Энциклопедия мобильной связи

Подключение трёхфазного двигателя к однофазной сети. Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

В связи с этим двигатель желательно иметь помощнее.

Важно! Подключая двигатель, будьте предельно осторожны. Делайте все не спеша. Меняя схему, отключайте электропитание и разряжайте конденсатор электролампой. Работы производите как минимум вдвоем.

Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

Важно! Какой бы емкости ни были конденсаторы, их рабочее напряжение должно быть не ниже 400в, в противном случае они долго не проработают и могут взорваться.

Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

Расчет конденсаторов. Емкость рабочего конденсатора.

Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

Емкость пускового конденсатора.

Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

Особенности подбора конденсаторов.

Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: « » и « «.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по . Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать , что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу от сети напряжением 400/690. Пример такого шильдика на картинке снизу. Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке. В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по довольно редкой схеме звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание , одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

Похожие материалы:

    попробовал еще такой вариант.соединение звезда.запускаю двигатель 3 киловатт при помощи конденсатора 160 микрофарад.а дальше убираю его из сети(если не убрать из сети то конденсатор начинает греться) .и двигатель работает самостоятельно на довольно таки неплохих оборотах. возможно ли в таком варианте его использовать?не опасно?

    Роман :

    Здравствуйте! Есть Частотник Веспер на 1,5 квт, который трансформирует от одной фазы 220 вольт сети в 3 фазы на выходе с межфазным 220в для питания асинхронного 1,1 квт. дв. 1500 об/мин. Однако при отключении сети 220 вольт необходимо запитать его от Инвертора прямого тока, который в качестве резервного источника питания использует АКБ. Вопрос в том, возможно ли сделать такое через перекидной рубильник АВВ (т.е. перейти вручную на питание Веспера от инвертора прямого тока) и не повредится ли при этом Инвертор прямого тока?

    1. Опытный Электрик :

      Роман, здравствуйте. Для этого надо читать инструкцию или задавать вопросы производителю инвертора, а именно, способен ли инвертор на подключение к нагрузке (или другими словами его перегрузочная способность в течение короткого времени). Если же не рисковать, то проще (когда пропадает 220 вольт), отключить автоматом или рубильником электродвигатель, включить перекидным рубильником питание от инвертора (таким образом запитать частотник) и затем уже включить двигатель. Или делать схему бесперебойной работы — на постоянной основе подавать сетевое напряжение на инвертор, а с инвертора забирать на частотник. В случае отключения электричества, инвертор остается в работе благодаря АКБ и перерыва в электроснабжении не наступает.

  1. Сергей :

    Добрый день. Однофазный двигатель от старой, советской стиральной машины при каждом запуске вращается в разные стороны (нет системы). У двигателя есть 4 вывода(2 толстых,2 тонких. Подключил через выключатель с третьим отходящим контактом. После запуска двигатель работает устойчиво (не греется). Не могу понять почему идет вращение в разные стороны.

    1. Опытный Электрик :

      Сергей, здравствуйте. Все дело в том, что однофазному двигателю без разницы куда вращаться. Поле не круговое (как в трехфазной сети), а пульсирующее 1/50 секунды на фазе «плюс» относительно нуля, а 1/50 — «минус». Все равно что сто раз в секунду вы будете крутить батарейку. Только после того, как двигатель раскрутился тогда уже он сохраняет свое вращение. В старой стиральной машине могло и не предусматриваться строгое направление вращения. Если предположить такое, то в момент запуска на «положительной» полуволне синусоиды он запускается в одну сторону, при отрицательной полуволне — в другую. Есть смысл попробовать задать смещение тока пусковой обмотки через конденсатор. Ток в пусковой обмотке начнет опережать напряжение и будет задавать вектор вращения. Я так понимаю, у вас сейчас два провода (фаза и ноль) идут на двигатель от рабочей обмотки. Один из проводов пусковой обмотки объединен с фазой (условно, просто фактически намертво с одним из проводов), а второй провод через третий нефиксирующийся контакт идет на ноль (тоже условно, по факту на другой из сетевых проводов). Вот и попробуйте между проводом и нефискирующимся контактом установить конденсатор емкостью от 5 до 20 мкФ и понаблюдайте за результатом. В теории вы должны жестко задать этим направление магнитного поля. По факту это конденсаторный двигатель (однофазные асинхронные все конденсаторные) и тут возможны только три момента: либо конденсатор работает всегда и тогда надо подбирать емкость, либо он задает вращение, либо запуск происходит без него, но в любую сторону.

  2. Галина :

    Здравствуйте

  3. Сергей :

    Добрый день. Собрал схему, как вы говорили, конденсатор установил на 10 мкф, запускается двигатель устойчиво теперь только в одну сторону. Смена направления вращения только в случае если поменять местами концы пусковой обмотки. Поэтому теория на практике сработала безупречно. Спасибо большое за совет.

  4. Galina :

    Спасибо за ответ, Я купила в китае фрезерный станок с чпу, двигатель 3х фазный на 220, а у нас (я живу в аргентине) сеть однофазная на 220, либо 3х фазная на 380
    консультировалась у местных специалистов — говорят что надо менять двигатель, но очень не хочется. Помогите советом как подключить станок.

  5. Galina :

    Здравствуйте! Огромное Вам спасибо за информацию! Через пару дней приходит станок. посмотрю что там на самом деле, а не только на бумаге, и я полагаю у меня ещё будут к Вам вопросы. Ещё раз спасибо!

  6. Здравствуйте! А возможен такой вариант: провести линию 3 фазы 380 v и поставить понижающий трансформатор, чтобы иметь 3 фазы 220v? В станке 4 двигателя, основной мощностью 5,5 kw. Если это возможно, то какой тр-р нужен?

  7. Юра :

    Здравствуйте!
    Подскажите пожалуйста — можно ли запитать асинхронный трехфазный эл-двигатель 3,5 кВт от 12-ти вольтовых аккумуляторов? Например с помощью трёх бытовых инверторов 12-220 с чистой синусоидой.

    1. Опытный Электрик :

      Юрий, здравствуйте. Чисто теоретически это возможно, но на практике вы столкнетесь с тем, что при запуске асинхронный двигатель создает большой пусковой ток и вам придется брать соответствующий инвертор. Второй момент это полное фазирование (сдвиг частоты у трех инверторов на угол 120° относительно друг друга), что невозможно сделать, если это не предусмотрено производителем, потому добиться синхронизации вручную при частоте 50 Гц (50 раз в секунду) вы не сможете. Плюс мощность двигателя довольно большая. Исходя из этого я бы вам порекомендовал обратить внимание на связку «аккумулятор-инвертор-частотный преобразователь». Частотный преобразователь способен выдавать требуемые сихнронизированные фазы того напряжение, которое будет на входе. Практически все двигатели имеют возможность включения на 220 и 380 вольт. Следовательно, получив нужный вольтаж и получив нужную схему соединения можно с помощью частотного преобразователя сделать плавный запуск избежав больших пусковых токов.

      1. Юра :

        я немного не понял — инверторы у меня на 1,5кВт, то есть вы советуете использовать батарею аккумуляторов и один такой инвертор в связке с частотником? а как он вытянет???
        или же вы советуете использовать инвертор соответсвующей мощности — 3,5кВт? тогда непонятна необходимость частотного преобразователя…

        1. Опытный Электрик :

          Постараюсь объяснить.
          1. Изучите информацию о трехфазном токе. Три фазы, это не три напряжения на 220 вольт. Каждая фаза имеет частоту 50 герц, то есть 100 раз в секунду меняет свое значение с плюса на минус. Для того, чтобы асинхронный двигатель начал работать, ему нужно круговое поле. В этом поле три фазы сдвинуты друг относительно друга на угол 120°. Другими словами фаза А достигает своего пика, через 1/3 времени этого пика достигает фаза В, через 2/3 времени фаза С, затем процесс повторяется. Если смена пиков синусоиды будет происходить хаотично, двигатель не начнет вращаться, он будет просто гудеть. Следовательно, либо ваши инверторы должны быть сфазированы, либо в них нет смысла.
          2. Изучите информацию об асинхронных двигателях. Пусковой ток достигает значений 3-8 кратных номинальному. Следовательно, если взять примерное значение 5 ампер, то при запуске двигателя ток может быть 15-40 ампер или 3,3 — 8,8 кВт на фазу. Инвертор меньшей мощности сгорит сразу, значит надо брать инвертор по максимальной мощности, даже если она будет длиться всего полсекунды или еще меньше, а это будет дорогое удовольствие.
          3. Изучите информацию по частотному преобразователю. Частотник может обеспечить как плавный запуск, так и преобразование одной фазы в три. Плавный запуск позволит избежать больших пусковых токов (и покупки сверхмощного инвертора), а преобразование одной фазы в три позволит избежать дорогостоящей процедуры сфазирования инверторов (если они изначально к этому не приспособлены, то своими силами вы точно не сможете это сделать и вам придется найти хорошего электронщика).

          Я советую взять мощный инвертор в связке с частотным преобразователем, если вам очень необходимо получить полную мощность от вашего двигателя.

  8. Валерий :

    Здравствуйте. Подскажите, пожалуйста, можно ли использовать этот двигатель (импортный) для включения в нашу сеть 220V для деревообрабатывающего станка?
    На шильде 4 варианта:
    — 230, треугольник, 1.5kw, 2820 /мин., 5.7А, 81.3%
    — 400, звезда, 1.5kw, 2800/мин., 3.3А, 81.3%
    — 265, треугольник, 1.74kw, 3380/мин, 5.7А, 84%
    — 460, эвезда, 1.74kw, 3380/мин, 3.3А, 84%
    Судя по этому, данный двигатель очень хорошо подойдет для д.о. станка (по 1-му варианту). Наверное, в коробке 6 контактов? Хорошие (относительно) обороты. Смущает 230V — как поведет себя в сети 220V? Почему максимальный ток именно по варианту 1, 3?
    Можно ли использовать этот двигатель для д/о станка и как подключать в сеть 220V?

  9. Валерий :

    Спасибо большое за все. За терпение, повторное разъяснение всего, что много раз повторялось в других комментариях. Все это я перечитал, местами не раз. Я много читал инф. на разных сайтах по переводу 3-х ф.двиг. в сеть 220v. (с момента, как мне помощники подпалили эл. двиг. самодельного небольшого станка). Но у вас я почерпнул намного больше, такие особенности, о которых не знал и не встречал раньше. Сегодня после поисковика зашел на этот сайт, перечитал почти все комментарии и был поражен полезностью, доступностью информации.
    По поводу моих вопросов. Дело вот в чем. На моем старом станке (бывшем, отца) стоит такой же старый эл. дв. Но потерял мощность, «бьется» с корпуса (наверное, подгоревшая обмотка коротит). Там нет бирки, классический треугольник, без клем — когда-то переделывался, наверное. Мне предлагают новый двиг, польский, кажется, с приведенными вариантами на бирке. Кстати, там 50 Гц по каждому варианту. И после отправки комментария внимательно посмотрел все 4 приведенные варианта и понял почему в треугольнике ток выше.
    Буду брать, включать в 220 по 1 варианту в треугольник через конденсаторы с 70% мощности. Передаточное число можно увеличить, но мощности для станка могло бы быть и больше.
    Да, кроме классического треугольника и звезды встречаются другие варианты включения 380 в сеть 220. И существует (Вы знаете) более простой способ определения начала обмоток с помощью батарейки и стрелочника.

  10. Валерий :

    Сегодня получил фото шильды эл. дв. Вы правы. Там по 3 и 4 варианту 60Гц. И теперь понятно, что не могло быть иначе и что при 50Гц — максимум 3000 об. Еще вопрос. Как надежно и продолжительно при одном включении работают электролитические конденсаторы через мощный диод в качестве рабоч. конд.?

  11. Александр :

    Здравствуйте,подскажите- как прикрепить файл с фоткой, чтобы задать вопросик?

