Энциклопедия мобильной связи

Что такое хэш пароля. Пример задачи

12 мая 2010 в 01:28

Хэш-алгоритмы

  • Информационная безопасность

Как я полагаю, многим известно о том, что с 2007 года Национальный институт стандартов и технологий США (NIST) проводит конкурс на разработку хэш-алгоритма для замены SHA-1, и семейства алгоритмов SHA-2. Однако данная тема, почему-то обделена вниманием на сайте. Собственно это и привело меня к вам. Предлагаю вашему вниманию цикл статей, посвященных хэш-алгоритмам. В этом цикле мы вместе изучим основы хэш-функций, рассмотрим самые именитые хэш-алгоритмы, окунемся в атмосферу конкурса SHA-3 и рассмотрим алгоритмы, претендующие на победу в нем, обязательно их потестируем. Так же по возможности будут рассмотрены российские стандарты хеширования.

О себе

Студент кафедры информационной безопасности.

О хэшировании

В настоящее время практически ни одно приложение криптографии не обходится без использования хэширования.
Хэш-функции – это функции, предназначенные для «сжатия» произвольного сообщения или набора данных, записанных, как правило, в двоичном алфавите, в некоторую битовую комбинацию фиксированной длины, называемую сверткой. Хэш-функции имеют разнообразные применения при проведении статистических экспериментов, при тестировании логических устройств, при построении алгоритмов быстрого поиска и проверки целостности записей в базах данных. Основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента.
Криптографической хеш-функцией называется всякая хеш-функция, являющаяся криптостойкой, то есть удовлетворяющая ряду требований специфичных для криптографических приложений. В криптографии хэш-функции применяются для решения следующих задач:
- построения систем контроля целостности данных при их передаче или хранении,
- аутентификация источника данных.

Хэш-функцией называется всякая функция h:X -> Y , легко вычислимая и такая, что для любого сообщения M значение h(M) = H (свертка) имеет фиксированную битовую длину. X - множество всех сообщений, Y - множество двоичных векторов фиксированной длины.

Как правило хэш-функции строят на основе так называемых одношаговых сжимающих функций y = f(x 1 , x 2) двух переменных, где x 1 , x 2 и y - двоичные векторы длины m , n и n соответственно, причем n - длина свертки, а m - длина блока сообщения.
Для получения значения h(M) сообщение сначала разбивается на блоки длины m (при этом, если длина сообщения не кратна m то последний блок неким специальным образом дополняется до полного), а затем к полученным блокам M 1 , M 2 ,.., M N применяют следующую последовательную процедуру вычисления свертки:

H o = v,
H i = f(M i ,H i-1), i = 1,.., N,
h(M) = H N

Здесь v - некоторая константа, часто ее называют инициализирующим вектором. Она выбирается
из различных соображений и может представлять собой секретную константу или набор случайных данных (выборку даты и времени, например).
При таком подходе свойства хэш-функции полностью определяются свойствами одношаговой сжимающей функции.

Выделяют два важных вида криптографических хэш-функций - ключевые и бесключевые. Ключевые хэш-функции называют кодами аутентификации сообщений. Они дают возможность без дополнительных средств гарантировать как правильность источника данных, так и целостность данных в системах с доверяющими друг другу пользователями.
Бесключевые хэш-функции называются кодами обнаружения ошибок. Они дают возможность с помощью дополнительных средств (шифрования, например) гарантировать целостность данных. Эти хэш-функции могут применяться в системах как с доверяющими, так и не доверяющими друг другу пользователями.

О статистических свойствах и требованиях

Как я уже говорил основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента. Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. Это называется лавинным эффектом.

К ключевым функциям хэширования предъявляются следующие требования:
- невозможность фабрикации,
- невозможность модификации.

Первое требование означает высокую сложность подбора сообщения с правильным значением свертки. Второе - высокую сложность подбора для заданного сообщения с известным значением свертки другого сообщения с правильным значением свертки.

К бесключевым функциям предъявляют требования:
- однонаправленность,
- устойчивость к коллизиям,
- устойчивость к нахождению второго прообраза.

