производим измерения.

    Как видите- быстро, просто и можно измерять силу тока под напряжением данным способом, только будьте аккуратны не закоротите в электрощите случайно соседние провода.

    Только помните, что для правильного замера- нужно делать обхват только одного фазного провода, а если обхватить цельный кабель, в котором вместе идут фаза и ноль- измерения провести будет не возможно!

    Похожие материалы:

    Предлагаемое устройство предназначено для установки в различные регулируемые блоки питания. Оно отображает на своих светодиодных индикаторах выходное напряжение блока и ток его нагрузки. Когда появилась необходимость постоянно контролировать выходное напряжение и ток нагрузки лабораторного блока питания, сразу было решено выводить их значения на семиэлементные светодиодные индикаторы. Возможная альтернатива — символьные ЖКИ с двумя строками по 8 или 16 символов, но они дороги и плохо читаемы. Ещё одним требованием был одновременный вывод на индикаторы значений напряжения и тока без каких-либо переключений. По разным причинам готовые решения, найденные в литературе и Интернете, автора не устроили, и он решил сконструировать устройство самостоятельно.

    Внешний вид предлагаемого измерителя показан на рис. 1. Он позволяет измерять напряжение от 0 до 99,9 В с дискретностью 0,1 В и ток от 0 до 9,99 А с дискретностью 0,01 А. Устройство собрано на плате размерами 57x62 мм и может быть встроено внутрь практически любого лабораторного блока питания или другого прибора, где требуется постоянный контроль напряжения и тока. Схема измерителя изображена на рис. 2. Он содержит ОУ , два интегральных стабилизатора напряжения , микроконтроллер (самый недорогой из имеющих десятиразрядный АЦП), два регистра и два семиэлементных светодиодных индикатора. Они могут быть четырёх- или трёхразрядными.

    Измеренное значение напряжения выводится на индикатор HG1, а тока — на индикатор HG2. Одноименные выводы элементов индикаторов попарно объединены и подключены через ограничивающие ток резисторы R13—R20 к выходам регистра DD2. Общие выводы разрядов индикаторов подключены к регистру DD3. Регистры соединены последовательно и образуют 16-разряд-ный сдвиговый регистр, управляемый сигналами с трёх выходов микроконтроллера DD1: GP2 (тактовые импульсы), GP4 (загружаемый последовательный код), GP5 (импульс вывода загруженного кода на параллельные выходы регистров). Индикация — обычная динамическая, при которой разряды индикаторов включаются поочерёдно импульсами на выходах регистра DD3, формируемыми одновременно с появлением на выходах регистра DD2 кодов для отображения во включённом разряде нужной цифры.

    Индикаторы HG1 и HG2 могут быть как с общими анодами, так и с общими катодами элементов каждого разряда, но обязательно оба одинаковые. В зависимости от этого должен быть выбран соответствующий вариант программы микроконтроллера — AV-meter_ common_anocle.HEX для общих анодов или AV-meter_common_cathode. HEX для общих катодов. Микроконтроллер управляет индикаторами по прерываниям от таймера TMR0, следующим с периодом 2 мс.
    Входы GP0 и GP1 работают в режиме аналоговых входов АЦП микроконтроллера. GP0 используются для измерения напряжения, a GP1 — тока. В трёх старших разрядах индикаторов выводятся измеренные значения. В младшем разряде индикатора HG1 постоянно выведена буква U (признак измерения напряжения), а в том же разряде индикатора HG2 — буква А (признак измерения тока). В случае применения трёхразрядных индикаторов никаких изменений программы не требуется, но эти буквы отсутствуют.

    Измеряемое напряжение поступает на микроконтроллер через делитель R2-R4, а пропорциональное измеряемому току напряжение - с выхода ОУ DA1.1. Резистор R12 вместе с внутренним защитным диодом микроконтроллера предохраняет его вход от возможной перегрузки (ОУ питается напряжением 7...15 В). Коэффициент усиления снимаемого с датчика тока (резистора R1) напряжения около 50 задан резисторами R6, R8, R11. Его точное значение устанавливают подстроечным резистором R8.

    ФНЧ R7C3 сглаживает пульсации напряжения на неинвертирующем входе ОУ. Без этого фильтра показания прибора "прыгают". Аналогичную функцию выполняет конденсатор С2 в цепи измерения напряжения. Стабилитрон VD1 защищает вход ОУ от перенапряжения в случае обрыва резистора R1. В крайнем случае стабилитрон можно не устанавливать.
    Особо следует остановиться на цепи R5R10. В отсутствие измеряемого тока она создаёт на входе ОУ начальное смещение около +0,25 мВ. Без этого наблюдалась существенная нелинейность при измерении тока менее 0,3 А. У разных экземпляров микросхем LM358N этот эффект проявляется в разной степени, но в любом случае погрешность при малых значениях измеряемого тока слишком высока. При установке R5 и R10 указанных на схеме номиналов (они могут быть пропорционально изменены при сохранении того же соотношения, например, 15 Ом и 300 кОм) погрешность измерения тока, обусловленная этим эффектом, не превышает единицы младшего разряда.

    Со всеми имеющимися у меня экземплярами микросхемы LM358N, а они приобретались в течение последних десяти лет в разных местах, никакой подборки указанных резисторов не потребовалось. Но при необходимости следует определить минимальное сопротивление резистора R10, при котором на индикаторе HG1 в отсутствие измеряемого тока ещё светятся нули, а затем увеличить его в 1,5...2 раза. Я не рекомендую в целях упрощения конструкции исключать обычно отсутствующие в подобных устройствах элементы С2, С3, R4, R5, R10.

    Хорошая точность и стабильность показаний обеспечена также полным отделением от микроконтроллера относительно мощных импульсных узлов управления индикаторами путём их питания от отдельного интегрального стабилизатора напряжения DA3. Помехи от работы процессора самого микроконтроллера мало влияют на результаты измерений, так как каждое из них выполняется с предварительным переводом микроконтроллера в спящий режим с выключенным тактовым генератором.

    Микроконтроллер тактируется от внутреннего генератора. R9C5 — цепь установки микроконтроллера в исходное состояние. Для устранения последствий возможных сбоев микроконтроллера в нём включён сторожевой таймер (WDT).

    На рис. 3 изображён чертёж проводников печатной платы устройства, а на рис. 4 — расположение деталей на ней. Большая часть резисторов и конденсаторов — типоразмера 0805 для поверхностного монтажа. Исключения — резисторы R2 (из-за рассеиваемой мощности), R13 (для упрощения разводки печатных проводников), подстроечные резисторы R3, R8, оксидные конденсаторы С1, С6, С8. Конденсаторы С2 и С3 — керамические, но их можно заменить оксидными танталовыми.



    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!