  12. Сергей :

    Добрый день.
    Немного истории. На водогрейном котле (промышленный большой — для отопления предприятия) использую два циркуляционных насоса ВИЛО с германским электродвигателем 7,5 кВт каждый. При получении обоих насосов мы их подключили «треугольником». Проработали неделю (все нормально было). Приехали наладчики автоматики водогрейного котла и сказали нам, что схему подключения обоих двигателей переключить на «звезду». Проработали неделю и один за другим оба движка сгорели. Подскажите, может ли переподключение с треугольника на звезду явиться причиной перегоревших германских двигателей? Спасибо.

  13. Александр :

    Здравствуйте Опытный Электрик) Скажите свое мнение по поводу такой схемы подключения двигателей, наткнулся на нее на одном форуме

    «Неполная звезда встречная, с рабочими конденсаторами в двух обмотках»
    Ссылка на схему и диаграмму с описанием принципа работы такой схемы — https://1drv.ms/f/s!AsqtKLfAMo-VgzgHOledCBOrSua9

    Говориться, что такая схема подключения двигателя была разработана для двухфазной сети и наилучшие результаты показывает при подключении на 2 фазы. Но в однофазной сети 220в она применяется потому что,имеет лучшие характеристики чем классические:звезда и треугольник.
    Что скажите про такой вариант подключения трех-фазного двигателя в сеть 220в. Имеет право на жизнь? хочу попробовать ее на самодельной газонокосилке.

    1. Опытный Электрик :

      Александр, здравствуйте. Ну что вам сказать? Во-первых, невероятно сильно «подкупает» грамотность как изложения материала, так и грамотность языка статьи. Во-вторых, про этот способ почему-то знает очень мало людей. В-третьих, если бы этот способ был действенным и лучшим, его бы давно включили в учебную литературу. В-четвертых, нигде нет теоретической выкладки этого способа. В-пятых есть пропорции, но нет формул для расчета емкости (то есть, условно, можно взять за точку отсчета 1000 мкФ или 0,1 мкФ — главное — соблюсти пропорции???). В-шестых, тему писал совсем не электрик. В седьмых, лично у меня не укладывается в голове первая обмотка, которая включена задом наперед и через конденсатор — все это наводит на размышления, что кто-то что-то придумал и хочет что-то выдать за изобретение, которое якобы лучше работает для двухфазной сети. Теоретически, такое можно допустить, но для размышлений мало теоретических данных. В теории, если каким-то образом получать то одну, то другую полуволну из одной или другой фазы, но схема тогда должна иметь другой вид (при использовании двух фаз, это однозначно звезда, но с использованием нулевого провода и двух конденсаторов к нему или от него… и опять же, получается фигня. В общем, поэкспериментируйте, а потом отпишитесь — мне интересно, что получится, но я лично, подобные эксперименты проводить не хочу, ну или если мне дадут двигатель и скажут — его можно убивать, тогда поэкспериментирую. По поводу подбора конденсаторов я уже писал и в комментариях, и в ссылках на статью «Конденсатор для трехфазного двигателя» на этом сайте и на сайте «потомственного мастера» — бездумно ставить конденсатор по формуле не надо. Надо учитывать нагрузку двигателя и подбирать конденсатор по рабочему току в конкретном цикле работы.

      1. Александр :

        Спасибо за ответ.
        На форуме где я на это наткнулся, несколько человек пробовали эту схему на своих двигателях (включая человека который ее выложил)-говорят что результатами ее работы очень довольны. По поводу компетентности человека ее предложившего, я так понял он вроде в теме (и модератор того форума), схема не его, как он говорил сам ее нашел в каких то старых книгах по двигателям.Но то такое, у меня есть движок подходящий для экспериментов, попробую на нем.
        По поводу формул, я просто не все записи с той ветки представил, там много чего написано,из главного вот еще добавил если интересно посмотрите по той же ссылке.

        1. Опытный Электрик :

          Александр, поэкспериментируйте, и напишите результат. Я могу сказать одно — я любознательный товарищ, но про такую схему ни из учебников, ни из уст многих авторитетных старших товарищей не слышал. У меня сосед еще более любознательный электронщик с уклоном в электричество тоже не слышал. На днях попробую спросить его.
          Компетентность штука такая… сомнительная, когда речь идет об интернете. Вы никогда не знаете, кто сидит с той стороны экрана и что он из себя представляет, и висит ли у него на стене диплом, о котором он говорит, и знает ли он что либо из предметов, которые указаны в дипломе. Я нисколько не пытаюсь обхаять человека, просто пытаюсь сказать, что не всегда надо верить на сто процентов человеку с той стороны экрана. Случись что, вы его не сможете за вредный совет прижать к стенке, а это рождает полную безответственность.
          Есть еще один «черный» момент — форумы зачастую создаются для того, чтобы приносить доход и для этого хороши все средства, как вариант, предложить какую-то хитрую тему, раскрутить ее, пусть даже она не совсем рабочая, но уникальная, то есть, только на его сайте. А «несколько» человек, это может быть как раз модератор, под несколькими никами сам с собой побеседовать для раскрутки темы. Опять же не хаю конкретно того человека, но такой вот черный пиар форума уже встречал.
          Теперь коснемся старых книг и советского союза. В СССР было мало дураков (среди тех, кто занимался разработками) и если бы схема себя зарекомендовала, наверняка она была бы включена в учебники, по которым я учился, хотя бы для упоминания и для общего развития, что такой вариант возможен. Да и преподаватели у нас были не дураки, а по электрическим машинам дядька так вообще давал очень много интересной информации сверх учебного плана, но и он об этой схеме не слыхивал.
          Вывод, я не верю, что эта схема лучше (возможно для двух фаз и лучше, но это еще надо посмотреть и нарисовать «правильную» схему, чтобы было понятно действие токов и их смещение), хотя и допускаю, что она работает. Таких вариантов, когда кто-то что-то намудрил, а оно работает — полно 🙂 Как правило, человек сам не понимает, что сделал и не вникает в суть, но пытается усиленно что-то модернизировать.
          Ну и еще один вывод: если бы эта схема реально была бы лучше, то она была бы как минимум известна, но я о ней узнал только от вас при всей своей неуёмной любознательности.
          В общем, жду от вас мнений и результатов, а там глядишь и сам проведу эксперимент с соседом уже на практико-теоретической базе.

      2. Александр :

        Добрый день всем. Могу теперь, как обещал рассказать об экспериментах при подключении моего двигателя АОЛ по найденой на одном форуме схеме — так называемой
        «неполная звезда, встречная» В общем сделал саму косилку и установил движок на нее. Рассчитал конденсаторы по формулам которые давались в описании схемы, которых не было — купил на рынке, оказалось высоковольтные на 600В или выше найти не так просто. Все собрал по приведенной схеме, да схемка оказалась не простенькой! (для меня, по сравнению с треугольником)Два раза все перепроверял. Оказалось, двигатель с ножами шустро запустился только когда к расчетным пусковым конденсаторам добавил еще 30mkF (на расчетных запускался туговато). Пол часа покрутил двигатель в холостую в мастерской и понаблюдал за нагревом — все оказалось хорошо, двигатель почти не грелся.Работа двигателя в холостую очень понравилась,на звук и визуально двигатель работал вроде как от родных 380В (проверял на работе от 380в) Выехал покосить уже на следующий день с утра. В общем косил больше часа,высокую траву (чтобы дать нагрузку) — результат отличный, двигатель нагрелся но руку вполне держать можно (учитывая что и на улице было +25,)Пару раз двигатель «глох» в высокой траве, но у него всего 0,4 кВт. Рабочие конденсаторы во второй цепи немного нагрелись (добавил 1,5мкф к расчетным), остальные были холодными. Потом косил еще два раза — двигатель работал «как часы»,в общем результатом подключения двигателя доволен, вот только двигатель чуть мощнее бы был, (0,8 кВт) была бы вообще красота)Конденсаторы в итоге поставил следующие:
        Пусковые = 100мкФ на 300в.
        Рабочие 1 обмотка = 4,8 мкф на 600в.
        Рабочие 2 обмотка = 9,5 мкф на 600в.
        На моем двигателе такая схема работает. Интересно пробовать такое подключение на двигателе по мощнее 1,5-2 кВт.

      3. Александр :

        Здравствуйте. Вы правы) я треугольником сразу подключал в мастерской, правда не косил на нем, и работу двигателя могу оценить только визуально,на слух и по своим ощущениям) так как делать замеры тех же токов на разных схемах у меня нечем. Я от серьезной электрики далекий, могу в основном по готовой схеме с уже известными деталями что то в кучу скрутить, прозвонить да 220-380 вольтметром проверить). В описании схемы было сказано, что ее преимущество в меньших потерях мощности двигателя и в режиме его работы, приближенном к номинальному. Скажу, что на треугольнике мне легче было затормозить вал на двигателе, чем на этой схеме. Да и вращался он на ней, я бы сказал шустрее. У меня на этом двигателе она работает и как работает сам двигатель мне понравилось, поэтому собирать и запихивать по очереди две схемы в одну коробку и проверять как косит я не стал. Я пока конденсаторы во временную коробку запихнул, чтоб посмотреть как будет работать еще (может добавить или убрать придется чего то еще), а потом думал все это дело красиво и компактно оформить с защитой какой то может. Мне вот интересно там где я на эту схему наткнулся, люди по ней подключали мало мощные двигатели и никто не писал про подключение хотя бы 1,5 или 2 кВт. Для них я так понимаю нужно много (по сравнению с треугольником) конденсаторов, да еще и на высокое напряжение должны быть. Я здесь и решил поспрашивать про эту схему,так как действительно нигде раньше о ней не слышал и думал может спецы скажут с точки зрения теории и науки — должна она работать или нет.
        Точно могу сказать двигатель крутиться и как по мне — очень даже неплохо, а вот что там должно быть с токами, напряжениями и что там должно отставать или опережать по этой схеме и хотелось бы услышать от кого то знающего. Может эта схемка просто развод? и она от того же треугольника ничем не отличается (кроме лишних проводов и конденсаторов. У меня дома сейчас уже нет надобности в мощных двигателях, что бы попробовать подключить их через конденсаторы по этой схеме и посмотреть как бы они работали. Раньше были и циркулярка и фуганок, так на них двигатели около 2,5 кВт подключенные по треугольнику, глохли если чуть больше нагрузку дашь, как будто в них не больше киловатта было. Сейчас просто все это в цеху есть в котором 380 есть. Еще пару-тройку раз покошу, и если все будет «гут» оформлю свою чудо-косилку грамотно и выложу фото, может кому то пригодиться.

        Владимир :

        Добрый вечер подскажите как поменять направление вращения вала электродвигателясинхронного 380В подключенный со звезды на треугольник.

Самыми распространенными приводами различных электрических машин в мире являются асинхронные двигатели. Они были изобретены еще в XIX веке и очень быстро, в силу простоты своей конструкции, надежности и долговечности, используются широко и в промышленности, и в быту.

Однако далеко не все потребители электрической энергии обеспечены трехфазным электроснабжением, что затрудняет применение надежных помощников человека – трехфазных электродвигателей. Но выход, достаточно просто реализуемый на практике, все же есть. Нужно только сделать подключение двигателя, используя специальную схему.

Но вначале стоит немного узнать о принципах работы и о их подключении.

Каким образом асинхронный двигатель будет работать при подключении в двухфазную сеть

На статоре асинхронного двигателя помещаются три обмотки, которые обозначаются буквами C1, C2— C6. Первой обмотке принадлежат выводы C1 и C4, второй С2 и C5, а третьей C3 и C6, причем C1— С6 – это начала обмоток, а C4— C6 – их конец. В современных двигателях принята несколько иная система маркировки, обозначающая обмотки буквами U, V, W, а их начало и конец обозначают цифрами 1 и 2. Например, началу первой и обмотки C1 соответствует U1, концу третей C6 соответствует W2 и так далее.

Все выводы обмоток смонтированы в специальной клеммной коробке, которая есть у любого асинхронного двигателя. На табличке, которая должна быть на каждом двигателе обозначены его мощность, рабочее напряжение (380/220 В или 220/127 В), а также возможность Подключения по двум схемам: «звездой» или «треугольником».