Под однонаправленностью понимают высокую сложность нахождения сообщения по заданному значению свертки. Следует заметить что на данный момент нет используемых хэш-функций с доказанной однонаправленностью.
Под устойчивостью к коллизиям понимают сложность нахождения пары сообщений с одинаковыми значениями свертки. Обычно именно нахождение способа построения коллизий криптоаналитиками служит первым сигналом устаревания алгоритма и необходимости его скорой замены.
Под устойчивостью к нахождению второго прообраза понимают сложность нахождения второго сообщения с тем же значением свертки для заданного сообщения с известным значением свертки.

Это была теоретическая часть, которая пригодится нам в дальнейшем…

О популярных хэш-алгоритмах

Алгоритмы CRC16/32 - контрольная сумма (не криптографическое преобразование).

Алгоритмы MD2/4/5/6 . Являются творением Рона Райвеста, одного из авторов алгоритма RSA.
Алгоритм MD5 имел некогда большую популярность, но первые предпосылки взлома появились еще в конце девяностых, и сейчас его популярность стремительно падает.
Алгоритм MD6 - очень интересный с конструктивной точки зрения алгоритм. Он выдвигался на конкурс SHA-3, но, к сожалению, авторы не успели довести его до кондиции, и в списке кандидатов, прошедших во второй раунд этот алгоритм отсутствует.

Алгоритмы линейки SHA Широко распространенные сейчас алгоритмы. Идет активный переход от SHA-1 к стандартам версии SHA-2. SHA-2 - собирательное название алгоритмов SHA224, SHA256, SHA384 и SHA512. SHA224 и SHA384 являются по сути аналогами SHA256 и SHA512 соответственно, только после расчета свертки часть информации в ней отбрасывается. Использовать их стоит лишь для обеспечения совместимости с оборудованием старых моделей.

Российский стандарт - ГОСТ 34.11-94 .

В следующей статье

Обзор алгоритмов MD (MD4, MD5, MD6).

Литература

А. П. Алферов, Основы криптографии.

Брюс Шнайер, Прикладная криптография.

Для решения задачи поиска необходимого элемента среди данных большого объема был предложен алгоритм хеширования (hashing – перемешивание), при котором создаются ключи, определяющие данные массива и на их основании данные записываются в таблицу, названную хеш-таблицей . Ключи для записи определяются при помощи функции i = h (key ) , называемой хеш-функцией . Алгоритм хеширования определяет положение искомого элемента в хеш-таблице по значению его ключа, полученного хеш-функцией.

Понятие хеширования– это разбиение общего (базового) набора уникальных ключей элементов данных на непересекающиеся наборы с определенным свойством.

Возьмем, например, словарь или энциклопедию. В этом случае буквы алфавита могут быть приняты за ключи поиска, т.е. основным элементом алгоритма хеширования является ключ (key ). В большинстве приложений ключ обеспечивает косвенную ссылку на данные.

Фактически хеширование – это специальный метод адресации данных для быстрого поиска нужной информации по ключам .

Если базовый набор содержит N элементов, то его можно разбить на 2 N различных подмножеств.

Хеш-таблица и хеш-функции

Функция, отображающая ключи элементов данных во множество целых чисел (индексы в таблице – хеш-таблица ), называется функцией хеширования , или хеш-функцией :

i = h (key );

где key – преобразуемый ключ, i – получаемый индекс таблицы, т.е. ключ отображается во множество целых чисел (хеш-адреса ), которые впоследствии используются для доступа к данным.

Однако хеш-функция для нескольких значений ключа может давать одинаковое значение позиции i в таблице. Ситуация, при которой два или более ключа получают один и тот же индекс (хеш-адрес), называется коллизией при хешировании.

Хорошей хеш-функцией считается такая функция, которая минимизирует коллизии и распределяет данные равномерно по всей таблице, а совершенной хеш-функцией – функция, которая не порождает коллизий:

Разрешить коллизии при хешировании можно двумя методами:

– методом открытой адресации с линейным опробыванием;

– методом цепочек.