Стоит учитывать, что мощность асинхронной машины при подключении в однофазную сеть всегда будет на 50-75% меньше, чем при трехфазном подключении.

Если просто подключить трехфазный двигатель к сети 220 вольт просто соединив обмотки с питающей сетью, то ротор не будет двигаться по той простой причине, что отсутствует вращающееся магнитное поле. Для того, чтобы его создать необходимо сдвинуть фазы на обмотках при помощи специальной схемы.

Из курса электротехники известно, что конденсатор, включенный в электрическую цепь переменного тока, будет сдвигать фазу напряжения. Это происходит из-за того, что во время его заряда происходит постепенное возрастание напряжения, время которого определяется емкостью конденсатора и величиной протекающего тока.

Получается, что разность потенциалов на выводах конденсатора будет всегда опаздывать по отношению к питающей сети. Этим эффектом и пользуются для подключения трехфазных двигателей в однофазную сеть.

На рисунке представлена схема подключения однофазного двигателя при разных способах. Очевидно, что напряжение между точками A и C , также B и C будет расти с запаздыванием, что создаст эффект вращающегося магнитного поля. Номинал конденсатора в соединениях типа «треугольник рассчитывается по формуле: C=4800*I/U, где I – это рабочий ток, а U– напряжение. Емкость в этой формуле вычисляется в микрофарадах.

В соединениях по способу «звезда», которое наименее предпочтительно нужно использовать в однофазных сетях из-за меньшей отдаваемой мощности, применяют другую формулу C=2800*I/U. Очевидно, что конденсаторы требуют меньших номиналов, что объясняется меньшими пусковыми и рабочими токами.

Представленная выше схема подходит только для тех трехфазных электродвигателей, чья мощность не превышает 1,5 кВт. При большей мощности потребуется применение другой схемы, которая помимо рабочих характеристик гарантированно обеспечит пуск двигателя и его выход в рабочий режим. Такая схема представлена на следующем рисунке, где дополнительно присутствует возможность реверса двигателя.

Конденсатор Сp обеспечивает работу двигателя в штатном режиме, а Cп – нужен при пуске и разгоне двигателя, который делается в течение нескольких секунд. Резистор R разряжает конденсатор после запуска и размыкания кнопочного выключателя Кн , а переключатель SA служит для реверса.

Емкость пускового конденсатора обычно применяется в два раза большей, чем емкость рабочего конденсатора. Для того чтобы набрать нужную емкость, используют собранные батареи из конденсаторов. Известно, что параллельное соединение конденсаторов суммирует их емкость, а последовательное – обратно пропорционально.

При выборе номиналов конденсаторов руководствуются тем, что их рабочее напряжение должно быть больше напряжения в сети минимум на одну ступень, а это обеспечит их надежную работу при пуске.

Современная элементная база позволяет использовать конденсаторы высокой емкости при небольших габаритах, что значительно упрощает подключение трехфазных двигателей в однофазную сеть 220 вольт.

Итоги

  • Асинхронные машины могут подключаться и в однофазные сети 220 вольт при помощи фазосдвигающих конденсаторов, номинал которых рассчитывается, исходя их рабочего напряжения и потребляемого тока.
  • Двигатели, имеющие мощность свыше 1,5 кВт, требуют подключения и пускового конденсатора.
  • Подключение способом «треугольник» является основным в однофазных сетях.

Узнайте как всё подключается на практике из видео

Довольно часто в промышленном и домашнем хозяйстве используются трехфазные асинхронные двигатели. Этот тип двигателей является достаточно распространенным, поэтому большинство привычных для нас устройств, работающих на двигательной тяге, работают именно на таких. Состоит данный двигатель всего из двух основных частей – подвижного ротора и статора (соответственно, неподвижного). В сердечнике статора укладываются обмотки под специальным угловым расстоянием, которое равно 120 электрическим градусам. Начала и концы этих обмоток выводятся в распределительную коробку, где закрепляются на специальных клеммах. Как правило, эти выводы обозначены буквой С – С1, С2 и до С6 соответственно. Обмотки могут, соединяются двумя типами электрических схем – «звезда» и «треугольник». В схеме звезда концы обмоток соединяются друг с другом, а начала обмоток подключаются к питающему напряжению. Схема треугольник заключается в последовательном соединении, то есть начало одной обмотки соединяется с концом каждой другой обмотки и так далее.

Так подключается трехфазный двигатель, согласно схеме треугольник


Внутренность распределительной коробки двигателя, с выставленным положением перемычек под соединение в треугольник

Обычно, в распределительной коробке, все выходы контактов и их клеммы располагаются в сдвинутом порядке напротив. То есть, напротив контакта С1 находиться С6, а напротив клеммы С2 располагается С4.

Вот по такой схеме располагаются контакты в распределительной коробке


Так подключается трехфазный двигатель, согласно схеме «звезда»


Вживую, распределительная коробка с подключением «звездой» выглядит таким вот образом

Подключая трехфазный двигатель, соответственно, к трехфазной сети, внутри обмоток статора в разные моменты времени начинает протекать электрический ток, который в свою очередь создает вращающее магнитное поле. Это вращающее магнитное поле посредством магнитной индукции приводит в движение ротор двигателя, вследствие чего он начинает вращаться. Если подключить трехфазный двигатель в однофазную сеть, в машине не возникнет достаточного вращающего момента, и он попросту не включится.

Естественно, он не запустится, если его запускать напрямую. Но, существуют способы, при помощи которых подключение «трехфазника» в сеть все-таки возможно. Одним из самых простых является подключение фазосдвигающего конденсатора в качестве третьего контакта.

Вот так подключается трехфазный двигатель в домашних условиях (однофазной сети)

Трехфазный двигатель, работающий в однофазной сети, имеет практически ту же частоту вращения, что и при работе в трехфазной. Но, при таком подключении мощность асинхронного двигателя в значительной степени уменьшается. Это обуславливается недостаточной мощностью в самой сети (в сравнении с трехфазной). Чтоб сказать, насколько точно теряется мощность при однофазном подключении, необходимо знать схему подключении, условия работы асинхронного двигателя, а также величину емкости конденсатора. Но, в среднем каждый трехфазный двигатель, подключенный в однофазную сеть, может потерять до 30-ти и даже 50% собственной мощности.

Заметим, что далеко не все трехфазные двигатели могут вести себя нормально в однофазной сети. Поэтому, если вы подключили его, и уверены в правильности подключения, но при этом он напрочь отказывается работать, не переживайте. С большой долей вероятности это значит что, что-то не в порядке с самим двигателем. Конечно, преимущественное большинство должно работать нормально, не учитывая потерю мощности. Поэтому, самыми надежными в работе с однофазной сетью, показали себя асинхронные двигатели с индексами «А» и «АОЛ», «АО2» и «АПН». Все они имеют короткозамкнутый ротор.

Как правило, трехфазные асинхронные двигатели имеют две категории по номинальному напряжению – это работа в сетях 220/127В и 380/220В. Двигатели на более низком напряжении используются при малых мощностях, поэтому распространение у них небольшое. Таким образом, именно категория 380/220В является более распространенной. Напряжение в 380В используется при соединении в «звезду», соответственно напряжение 220В используется при схеме «треугольник». В паспорте двигателя и на его бирке, обычно указывают все основные рабочие характеристики и величины, среди которых рабочее напряжение, частота сети, коэффициент мощности, а также приведены условными рисунками схема соединения обмоток и какая существует возможность ее изменения.

Так выглядят бирки на корпусах трехфазных электродвигателей

На рисунке «А» бирка свидетельствует о том, что обмотки могут соединяться в обе схемы, как говорилось выше. То есть, можно подключить как «треугольник» на напряжение 220В, так и «звезду» на 380В. Отметим, что подключая такой двигатель в однофазную сеть, используйте схему соединения «треугольник», так как при соединении в «звезду» потеря мощности будет в значительной степени выше.

На рисунке «Б» бирка говорит о том, что в двигателе применяется схема соединения «звезда». При этом ответствует возможность включение схемы «треугольник». Если вы видите такой значок, то знайте, что в распределительной коробке иметься лишь три вывода. Поэтому, чтоб выполнить соединение «треугольник», нужно будет проникнуть внутрь двигателя, найти и вывести остальные концы наружу. Сделать это не так уж просто, поэтому будьте предельно внимательными.

Важный момент! Если на бирке двигателя указано рабочее напряжение в виде 220/127В знайте, что при подключении к однофазной сети на рабочее напряжение 220В его можно лишь со схемой «звезда» и никак больше. При попытке подключить двигатель со схемой «треугольник» в сеть 220В, он попросту сгорит.

Как разобраться в началах и концах обмоток?

Одной из самых запутанных сложностей, при подключении трехфазного двигателя в бытовую сеть является неразбериха, возникающая с проводами, которые выходят в распределительную коробку. Более того, в некоторых случаях коробка может отсутствовать, и вам самостоятельно придется разбираться, где и какой провод.

Наиболее простым случаем является тот, в котором обмотки соединены в схему «треугольника» при рабочем напряжении двигателя 380/220В. Так, необходимо лишь подключить токопроводящие провода из сети, подсоединив рабочий и пусковой конденсаторы в распределительной коробке к клеммам, согласно пусковой схеме. Когда схема соединения двигателя замкнута на «звезду», но при этом есть возможность сделать переключение ее на «треугольник», необходимо воспользоваться этим, изменив схему используя контактные перемычки.

Теперь, что же касается определения начала и концов всех обмоток. Довольно трудно, когда в распределительной коробке попросту торчат 6 проводов без каких-либо обозначений. В таком случае сложно понять, какой из проводов обмоток является началом, а какой же все-таки концом. Поэтому придется несколько поднапрячься и решить эту задачу. Прежде чем производить какие-либо действия с двигателем, загляните в Интернет, указав марку двигателя. Быть может, в сети имеются какие-то документы, способны расшифровать имеющуюся проводку. Но, если никакой полезной информации так и не нашлось, действуем следующим образом

Определяем пары проводов, которые причастны к одной и той же обмотке;

И определяем, какой из выводов является началом, а какой концом.

Определение пар проводов производится «прозвонкой» при помощи тестера (устанавливается режим замера сопротивление). Если такого прибора под рукой нет, можно воспользоваться «дедовским» способом, и определить принадлежность концов обмоток с помощью лампочки и батарейки. Если же лампочка загорается (или прибор показывает наличие сопротивления), это значит, что два провода принадлежат одной и той же обмотке. Таким образом, определяются и остальные пары выводов обмоток (на рисунке ниже это показано на схеме).

Во второй задаче предстоит узнать, какой из выводов является началом, а который концом. Для этого нам потребуется взять батарейку и стрелочный вольтметр (электронный прибор для этого не подойдет). И затем, определяем начала и концы обмоток согласно схеме, приведенной ниже.

Итак, батарейка подключается к концам одной обмотки (пусть это будет А , как на рисунке), а к концам обмотки В подключим имеющийся вольтметр. При разрыве контактов проводом батарейки на обмотке А , стрелка вольтметра на В , должна отклониться в какую-либо из сторон. Запомните в какую, и проделайте то же действие на обмотке С , подключив к ней вольтметр. Теперь, добейтесь того чтоб стрелка вольтметра на обмотке С отклонялась в ту же сторону, что и на обмотке В . Это можно достичь путем изменения полярности (сменой концов С1 и С2 ). Аналогичным образом проверяется обмотка А . Тогда, батарейка будет подключена к С или В , а вольтметр, соответственно к А .

Таким образом, после «прозвонки» всех обмоток, вы должны получить некоторую закономерность. Разрывая контакты батарейки на какой-либо обмотке, остальные две должны показать отклонение стрелки вольтметра в одну и ту же сторону (это свидетельствует об одинаковой полярности). После чего, остается сделать отметки на выводах (начал) с одной стороны (А1, В1 и С1), и выводы (концы) с другой стороны А2, В2 и С2. На завершающем этапе, соединить концы в соответствующие схемы «звезда» или «треугольник».

Как извлечь недостающие концы обмотки?

Данный случай является, пожалуй, одним из самых трудных. Так, двигатель, соединенный в «звезду» не переключается в «треугольник». На практике же, открыв распределительную коробку, вы увидите лишь три вывода (С1, С2 и С3). Остальные три (С4, С5 иС6) придется доставать изнутри двигателя. На рисунке ниже наглядно показан именно такой случай.

Бирка электродвигателя с рассматриваемым случаем


А так будет выглядеть внутренность клеммной коробки

Во-первых, необходимо разобрать двигатель, чтоб получился свободный доступ к статору. Для этого нужно снять торцевую крышку двигателя, удерживающуюся на болтах, и извлечь его подвижную часть – ротор. Теперь, нужно отыскать место спайки остальных концов обмоток, и очистить его от изоляции. После, разъединить концы выводов и припаять к ним, заранее подготовленные, многожильные провода в гибкой изоляции. Место пайки изолировать дополнительно, и закрепить провода крепкой нитью на обмотках статора. В конечном итоге, дополнительно припаянные провода выводятся в распределительную коробку.

Теперь, нужно определить начала и концы обмоток вышеупомянутым способом, и обозначить все имеющиеся выводы С1, С2 и так далее. После идентификации всех проводов, можно смело выполнить соединение по схеме «треугольник». Отметим, что такие действия требуют определенного опыта и навыков. На словах, в этом нет ничего сложного, но на самом деле в спайках проводов внутри статора можно запутаться, и замкнуть обмотки накоротко (к примеру). Поэтому, если нет особой потребности в соединении треугольником, лучше оставить соединение как есть, то есть «звездой».

Статор трехфазного электродвигателя



Припайка дополнительных проводов



В такой способ провода крепко прикручиваются



Вывод проводников в распределительную коробку



Соединение проводников в схему «треугольник»


Схемы, которые используются при подключении трехфазного двигателя в бытовую сеть

Схема «треугольник».

Данная схема, является наиболее целесообразной и подходящей для бытовой сети, поскольку выходная мощность трехфазного двигателя в данном случае будет несколько большей, чем при других схемах. Так, мощность «треугольного» соединения может составлять 70% от ном. мощности двигателя. В распределительной коробке это выглядит следующим образом: два контакта подсоединяются в сеть, а третий подключается на рабочий конденсатор Ср, затем к любому из контактов сети.

Вот так изображается схема на бумаге

А таким образом это выглядит на практике


Осуществление пуска

Запуск трехфазного двигателя на холостом ходу возможно с использованием рабочего конденсатора. Но, в случае, если на нем будет хоть незначительная нагрузка, он может, не запустится, или же включиться и работать на малых, недостаточных оборотах. Поэтому, в таких случаях используется дополнительное оборудование, а именно пусковой конденсатор Сп. Расчеты по определения необходимой емкости конденсатора вы можете найти ниже. Для справки, такие конденсаторы (в других случаях это может быть группа конденсаторов), служат лишь для пуска двигателя. Следовательно, их время работы очень малое – как правило, миллисекунды, но может доходить и до 2х секунд. За такой короткий промежуток двигатель должен успеть набрать необходимую мощность.

Схема с пусковым конденсатором Сп

Для более удобного эксплуатирования двигателя, в схему пуска и работы можно добавить выключатель. Работает он по простому принципу, в котором одна пара контактов замыкается при нажатии на кнопку «Пуск». В таком режиме работает вся схема до тех самых пор, пока не нажмут кнопку «Стоп» и контакты разомкнутся.

Выключатель, сделанный в СССР

Применение реверса

Вращение ротора в ту или иную сторону зависит от того, к какой фазе подключена третья обмотка.

Реверсивная схема

Поэтому, подсоединив к третьей обмотке дополнительный конденсатор с переключателем (тумблером), который подключается к контактам первой и второй обмотки, мы сможем менять направление вращения ротора трехфазного электродвигателя. Ниже, наглядно продемонстрирована схема с применением всех трех вышеупомянутых способов, которая поможет сделать более удобным работу с трехфазным двигателем.

Включение со схемой «звезда»

Данная схема используется при подключении «трехфазников» в бытовую сеть, если их обмотки работают на напряжении 220/127В.

Подключение трехфазного электродвигателя «звездой»


Расчет необходимых емкостей конденсаторов. Итак, расчет емкости рабочих конденсаторов производится, исходи из схемы подключения двигателя и множества других параметров. В случае с соединением в «звезду» расчет проводится следующим образом:

Ср=2800∙ I/U;

Соединяя обмотки треугольником, рабочую емкость рассчитывайте так:

Cp=4800∙I/U;

Здесь, рабочая емкость конденсатора обозначается Ср и измеряется в мкФ, а I и U – ток и напряжение соответственно. При этом U =220В, а то рассчитываем по выражению:

I =P/(1,73∙U∙n∙cosϕ );

P – обозначает мощность двигателя;

N – КПД «трехфазника»;

Cosϕ – коэффициент мощности;

1,73 – показывает отношение между линейным и фазным током.

Величины КПД и коэффициента мощности можно посмотреть на бирке электродвигателя. Как правило, эти величины примерно колеблются в пределах 0,8-0,9.

Практика показывает, что величина емкости рабочих конденсаторов может рассчитываться по уравнению C =70∙ P н ; где в качестве Рн выступает номинальная мощность. Эта формула сообразна при подключении обмоток на «треугольник», и согласно ей, для каждых 100 Вт потребуется порядка 7 мкФ емкости. От того, насколько правильно подобран конденсатор, зависит стабильная работа электродвигателя. В случае если емкость подобрана несколько выше, чем нужно, двигатель будет испытывать перегрев. Если же пусковая емкость оказалась меньше чем это необходимо, мощность двигателя будет несколько заниженной. Конденсаторы можно выбирать методом подбора. Так, начиная с конденсаторов малой емкости, переходите к более мощным до оптимального выбора. Если же существует возможность измерить ток в сети и на рабочем конденсаторе, то есть вероятность подобрать наиболее точный конденсатор. Проводить данный замер нужно в рабочем режиме двигателя.

Пусковая емкость рассчитывается исходя из требования по созданию достаточного пускового момента. Не стоит путать емкость пускового конденсатора, с величиной пусковой емкости. К примеру, на схемах выше, пусковая емкость является суммой двух емкостей Ср и Сп.

Если же электродвигатель будет использоваться на холостом ходу, то за пусковую емкость можно принять рабочую, притом, что пусковой конденсатор уже не потребуется. В таких случаях схема во многом упрощается и удешевляется. Такие меры помогут отключить нагрузку, с возможностью быстрого и удобного изменения положения двигателя, к примеру, для ослабления ременной передачи, или же сделать прижимной ролик для нее.

Пример клиноременной передачи мотоблока

Запуск двигателя требует дополнительную емкость Сп, которая требуется только на пуск. Если же увеличить отключаемую емкость, это приведет к увеличению пускового момента, и при каком-то значении пусковой момент достигнет пикового значения. Но, с дальнейшим увеличением емкости пусковой момент будет лишь падать, и это нужно учесть.

Исходя из всех расчетов и условий запуска электродвигателя под нагрузкой, которая близка к номинальной, величина пусковой емкости должна превышать рабочую в 2 а то и 3 раз. К примеру, если емкость на рабочем конденсаторе равна 80 мкФ, то у пускового конденсатора эта емкость будет иметь 80-160 мкФ. Это в сумме даст пусковую емкость (которая как говорилось, является сумой Ср и Сп) в 160-240 мкФ. Однако, если же нагрузка во время запуска незначительна, емкость пускового конденсатора будет несколько меньшей, а то и вовсе отсутствовать. Конденсаторы, работающие на запуск двигателя, на самом деле работают миллисекунды, поэтому они долго эксплуатируются, и, как правило, вполне хватает бюджетных моделей.

Куда лучшим вариантом является применение не одного конденсатора, а группы, объединенной в конденсаторный мост. Это более удобно в том плане, что подключив группу, можно более точно настроить необходимую емкость, отключая или подключая конденсаторы. Мелкие конденсаторы, образующие мост, подключаются параллельно потому, что при таком соединении емкости слаживаются: Собщ=С 1 2 3 +…+С n .

Так выглядит параллельное соединение

В роли рабочих конденсаторов служат металлизированные бумажные, а также отлично подходят пленочные конденсаторы типа МБГО, К78-17, БГТ и т.д. Напряжение по допустимой величине должно превышать при работе электродвигателя напряжение сети не менее, чем в 1,5-2 раза.

Таким образом, подключение трехфазного двигателя к однофазной сети требует тщательного математического анализа и некоторого опыта работы с электротехническим оборудованием.

Еще кое-что об электрике:

Трехфазные асинхронные двигатели совершенно заслужено являются самыми массовыми в мире, благодаря тому, что они очень надежны, требуют минимального технического обслуживания, просты в изготовлении и не требуют при подключении каких-либо сложных и дорогостоящих устройств, если не требуется регулировка скорости вращения. Большинство станков в мире приводятся в действие именно трёхфазными асинхронными двигателями, они также приводят в действие насосы, электроприводы различных полезных и нужных механизмов.

Но как быть тем, кто в личном домовладении не имеет трехфазного электроснабжения, а в большинство случаев это именно так. Как быть, если хочется в домашней мастерской поставить стационарную циркулярную пилу, электрофуганок или токарный станок? Хочется порадовать читателей нашего портала, что выход из этого затруднительного положения есть, причем достаточно просто реализуемый. В этой статье мы намерены рассказать, как подключить трехфазный двигатель в сеть 220 В.

Рассмотрим кратко принцип работы асинхронного двигателя в своих «родных» трехфазных сетях 380 В. Это очень поможет впоследствии адаптировать двигатель для работы в других, «не родных» условиях – однофазных сетях 220 В.

Устройство асинхронного двигателя

Большинство производимых в мире трехфазных двигателей – это асинхронные двигатели с короткозамкнутым ротором (АДКЗ), которые не имеют никакой электрической контактной связи статора и ротора. В этом их основное преимущество, так как щетки и коллекторы, – самое слабое место любого электродвигателя, они подвержены интенсивному износу, требуют технического обслуживания и периодической замены.

Рассмотрим устройство АДКЗ. Двигатель в разрезе показан на рисунке.

В литом корпусе (7) собран весь механизм электродвигателя, включающий две главные части – неподвижный статор и подвижный ротор. В статоре имеется сердечник (3), который набран из листов специальной электротехнической стали (сплава железа и кремния), которая обладает хорошими магнитными свойствами. Сердечник набран из листов по причине того, что в условиях переменного магнитного поля в проводниках могут возникнуть вихревые токи Фуко, которые в статоре нам абсолютно не нужны. Дополнительно каждый лист сердечника еще покрыт с обеих сторон специальным лаком, чтобы вообще свести на нет протекание токов. Нам от сердечника нужны только магнитные его свойства, а не свойства проводника электрического тока.

В пазах сердечника уложена обмотка (2), выполненная из медного эмалированного провода. Если быть точным, то обмоток в трехфазном асинхронном двигателе как минимум три – по одной на каждую фазу. Причем уложены это обмотки в пазы сердечника с определенным порядком – каждая расположена так, что находится под угловым расстоянием в 120° к другой. Концы обмоток выведены в клеммную коробку (на рисунке она расположена в нижней части двигателя).

Ротор помещен внутрь сердечника статора и свободно вращается на валу (1). Зазор между статором и ротором для повышения КПД стараются сделать минимальным – от полумиллиметра до 3 мм. Сердечник ротора (5) также набран из электротехнической стали и в нем тоже имеются пазы, но они предназначены не для обмотки из провода, а для короткозамкнутых проводников, которые расположены в пространстве так, что напоминают беличье колесо (4), за что и получили свое название.

Беличье колесо состоит из продольных проводников, которые связаны и механически, и электрически с торцевыми кольцами Обычно беличье колесо изготавливают путем заливки в пазы сердечника расплавленного алюминия, а заодно еще формуют монолитом и кольца, и крыльчатки вентиляторов (6). В АДКЗ большой мощности в качестве проводников клетки применяют медные стержни, сваренные с торцевыми медными кольцами.

Что такое трехфазный ток

Для того чтобы понять какие силы заставляют вращаться ротор АДКЗ, надо рассмотреть что такое трехфазная система электроснабжения, тогда все встанет на свои места. Мы все привыкли к обычной однофазной системе, когда в розетке есть только два или три контакта, один из которых фаза (L), второй рабочий ноль (N), а третий защитный ноль (PE). Среднеквадратичное фазное напряжение в однофазной системе (напряжение между фазой и нулем) равно 220 В. Напряжение (а при подключении нагрузки и ток) в однофазных сетях изменяются по синусоидальному закону.

Из приведенного графика амплитудно-временной характеристики видно, что амплитудное значение напряжения не 220 В, а 310 В. Чтобы у читателей не было никаких «непоняток» и сомнений, авторы считают своим долгом сообщить, что 220 В – это не амплитудное значение, а среднеквадратичное или действующее. Он равно U=U max /√2=310/1,414≈220 В. Для чего это делается? Только для удобства расчетов. За эталон принимают постоянное напряжение, по его способности произвести какую-то работу. Можно сказать, что синусоидальное напряжение с амплитудным значением в 310 В за определенный промежуток времени произведет такую же работу, которое бы сделало постоянное напряжение 220 В за тот же промежуток времени.

Надо сразу сказать, что практически вся генерируемая электрическая энергия в мире трехфазная. Просто с однофазной энергией проще управляться в быту, большинству потребителей электроэнергии достаточно и одной фазы для работы, да и однофазные проводки гораздо дешевле. Поэтому из трехфазной системы «выдергивается» один фазный и нулевой проводник и направляются к потребителям – квартирам или домам. Это хорошо видно в подъездных щитах, где видно, как с одной фазы провод идет в одну квартиру, с другой во вторую, с третьей в третью. Это так же хорошо видно на столбах, от которых линии идут к частным домовладениям.

Трехфазное напряжение, в отличие от однофазного, имеет не один фазный провод, а три: фаза A, фаза B и фаза C. Фазы еще могут обозначать L1, L2, L3. Кроме фазных проводов, естественно, присутствует еще общий для всех фаз рабочий ноль (N) и защитный ноль (PE). Рассмотрим амплитудно-временную характеристику трехфазного напряжения.

Из графиков видно, что трехфазное напряжение – это совокупность трех однофазных, с амплитудой 310 В и среднеквадратичным значением фазного (между фазой и рабочим нулем) напряжения в 220 В, причем фазы смещены относительно друг друга с угловым расстоянием 2*π/3 или 120°. Разность потенциалов между двумя фазами называют линейным напряжением и оно равно 380 В, так как векторная сумма двух напряжений будет U л =2* U ф * sin(60°)=2*220* √3/2=220* √3=220*1,73=380,6 В , где U л – линейное напряжение между двумя фазами, а U ф – фазное напряжение между фазой и нулем.

Трехфазный ток легко генерировать передавать к месту назначения и в дальнейшем преобразовывать в любой нужный вид энергии. В том числе и в механическую энергию вращения АДКЗ.

Как работает трехфазный асинхронный двигатель

Если подать переменное трехфазное напряжение на обмотки статора, то через них начнут протекать токи. Они, в свою очередь, вызовут магнитные потоки, также изменяющиеся по синусоидальному закону и также сдвинутые по фазе на 2*π/3=120°. Учитывая, что обмотки статора расположены в пространстве на таком же угловом расстоянии – 120°, внутри сердечника статора образуется вращающееся магнитное поле.

Это постоянно изменяющееся поле пересекает «беличье колесо» ротора и вызывает в нем ЭДС (электродвижущую силу), которая также будет пропорциональна скорости изменения магнитного потока, что на математическом языке означает производную от магнитного потока по времени. Так как магнитный поток изменяется по синусоидальному закону, значит, ЭДС будет изменяться по закону косинуса, ведь (sinx )’= cosx . Из школьного курса математики известно, что косинус «опережает» синус на π/2=90°, то есть, когда косинус достигает максимума, синус его достигнет через π/2 — через четверть периода.

Под воздействием ЭДС в роторе, а, точнее, в беличьем колесе возникнут большие токи, учитывая, что проводники замкнуты накоротко и имеют низкое электрическое сопротивление. Эти токи образуют свое магнитное поле, которое распространяется по сердечнику ротора и начинает взаимодействовать с полем статора. Разноименные полюса, как известно, притягиваются, а одноименные отталкиваются друг от друга. Возникающие силы создают момент заставляющий ротор вращаться.

Магнитное поле статора вращается с определенной частотой, которая зависит от питающей сети и количества пар полюсов обмоток. Рассчитывается частота по следующей формуле:

n 1 = f 1 *60/ p, где

  • f 1 – частота переменного тока.
  • p – число пар полюсов обмоток статора.

С частотой переменного тока все понятно – она в наших сетях электроснабжения составляет 50 Гц. Число пар полюсов отражает, сколько пар полюсов имеется на обмотке или обмотках, принадлежащих одной фазе. Если к каждой фазе подключается одна обмотка, отстоящая на 120° от других, то число пар полюсов будет равно единице. Если одной к одной фазе подключаются две обмотки, тогда число пар полюсов будет равно двум и так далее. Соответственно и меняется угловое расстояние между обмотками. Например, при числе пар полюсов равным двум, в статоре размещается обмотка фазы A, которая занимает сектор не 120°, а 60°. Затем за ней следует обмотка фазы B, занимающая такой же сектор, а затем и фазы C. Далее чередование повторяется. При увеличении пар полюсов соответственно уменьшаются сектора обмоток. Такие меры позволяют уменьшить частоту вращения магнитного поля статора и соответственно ротора.

Приведем пример. Допустим, трехфазный двигатель имеет одну пару полюсов и подключен к трехфазной сети частотой 50 Гц. Тогда магнитное поле статора будет вращаться с частотой n 1 =50*60/1=3000 об/мин. Если увеличить количество пар полюсов – во столько же раз уменьшится частота вращения. Чтобы поднять обороты двигателя, надо увеличить частоту переменного тока, питающего обмотки. Чтобы изменить направление вращения ротора, надо поменять местами две фазы на обмотках

Следует отметить, что частота вращения ротора всегда отстает от частоты вращения магнитного поля статора, поэтому двигатель и называется асинхронным. Почему это происходит? Представим, что ротор вращается с той же скоростью, что и магнитное поле статора. Тогда беличье колесо не будет «пронизывать» переменное магнитное поле, а оно будет для ротора постоянным. Соответственно не будет наводиться ЭДС и перестанут протекать токи, не будет взаимодействия магнитных потоков и исчезнет момент, приводящий ротор в движение. Именно поэтому ротор находится «в постоянном стремлении» догнать статор, но никогда не догонит, так как исчезнет энергия, заставляющая вращаться вал двигателя.

Разницу частот вращения магнитного поля статора и вала ротора называют частотой скольжения, и она рассчитывается по формуле:

n= n 1 -n 2 , где

  • n1 – частота вращения магнитного поля статора.
  • n2 – частота вращения ротора.

Скольжением называется отношение частоты скольжения к частоте вращения магнитного поля статора, оно рассчитывается по формуле: S=∆ n/ n 1 =(n 1 — n 2)/ n 1 .

Способы подключения обмоток асинхронных двигателей

Большинство АДКЗ имеет три обмотки, каждая из которых соответствует своей фазе и имеет начало и конец. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – ее конец, то есть обмотка U имеет два вывода U1 и U2, обмотка V–V1 и V2, а обмотка W – W1 и W2.

Однако еще до сих пор в эксплуатации находятся асинхронные двигатели, сделанные во времена СССР и имеющие старую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, о концы C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая C2 и C5, а третья C3 и C6. Соответствие старых и новых систем обозначений представлено на рисунке.

Рассмотрим, как могут соединяться обмотки в АДКЗ.

Соединение звездой

При таком соединении все концы обмоток объединяют в одной точке, а к их началам подключают фазы. На принципиальной схеме такой способ подключения действительно напоминает звезду, за что и получил название.

При соединении звездой к каждой обмотке в отдельности приложено фазной напряжение в 220 В, а к двум обмоткам, соединенных последовательно линейное напряжение 380 В. Главное преимущество такого способа подключения – это небольшие токи запуска, так как линейное напряжение приложено к двум обмоткам, а не к одной. Это позволяет двигателю «мягко» стартовать, но мощность его будет ограничена, так как протекающие токи в обмотках будут меньше, чем при другом способе подключения.

Соединение треугольником

При таком соединении обмотки объединяют в треугольник, когда начало одной обмотки соединяется с концом следующей – и так по кругу. Если линейное напряжение в трехфазной сети 380 В, то через обмотки будут протекать токи гораздо больших величин, чем при соединении звездой. Поэтому мощность электродвигателя будет выше.

При соединении треугольником в момент запуска АДКЗ потребляет большие пусковые токи, которые могут в 7-8 раз превышать номинальные и способны вызвать перегрузку сети, поэтому на практике инженеры нашли компромисс – запуск двигателя и его раскручивание до номинальных оборотов производится по схеме звезда, а затем происходит автоматическое переключение на треугольник.

Как определить, по какой схеме подключены обмотки двигателя?

Прежде чем подключать трехфазный двигатель к однофазной сети 220 В, необходимо выяснить по какой схеме подключены обмотки и при каком рабочем напряжении может работать АДКЗ. Для этого необходимо изучить табличку с техническими характеристиками – «шильдик», который должен быть на каждом двигателе.

На такой табличке — «шильдике», можно узнать много полезной информации

На табличке имеется вся необходимая информация, которая поможет подключить двигатель к однофазной сети. На представленном шильдике видно, что двигатель имеет мощность 0,25 кВт и количество оборотов 1370 об/мин, что говорит о наличии двух пар полюсов обмоток. Значок ∆/Y означает, что обмотки можно соединить как треугольником, так и звездой, причем следующий показатель 220/380 В свидетельствует о том, что при соединении треугольником напряжение питающей сети должно быть 220 В, а при соединении звездой – 380 В. Если такой двигатель подключить в сеть 380 В треугольником, то обмотки его сгорят.

На следующем шильдике можно увидеть, что такой двигатель можно подключить только звездой и только в сеть 380 В. Скорее всего в клеммной коробке у такого АДКЗ будет только три вывода. Опытные электрики смогут подключить и такой двигатель к сети 220 В, но для этого надо будет вскрывать заднюю крышку, чтобы добраться до выводов обмоток, затем найти начало и конец каждой обмотки и произвести необходимую коммутацию. Задача сильно усложняется, поэтому авторы не рекомендуют подключать такие двигатели к сети 220 В, тем более что большинство современных АДКЗ могут подключаться по-разному.

На каждом двигателе есть клеммная коробка, расположенная чаще всего сверху. В этой коробке есть входы для питающих кабелей, а сверху она закрыта крышкой, которую необходимо снять при помощи отвертки.

Как говорят электрики и паталогоанатомы: «Вскрытие покажет»

Под крышкой можно увидеть шесть клемм, каждая из которых соответствует или началу, или концу обмотки. Помимо этого клеммы соединяются перемычками, и по их расположению можно определить, по какой схеме подключены обмотки.

Вскрытие клеммной коробки показало, что у «пациента» очевидная «звездная болезнь»

На фото «вскрытой» коробки видно, что провода, ведущие к обмоткам подписаны и перемычками соединены в одну точку концы всех обмоток – V2, U2, W2. Это свидетельствует о том, что имеет место соединение звездой. С первого взгляда может показаться, что концы обмоток расположены в логичном порядке V2, U2, W2, а начала «перепутаны» - W1, V1, U1. Однако, это сделано с определенной целью. Для этого рассмотрим клеммную коробку АДКЗ с подключенными обмотками по схеме треугольник.

На рисунке видно, что положение перемычек меняется – соединяются начала и концы обмоток, причем клеммы расположены так, что те же перемычки используются для перекоммутации. Тогда становится понятно почему «перепутаны» клеммы – так легче перебрасывать перемычки. На фотографии видно, что клеммы W2 и U1 соединены отрезком провода, но в базовой комплектации новых двигателей всегда присутствуют именно три перемычки.

Если после «вскрытия» клеммной коробки обнаруживается такая картина, как на фотографии, то это означает, что двигатель предназначен для звезды и трехфазной сети 380 В.

Такому двигателю лучше возвращаться в свою «родную стихию» — в цепи трехфазного переменного тока

Видео: Отличный фильм про трехфазные синхронные двигатели, который еще не успели раскрасить

Подключить трехфазный двигатель в однофазную сеть 220 В можно, но при этом надо быть готовым пожертвовать значительным снижением его мощности – в лучшем случае она составит 70% от паспортной, но для большинства целей это вполне приемлемо.

Основной проблемой подключения является создание вращающегося магнитного поля, которое наводит ЭДС в короткозамкнутом роторе. В трехфазных сетях реализовать это просто. При генерации трехфазной электроэнергии в обмотках статора наводится ЭДС из-за того, что внутри сердечника вращается намагниченный ротор, который приводится в движение энергией падающей воды на ГЭС или паровой турбиной на ГЭС и АЭС. Он создает вращающееся магнитное поле. В двигателях происходит обратное преобразование – изменяющееся магнитное поле приводит во вращение ротор.

В однофазных сетях получить вращающееся магнитное поле сложнее - надо прибегнуть к некоторым «хитростям». Для этого надо сдвинуть фазы в обмотках по отношению друг к другу. В идеальном случае нужно сделать так, что фазы будут сдвинуты по отношению друг к другу на 120°, но на практике это трудно реализовать, так как такие устройства имеют сложные схемы, стоят достаточно дорого и их изготовление и настройка требуют определенной квалификации. Поэтому в большинстве случаев применяют простые схемы, при этом несколько жертвуя мощностью.

Сдвиг фаз при помощи конденсаторов

Электрический конденсатор известен своим уникальным свойством не пропускать постоянный ток, но пропускать переменный. Зависимость токов, протекающих через конденсатор, от приложенного напряжения показана на графике.

Ток в конденсаторе всегда будет «лидировать» на четверть периода

Как только к конденсатору прикладывают возрастающее по синусоиде напряжение, он сразу «накидывается» на него и начинает заряжаться, так как изначально был разряжен. Ток в этот момент будет максимальным, но по мере заряда он будет уменьшаться и достигнет минимума в тот момент, когда напряжение достигнет своего пика.

Как только напряжение будет уменьшаться, конденсатор среагирует на это и будет начинать разряжаться, но ток при этом будет идти в обратном направлении, по мере разряда он будет увеличиваться (со знаком минус) до тех пор, пока уменьшается напряжение. К моменту, когда напряжение равно нулю ток достигает своего максимума.

Когда напряжение начинает расти со знаком минус, то идет перезаряд конденсатора и ток постепенно приближается от своего отрицательного максимума к нулю. По мере уменьшения отрицательного напряжения и стремлении его к нулю идет разряд конденсатора с увеличением тока через него. Далее, цикл повторяется заново.

Из графика видно, что за один период переменного синусоидального напряжения, конденсатор два раза заряжается и два раза разряжается. Ток, протекающий через конденсатор, опережает напряжение на четверть периода, то есть — 2* π/4= π/2=90° . Вот таким простым путем можно получить фазовый сдвиг в обмотках асинхронного двигателя. Сдвиг фаз в 90° не является идеальным в 120°, но вполне достаточен для того, чтобы на роторе появился необходимый вращательный момент.

Сдвиг фаз также можно получить, применив катушку индуктивности. В этом случае все произойдет наоборот – напряжение будет опережать ток на 90°. Но на практике применяют больше емкостной сдвиг фаз из-за более простой реализации и меньших потерь.

Схемы подключения трехфазных двигателей в однофазную сеть

Существует очень много вариантов подключения АДКЗ, но мы рассмотрим только наиболее часто используемые и наиболее просто реализуемые. Как было рассмотрено ранее, для сдвига фазы достаточно подключить параллельно какой-либо из обмоток конденсатор. Обозначение C р говорит о том, что это рабочий конденсатор.

Следует отметить, что соединение обмоток в треугольник предпочтительней, так как с такого АДКЗ можно «снять» полезной мощности больше, чем со звезды. Но существуют двигатели, предназначенные для работы в сетях с напряжением 127/220 В. О чем обязательно должна быть информация на шильдике.

Если читателям встретится такой двигатель, то - это можно считать удачей, так как его можно включать в сеть 220 В по схеме звезда, а это обеспечит и плавный пуск, и до 90% от паспортной номинальной мощности. Промышленностью выпускаются АДКЗ специально предназначенные для работы в сетях 220 В, которые могут называть конденсаторными двигателями.

Как двигатель не называй — он все равно асинхронный с короткозамкнутым ротором

Следует обратить внимание, что на шильдике указано рабочее напряжение 220 В и параметры рабочего конденсатора 90 мкФ (микрофарад, 1 мкФ=10 -6 Ф) и напряжение 250 В. Можно с уверенностью сказать, что этот двигатель фактически является трехфазным, но адаптированный для однофазного напряжения.

Для облегчения пуска мощных АДКЗ в сетях 220 В кроме рабочего применяют еще и пусковой конденсатор, который включается на непродолжительное время. После старта и набора номинальных оборотов пусковой конденсатор отключают, и вращение ротора поддерживает только рабочий конденсатор.

Пусковой конденсатор «дает пинка» при старте двигателя

Пусковой конденсатор – C п, подключают параллельно рабочему C р. Из электротехники известно, что при параллельном соединении емкости конденсаторов складываются. Для его «активации» применяют кнопочный выключатель SB, удерживаемый несколько секунд. Емкость пускового конденсатора обычно минимум в два с половиной раза выше, чем рабочего, причем сохранять заряд он может достаточно долго. При случайном прикосновении к его выводам можно получить довольно сильно ощутимый разряд через тело. Для того чтобы разрядить C п применяют резистор, подключенный параллельно. Тогда после отключения пускового конденсатора от сети, будет происходить его разряд через резистор. Его выбирают с достаточно большим сопротивлением 300 кОм-1 мОм и рассеиваемой мощностью не менее 2 Вт.

Расчет емкости рабочего и пускового конденсатора

Для уверенного запуска и устойчивой работы АДКЗ в сетях 220 В следует наиболее точно подобрать емкости рабочего и пускового конденсаторов. При недостаточной емкости C р на роторе будет создаваться недостаточный момент для подключения какой-либо механической нагрузки, а избыточная емкость может привести к протеканию слишком высоких токов, что в результате может привести к межвитковому замыканию обмоток, которое «лечится» только очень дорогостоящей перемоткой.

Схема Что рассчитывается Формула Что необходимо для расчетов
Емкость рабочего конденсатора для подключения обмоток звездой – Cр, мкФ Cр=2800*I/U;
I=P/(√3*U*η*cosϕ);
Cр=(2800/√3)*P/(U^2*n* cosϕ)=1616,6*P/(U^2*n* cosϕ)
Для всех:
I – ток в амперах, A;
U – напряжение в сети, В;
P – мощность электродвигателя;
η – КПД двигателя выраженное в величинах от 0 до 1 (если на шильдике двигателя оно указано в процентах, то этот показатель надо разделить на 100);
cosϕ – коэффициент мощности (косинус угла между вектором напряжения и тока), он всегда указывается в паспорте и на шильдике.
Емкость пускового конденсатора для подключения обмоток звездой – Cп, мкФ Cп=(2-3)*Cр≈2,5*Cр
Емкость рабочего конденсатора для подключения обмоток треугольником – Cр, мкФ Cр=4800*I/U;
I=P/(√3*U*η*cosϕ);
Cр=(4800/√3)*P/(U^2*n* cosϕ)=2771,3*P/(U^2*n* cosϕ)
Емкость пускового конденсатора для подключения обмоток треугольником – Cп, мкФ Cп=(2-3)*Cр≈2,5*Cр

Приведенных формул в таблице вполне достаточно для того, чтобы рассчитать необходимую емкость конденсаторов. В паспортах и на шильдиках может указываться КПД или рабочий ток. В зависимости от этого можно вычислить необходимые параметры. В любом случае тех данных будет достаточно. Для удобства наших читателей, можно воспользоваться калькулятором, который быстро рассчитает необходимую рабочую и пусковую емкость.

Калькулятор: Расчет емкости рабочего и пускового конденсатора для асинхронных двигателей с короткозамкнутым ротором

Расчет емкости рабочего и пускового конденсатора

Внимание! При введении в поля десятичных дробей в качестве разделителя использовать точку.

Способ соединения обмоток электродвигателя (Y/∆)

Звезда (Y) Треугольник (∆)

Мощность двигателя, Вт

Напряжение в сети, В

Коэффициент мощности, cosϕ

КПД асинхронного двигателя, значение от 0 до 1

Рассчитанную емкость конденсатора лучше не увеличивать, так как это может привести к перегреву обмоток двигателя. После того как двигатель будет запущен под рассчитанной нагрузкой, можно измерить рабочий ток и скорректировать емкость, рассчитав ее по зависимости ее от напряжения и тока. Скорее всего, она окажется ниже. На электродвигателях мощностью менее 500 Вт пусковой конденсатор может вообще не понадобиться, все зависит от того есть ли механическая нагрузка на валу ротора. Например, запуск циркулярной пилы, электрофуганка, наждака, - происходит без нагрузки, а погружного насоса – сразу под нагрузкой.

При выборе конденсаторов необходимо учитывать, что в момент запуска на них может воздействовать более высокое напряжение, чем номинальное. Поэтому, если двигатель будет работать в сети 220 В, то конденсатор должен быть с номинальным напряжением не менее, чем 1,5*220=360 В, а лучше 400-450 В. Также необходимо учитывать то, что рабочий конденсатор задействован во все время работы двигателя, а пусковой – только во время запуска. В чем отличие и сходство пусковых и рабочих конденсаторов показано в следующей таблице.

Рабочий конденсатор
Изображение
Применение В электрических схемах асинхронных двигателей
Как подключается Последовательно с одной из обмоток трехфазного двигателя или со вспомогательной обмоткой однофазного двигателя Параллельно рабочему конденсатору
Используется в качестве Элемента, сдвигающего фазу в одной из обмоток трёхфазного двигателя, подключенного к однофазной сети Элемента, сдвигающего фазу в обмотке трехфазного двигателя
Назначение Получение вращающегося магнитного поля, необходимого для вращения ротора двигателя Получение вращающегося магнитного поля, создающего повышенный момент вращения, необходимого для запуска ротора двигателя
На какое время подключается На все время работы электродвигателя На момент старта и набора номинальных оборотов

Емкости рабочих конденсаторов обычно составляют десятки, а то и сотни микрофарад. Естественно, что чем больше емкость и выше рабочее напряжение, тем объемнее будет конденсатор. Рассмотрим в следующей таблице, какие конденсаторы могут применяться в качестве рабочих и пусковых.

Металлобумажные конденсаторы МБГО, МБГТ, МГБЧ, МГБП Полипропиленовые пленочные конденсаторы CBB60 (аналог К78-17), CBB65 Пусковые конденсаторы CD60
Изображение
Технология изготовления Нанесение металлизированной пленки на конденсаторную бумагу, являющуюся диэлектриком Нанесение металлизированной пленки на тонкую полипропиленовую ленту Алюминиевая фольга и электролит. В качестве диэлектрика используется диоксид алюминия
Рабочее напряжение, В 160, 200, 300, 400, 600, 1000 В 450, 630 В 220-450 В
Диапазон емкостей, мкФ 0,1-20 мкФ 1-150 мкФ 50-1500 мкФ
Материал и форма корпуса Металлический прямоугольный герметичный корпус Пластиковый цилиндрический корпус, у CBB65 металлический цилиндрический взрывозащищенный корпус Цилиндрический металлический взрывозащищенный корпус, покрытый пленкой из термостойкого поливинилхлорида
Где применяются В качестве рабочих конденсаторов асинхронных двигателей В качестве рабочих и пусковых конденсаторов асинхронных двигателей В качестве пусковых конденсаторов.
Достоинства Небольшая цена Небольшие габариты, малый разброс характеристик, долговечность Высокая емкость при небольших габаритных размерах
Недостатки Большие габариты, высокие потери, быстрое старение при повышенных температурах Цена выше, чем у металлобумажных конденсаторов Не рекомендуется применять в качестве рабочих конденсаторов

Бывает такая необходимость, когда под рукой нет емкости с нужным номиналом. Чаще всего ее не хватает и, «как назло», есть россыпь конденсаторов другой емкости. Выход из этой ситуации очень простой – если соединить конденсаторы параллельно, то результирующая емкость будет равна сумме все емкостей конденсаторов. Следует отметить, что при таком соединении все конденсаторы желательно использовать с одним рабочим напряжением, так как напряжение на их электродах будет одинаковым. Например, надо собрать конденсаторную батарею 50 мкФ с напряжением 400 В. Для этого можно подобрать 5 конденсаторов по 10 мкФ типа МГБО и все они должны иметь такое же напряжение. Если хотя бы один из конденсаторов будет иметь напряжение ниже, например 160 В, то он через непродолжительное время выйдет из строя.

Параллельное соединение делают наиболее часто. Раньше, когда были недоступны металлополипропиленовые конденсаторы использовались металлобумажные, которые соединяли параллельно и помещали в специальные ящики. На мощных станках такие батареи были довольно внушительных размеров. Современные конденсаторы позволяют обойтись без громоздких ящиков и могут размещаться прямо на корпусе электродвигателя.

При последовательном соединении результирующая емкость не будет являться суммой, а будет вычисляться по формуле: C= C 1 * C 2 /(C 1 + C 2) , где C 1, C 2 – емкости конденсаторов, подключенных последовательно. Очевидно, что результирующая емкость будет всегда меньше самой наименьшей из всех, подключенных последовательно, так как если умножить обе части выражения 1/С=1/С 1 +1/С 2 +…+1/С i на C 1 , то получим C 1 / C=1+ C 1 / C 2 +… C 1 / C i , что красноречиво свидетельствует о том, что отношение любой из емкости к общей будет всегда больше единицы. На языке математики это означает, что любая из емкостей больше результирующей.

С первого взгляда может показаться, что последовательное соединение конденсаторов ничего по своей сути не дает, ведь каждый микрофарад емкости стоит денег и в лучшем случае, если подключить две емкости по 40 мкФ, то результирующая будет всего-то 20 мкФ. Но, как видно из вышеприведенной схемы, приложенное напряжение распределяется по конденсаторам, поэтому если, например, подключить каждый из них с рабочим напряжением 250 В, то к ним смело можно прикладывать 500 В. А чем выше номинальное рабочее напряжение конденсатора, тем дороже он стоит. Поэтому последовательное соединение конденсаторов тоже иногда может принести практическую пользу.

Для удобства предлагаем читателям нашего портала воспользоваться калькулятором, который рассчитывает емкость двух последовательно соединенных конденсаторов.

Калькулятор: Расчет результирующей емкости двух последовательно соединенных конденсаторов

Выберите из списка емкость первого конденсатора, а затем второго, подключаемого последовательно. Нажмите кнопку «Рассчитать». В списке приведен ряд номиналов конденсаторов серии CBB60

Емкость первого конденсатора

Емкость второго конденсатора

CBB60 1 мкФ, 450 В CBB60 1.5 мкФ, 450 В CBB60 2 мкФ, 450 В CBB60 3 мкФ, 450 В CBB60 4 мкФ, 450 В CBB60 5 мкФ, 450 В CBB60 6 мкФ, 450 В CBB60 8 мкФ, 450 В CBB60 10 мкФ, 450 В CBB60 12 мкФ, 450 В CBB60 14 мкФ, 450 В CBB60 16 мкФ, 450 В CBB60 20 мкФ, 450 В CBB60 25 мкФ, 450 В CBB60 30 мкФ, 450 В CBB60 35 мкФ, 450 В CBB60 40 мкФ, 450 В CBB60 45 мкФ, 450 В CBB60 50 мкФ, 450 В CBB60 60 мкФ, 450 В CBB60 70 мкФ, 450 В CBB60 80 мкФ, 450 В CBB60 100 мкФ, 450 В CBB60 120 мкФ, 450 В CBB60 150 мкФ, 450 В

Применение электролитических конденсаторов в качестве пусковых

В электротехнике и электронике широко применяются электролитические конденсаторы, которые специалисты называю «электролиты». Их главной особенностью является то, что в качестве одного из электродов используется электролит (кислота или щелочь), которым пропитана специальная бумага. Другой электрод представляет собой алюминиевую фольгу, на которой есть тонкий слой диоксида алюминия Al 2 O3. Благодаря этому емкость электролитических конденсаторов при равных габаритах гораздо выше, чем у других.

Оборотной стороной медали электролитических конденсаторов является обеспечение условия полярности их подключения в цепях постоянного или пульсирующего тока. При неправильном подключении или появлении на электродах электролитического конденсатора переменного напряжения начинается ускоренный процесс деградации, повышение токов утечки, что приводит к сильному нагреву. В итоге давление внутри конденсатора растет и это может привести к взрыву. Не зря в верхней части корпуса электролита имеются специальные насечки – так называемый клапан, который при сильном повышении давления просто разрывается, но это будет контролируемый взрыв.

Описанные ранее в таблице пусковые конденсаторы CD60 являются электролитическими, но неполярными, которые способны работать в цепях переменного тока. Это достигается тем, что в них используется два электрода из алюминиевой фольги, покрытые оксидной пленкой, а бумага с электролитом находится посередине между ними. Естественно, что габариты (как и цена) таких конденсаторов в 1,5-2 раза выше, чем у обычных электролитов, но зато их можно включать в цепь переменного тока.

Неполярный электролитический конденсатор можно получить из двух полярных, только необходимо их последовательно и встречно соединить между собой положительными электродами, а отрицательными подключать в сеть. Тогда результирующая емкость будет рассчитываться по калькулятору. Например, если необходимо получить неполярный электролит емкостью в 100 мкФ и напряжением 500 В, то надо встречно подключить два конденсатора по 200 мкФ и напряжением не менее 250 В. Вот как раз здесь последовательное соединение конденсаторов может помочь.

На практике часто применяют подключение электролитических конденсаторов через диоды. Принципиальная схема такого подключения представлена на рисунке.

Диоды не позволяют конденсаторам потреблять «запретные плоды»

Известно, что диод пропускает электрический ток только в одном направлении – от анода к катоду. Получается, что положительные полупериоды будут пропускаться только к плюсу конденсатора, а отрицательные только к минусу. Это обеспечит работу конденсатора в штатном режиме. Для разряда пусковых конденсаторов параллельно им подключены резисторы мощностью не менее 2 Вт. После пуска и разгона двигателя пусковые конденсаторы отключаются и быстро разряжаются через резисторы. В такой схеме есть существенный недостаток – если «пробивает» диод, то конденсатор начинает работать как кипятильник электролита. Поэтому рекомендуется убирать конденсаторы в безопасное место или помещать в коробку или контейнер.

Видео: Неполярные электролитические конденсаторы

Выбор принципиальной схемы подключения

Одних пусковых и рабочих конденсаторов для подключения трехфазного электродвигателя к сети 220 В будет недостаточно. Вначале надо определиться по какой схеме будет подключаться двигатель, и какие коммутационные аппараты будут нужны для правильного пуска и остановки.

Вариантов подключения трехфазных двигателей в сеть 220 В существует очень много, но в рамках статьи предлагается рассмотреть только два наиболее часто используемых и надежных. Принципиальные схемы представлены на рисунке.

Принципиальная схема, изображенная справа, показывает подключение АДКЗ по схеме звезда. Как уже отмечалось ранее, такой вид подключения целесообразно использовать в однофазных сетях 220 В только для тех двигателей, которые предназначены для рабочих напряжений 127/220 В при схемах ∆/Y. Левая схема показывает подключение асинхронного двигателя по схеме треугольник. В этой схеме применены для пуска электролитические конденсаторы C1 и C2, подключенные совместно с диодами VD1 и VD2. Объясним назначение всех элементов схем.

  • И одна и другая схема подключается к сети 220 В через разъемы XP1 и XP
  • Для защиты от сильных перегрузок по току или от токов короткого замыкания в схемах применены плавкие предохранители FU1 и FU Они могут быть заменены на двухполюсный автоматический выключатель с номиналом 10 или 16 Ампер, в зависимости от мощности АДКЗ. Автомат лучше брать с характеристикой срабатывания C или на мощных станках даже D.
  • SA1 – это переключатель, который служит для реверса двигателя. Меняя его положение можно изменять направление вращения. В некоторых механизмах, например, подъемных, эта очень может пригодиться. В двигателях мощностью до 1 кВт можно вполне применять переключатель тумблерный типа ТВ-1-2 или клавишный на ток до 5 А.
  • SB1, SB1.2, SB1.3 – это контакты пускателя нажимного кнопочного ПНВС-10У2. Этот аппарат имеет три пары контактов: SB1.1 и SB1.3 – это контакты, которые при нажатии на кнопку «Пуск» фиксируются во включенном положении (они на корпусе пускателя находятся слева и справа), а контакт SB1.2, находящийся в центре, замыкается только при нажатии на кнопку «Пуск». Это очень удобно при запуске и разгоне двигателя, удерживая кнопку 1-3 секунды, двигатель стартует и набирает обороты при помощи пусковых конденсаторов, а затем кнопка отпускается, и двигатель продолжает работать без них. Для двигателей до 0,6 кВт применяют пускатели ПНВС-10, а для более мощных ПНВС-12.
  • KM и KM1 на схеме слева – это реле тока и его контакты соответственно. Оно также может применяться в схемах подключения АДКЗ. При возрастании тока до величин, превышающих номинальные, срабатывает реле KM и замыкает контакты KM1.1, подключающие пусковые конденсаторы C1 и C2. При убывании тока до номинальных величин реле KM отключается и размыкает контакты KM1.1. Возрастание рабочего тока происходит чаще всего тогда, когда резко возрастает механическая нагрузка на валу ротора АДКЗ. В качестве реле тока можно использовать модульное РТ-40У.
  • На левой схеме конденсатор C3 рабочий, а C1 и C2 – пусковые. На правой схеме C1 – пусковой, а C2 – рабочий. Резисторы R1 мощностью 2 Вт нужны для разряда пусковых конденсаторов.

Предлагаемые схемы успешно работают уже не один десяток лет и доказали свою жизнеспособность, поэтому и рекомендованы читателям нашего портала к использованию.

Необходимые инструменты и комплектующие

Для того, чтобы подключить электродвигатель потребуется не такой уж и большой набор электротехнического и монтажного инструмента.

Изображение Наименование Назначение
Набор изолированных отверток различных размеров и типов шлицев Для электромонтажных и монтажных работ.
Пассатижи различных размеров Для электромонтажных работ.
Кусачки Для резки проводов.
Стриппер Для снятия изоляции с проводов, а также резки проводов или обжима клемм (зависит от модели стриппера).
Отвертка-индикатор Для контроля наличия фазы в цепи.
Мультиметр Для измерения напряжения, силы тока, проверки конденсаторов и резисторов, контроля целостности обмоток электродвигателя.
Токовые клещи Для измерения силы тока у работающего АДКЗ. Помогает при подборе рабочего и пускового конденсатора. Применение необязательно, но желательно.
Набор диэлектрических ключей Для монтажа проводов и перемычек в клеммных коробках двигателей.
Электродрель с набором сверел по дереву и металлу Для монтажных работ
Молоток слесарный Для монтажных работ
Кернер Для кернения отверстий под сверление.
Заклепочник ручной Для крепления рабочих и пусковых конденсаторов к корпусу АДКЗ. Применение необязательно, так как можно крепить и на винты, но заклепки предпочтительнее из-за возможности самораскручивания винтов при вибрации двигателя.
Паяльник 60 Вт Для пайки на клеммах конденсаторов.
Кримпер ручной Для обжима наконечников и клемм.

Прежде всего, перед монтажными работами нужно подумать о том, где будет смонтирован асинхронный двигатель. В зависимости от возложенных задач основание может быть металлическим, текстолитовым, деревянным и другим. Также на этом основании должны будут смонтированы нажимной пускатель, рабочие и пусковые емкости, при необходимости токовые реле и другие аппараты коммутации контроля и защиты.

Электролитические конденсаторы необходимо убрать в отдельный ящик, чтобы при возможном их взрыве брызги электролита не поразили людей. Если оборудование будет смонтировано на столе или верстаке, то можно конденсаторы «спрятать», закрепив их на нижней поверхности столешницы.

Один изспособов спрятать конденсаторы «от греха подальше»

Для монтажа асинхронного двигателя и подключения его в сеть 220 В понадобятся следующие комплектующие:

Изображение Наименование Описание
Пластиковый бокс на 4 места наружного монтажа Для размещения автоматического выключателя и токового реле АДКЗ.
Металлическая перфорированная монтажная лента Для крепления оборудования к основанию
Саморезы по дереву и металлу Для крепления оборудования
Заклепки вытяжные 3*6 или 3*8 Для крепления рабочих конденсаторов к корпусу электродвигателя
Автоматический выключатель C10 или C16 При мощности АДКЗ до 2 кВт применяют автомат на 10 А (C10). При мощности более 2 кВт – на 16 А (C16).
Модульное токовое реле РТ-40У Для контроля тока в фазосдвигающей обмотке двигателя. РТ-40У имеет три диапазона измерения тока (0,1-1 А, 0,5-5 А, 3-30 А), регулируемый порог срабатывания (10-100%), регулируемое время задержки срабатывания (0,2-20 с) и может коммутировать силовую нагрузку до 16 А, 250 В. Применяется опционально.
Кнопочный выключатель (пост кнопочный) нажимного действия ПНВС-10 или ПНВС-12 Для включения асинхронного двигателя в сеть и его отключения, а также для обеспечения запуска. Для двигателей до 6 кВт номинальной мощности применяют ПНВС-10, а для АДКЗ с P=0,6-2,2 кВт – ПНВС-12.
Переключатель тумблерного типа ТВ-1-1 или ТВ-1-2 Для обеспечения реверса электродвигателя. Номинальный ток переключателя должен соответствовать мощности АДКЗ.
Провод монтажный ПВ-3 (ПУгВ) площадью поперечного сечения 1,5 или 2,5 кв. мм Для подключения оборудования. При мощности АДКЗ до 2,2 кВт достаточно ПВ-3 1,5 в, мм, а для большей – 2,5 кв. мм.
Наконечники штыревые втулочные изолированные НШВИ для проводов 1,5 и 2,5 кв. мм. Для оконцевания опрессовкой монтажного провода ПВ-3 при подключении в клеммы автоматических выключателей или токовых реле.
Виброустойчивые кольцевые изолированные наконечники ВНКИ Для оконцевания опрессовкой монтажных или питающих проводов при подключении в клеммы оборудования с винтами или шпильками. В зависимости от диаметра винтов или шпилек подбираются ВНКИ 2,5-4, ВНКИ 2,5-5, ВНКИ 2,5-6.
Виброустойчивые плоские разъёмы типа «мама» с ПВХ-манжетой ВРПИ-М Для оконцевания опрессовкой монтажных проводов при подключении рабочих или пусковых конденсаторов, имеющих соответствующие разъемы типа «папа». Наконечник ВРПИ-М-2,5 подходит для одключения провода1,5 и 2,5 кв. мм.
Трубка термоусадочная Для изоляции клемм конденсаторов после подключения

Подключение трехфазного двигателя в однофазную сеть 220 В

После подготовки всех необходимых комплектующих необходимо убедиться в том, что работа будет производиться только при снятом напряжении. Должна только быть возможность для подключения освещения и электроинструментов. На рабочем месте надо приготовить все инструменты и подготовить коробку или ведро, куда будет сбрасываться мусор.

Основные этапы работ по подключению АДКЗ представим в виде таблицы:

Изображение Описание этапов монтажа
Прежде всего надо проверить целостность обмоток двигателя. Для этого снимается крышка клеммной коробки, убираются все перемычки, мультиметр ставится на измерение сопротивления в омах. Должны прозваниваться только начала и концы каждой из обмоток в отдельности. Никаких электрических связей между разными обмотками и между обмотками и корпусом двигателя быть не должно.
Мультиметром проверяется целостность пусковых и рабочих конденсаторов. Перед проверкой необходимо разрядить конденсатор, закоротив его выводы. Мультиметр для измерения конденсаторов ставится на измерение в мегаомах, которое должно быть не менее 2 Мом по прошествии некоторого времени, пока емкость заряжается. Если прибор имеет функцию измерения емкости, то задача упрощается.
Проверяется целостность диодов и резисторов, если они используются в схемах пусковых конденсаторов. Диоды должны пропускать постоянный ток только в одном направлении, а резисторы в обоих. Выставив нужный предел, можно измерить сопротивление резисторов.
Трехфазный асинхронный двигатель крепится к основанию. Следует учесть, что такие двигатели имеют немалый вес и при работе могут вибрировать., поэтому основание должно быть прочным, массивным и устойчивым. Крепление может быть болтами или гайками с шайбами на шпильках через виброгасящие прокладки или стойки.
Закрепляется в намеченных местах оборудование коммутации и защиты – бокс для автоматического выключателя и токового реле, кнопочный пускатель ПНВС-10 или ПНВС-12, тумблер реверса двигателя.
Для крепления тумблера реверса ТВ-1-2 иногда целесообразно использовать крышку клеммной коробки двигателя. Для этого необходимо вначале примерить тумблер в коробке, чтоб он не мешал подключению клемм. После этого дрелью сверлится отверстие диаметром 12,1 мм и тумблер закрепляется на крышке гайкой.
Рабочие конденсаторы могут крепиться отдельно от электродвигателя в коробках, боксах, ящиках – все зависит от требуемой емкости. Но современные металлопропиленовые конденсаторы могут крепиться непосредственно к ребрам корпуса АДКЗ при помощи металлической монтажной ленты. Для этого оборачивают конденсатор лентой и отрезают нужный размер, оставляя ушки для крепления.
Затем сверлят (при необходимости) отверстие в хомуте из металлической ленты. На корпусе асинхронного электродвигателя могут быть монтажные отверстия, но если их нет, то их можно просверлить, предварительно выполнив кернение.
Крепление конденсатора металлической полосой к корпусу двигателя предпочтительней делать заклепками, учитывая вибрацию при работе.
Хорошим решением является крепление рабочего и пускового конденсаторов в безопасном месте: под столом, верстаком. При этом впоследствии все равно желательно прикрыть конденсаторы защитным кожухом.
После закрепления всех деталей начинается коммутация, руководствуясь принципиальной схемой. Перемычки в клеммной коробке ставятся в положении звезда – для двигателей с рабочим напряжением 127/220 В.
Для двигателей с рабочим напряжением 380/220 В и схемами подключения Y/∆, перемычки переставляются для схемы треугольник.
Рабочие и пусковые конденсаторы могут иметь выводы в виде проводов, клемм под пайку и плоских клемм «папа» под разъемы. Металлобумажные конденсаторы имеют всегда соединение под пайку, металлополипропиленовые и неполярные электролитические – в виде проводов или плоских клемм. Предпочтительней всего выбирать конденсаторы с плоскими клеммами «папа» - это сильно облегчает монтаж и демонтаж при замене.
Отмеряются и обрезаются нужные отрезки провода с учетом трасс их совместной или одиночной прокладки. Концы очищаются от изоляции стриппером на длину 10-11 мм.
Для подключения к клеммнику двигателя провода окоцовываются и обжимаются наконечниками ВНКИ соответствующего размера под клемму и провод при помощи кримпера.
Все провода, идущие на клеммник АДКЗ оконцовываются, затем продеваются через кабельный ввод и накидываются на клеммы. На шпильки клемм накидываются шайбы и гайки, но пока не затягиваются. Никакой из проводов не должен идти в натяг, а должна быть предусмотрена возможность повторной оконцовки. Если кабельный ввод снабжен зажимным сальником, то после протяжки проводов его можно зажать.
Для подключения клемм конденсаторов, концы проводов оконцовываются клеммами ВРПИ-М при помощи кримпера.
После подключения клеммы ВРПИ-М к конденсатору, контакт изолируют при помощи термоусадочной трубки соответствующего диаметра, которая надевается на провод перед подключением. Также можно использовать изолированные клеммы.
К тумблеру реверса ТВ-1-2 провода припаиваются и изолируются термоусадочными трубками. Аналогично провода припаиваются и к металлобумажным конденсаторам, если они используются.
Для подключения ПНВС-10 или ПНВС-12 можно использовать либо наконечники НШВИ (НШВИ (2)), либо НВИ, которые очень удобно подключать под винтовые клеммы без их разборки. Применение подобных наконечников в клеммных коробках двигателя недопустимо.
Для подключения автоматических модульных выключателей или токовых реле наиболее целесообразно использовать наконечники НШВИ (НШВИ (2)), которые также обжимаются кримпером.
К болту заземления на двигателе обязательно подключается оконцованный наконечником ВНКИ провод защитного нуля (PE) желто-зеленого цвета. Этот болт может находиться как в клеммной коробке, так и снаружи на корпусе. Он обозначается специальным знаком.
После проверки всех соединений и сверки с принципиальной электрической схемой, затягиваются клеммы асинхронного двигателя при помощи диэлектрического ключа. Также затягиваются винтовые клеммы автоматического выключателя, токового реле и пускателя ПНВС-10 или ПНВС-12. На вход автоматического выключателя подключается провод со штепсельной вилкой.
На вход схемы подается напряжение. При помощи кнопки «Пуск» на ПНВС делается первый пробный запуск двигателя. Если все расчеты корректны и монтаж сделан правильно, то двигатель сразу должен запуститься.

Если двигатель уверенно запустился, то - это вовсе не означает, что он будет уверенно работать и дальше, поэтому следует его вначале проверить в режиме холостого хода, а потом под нагрузкой.

  • Если даже в режиме холостого хода двигатель начинает сильно нагреваться, то надо попробовать уменьшить емкость рабочего конденсатора.
  • Если двигатель при нажатии кнопки «Пуск» гудит, но не стартует, то надо попробовать ему помочь это сделать, крутанув вал. Если такая мера помогла ротору начать вращаться, то можно попробовать увеличить немного емкость пускового конденсатора.
  • Если под планируемой штатной нагрузкой двигатель останавливается, то увеличивают емкость рабочего конденсатора или применяют реле тока, которое подключает «на помощь» пусковые конденсаторы. Однако, следует помнить, что двигатель не сможет выдать мощности больше, чем паспортная.

Самым корректным способом подбора емкости пускового конденсатора будет измерение рабочего тока под нагрузкой и вычисление ее по зависимости от напряжения и тока. Ранее эта формула была приведена в таблице. После того как двигатель полностью настроен, еще раз подтягивают все клеммы и закрывают все места подключения крышками. Провода, если они идут группой, можно проложить совместно в гофротрубе или поместить их в термоусадочную трубку.

Заключение

Подводя итоги статьи, авторы еще раз напоминают читателям, что подключение трехфазного двигателя в сеть 220 В вполне осуществимо, причем собственными силами. И, хотя приходится жертвовать потерей мощности, но открываются безграничные возможности использования различных полезных механизмов. Трехфазные асинхронные двигатели обладают исключительной надежностью, до сих пор работают «ветераны», выпущенные еще в 50-х годах XX века.

Авторы статьи рекомендуют читателям портала перед первым пуском не производить окончательный монтаж всех узлов, а собрать схему на стенде. Если испытания пройдут успешно, то можно уже смонтировать все так, как задумано. И не стоит пренебрегать теми советами, которые были даны в этой статье, так как в ней учтен многолетний опыт и применен научный подход.

Удачных вам запусков электродвигателей и побольше полезных механизмов!

Видео: Как подключить электродвигатель на 220 В



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!