Хеш-таблица

Хеш-таблица представляет собой обычный массив с необычной адресацией, задаваемой хеш-функцией.

Хеш-структуру считают обобщением массива, который обеспечивает быстрый прямой доступ к данным по индексу.

Имеется множество схем хеширования, различающихся как выбором удачной функции h (key ), так и алгоритма разрешения конфликтов. Эффективность решения реальной практической задачи будет существенно зависеть от выбираемой стратегии.

Примеры хеш-функций

Выбираемая хеш-функция должна легко вычисляться и создавать как можно меньше коллизий, т.е. должна равномерно распределять ключи на имеющиеся индексы в таблице. Конечно, нельзя определить, будет ли некоторая конкретная хеш-функция распределять ключи правильно, если эти ключи заранее не известны. Однако, хотя до выбора хеш-функции редко известны сами ключи, некоторые свойства этих ключей, которые влияют на их распределение, обычно известны. Рассмотрим наиболее распространенные методы задания хеш-функции.

Метод деления . Исходными данными являются – некоторый целый ключ key и размер таблицы m . Результатом данной функции является остаток от деления этого ключа на размер таблицы. Общий вид функции:

int h(int key, int m) {

return key % m; // Значения

Для m = 10 хеш-функция возвращает младшую цифру ключа.

Для m = 100 хеш-функция возвращает две младшие цифры ключа.

Аддитивный метод , в котором ключом является символьная строка. В хеш-функции строка преобразуется в целое суммированием всех символов и возвращается остаток от деления на m (обычно размер таблицы m = 256).

int h(char *key, int m) {

Коллизии возникают в строках, состоящих из одинакового набора символов, например, abc и cab .

Данный метод можно несколько модифицировать, получая результат, суммируя только первый и последний символы строки-ключа.

int h(char *key, int m) {

int len = strlen(key), s = 0;

if(len < 2) // Если длина ключа равна 0 или 1,

s = key; // возвратить key

s = key + key;

В этом случае коллизии будут возникать только в строках, например, abc и amc .

Метод середины квадрата , в котором ключ возводится в квадрат (умножается сам на себя) и в качестве индекса используются несколько средних цифр полученного значения.

Например, ключом является целое 32-битное число, а хеш-функция возвращает средние 10 бит его квадрата:

int h(int key) {

key >>= 11; // Отбрасываем 11 младших бит

return key % 1024; // Возвращаем 10 младших бит

Метод исключающего ИЛИ для ключей-строк (обычно размер таблицы m =256). Этот метод аналогичен аддитивному, но в нем различаются схожие слова. Метод заключается в том, что к элементам строки последовательно применяется операция «исключающее ИЛИ».

В мультипликативном методе дополнительно используется случайное действительное число r из интервала . Если это произведение умножить на размер таблицы m , то целая часть полученного произведения даст значение в диапазоне от 0 до m –1.

int h(int key, int m) {

double r = key * rnd();

r = r – (int)r; // Выделили дробную часть

В общем случае при больших значениях m индексы, формируемые хеш-функцией, имеют большой разброс. Более того, математическая теория утверждает, что распределение получается более равномерным, если m является простым числом.

В рассмотренных примерах хеш-функция i = h (key ) только определяет позицию, начиная с которой нужно искать (или первоначально – поместить в таблицу) запись с ключом key . Поэтому схема хеширования должна включать алгоритм решения конфликтов , определяющий порядок действий, если позиция i = h (key ) оказывается уже занятой записью с другим ключом.

Приложений.

Энциклопедичный YouTube

  • 1 / 5

    Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

    Данные требования не являются независимыми:

    • Обратимая функция нестойка к коллизиям первого и второго рода.
    • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

    Принципы построения

    Итеративная последовательная схема

    При проектировании хеш-функций на основе итеративной схемы возникает проблема с размером входного потока данных. Размер входного потока данных должен быть кратен (k − n ) . Как правило, перед началом алгоритма данные расширяются неким, заранее известным, способом.

    Помимо однопроходных алгоритмов, существуют многопроходные алгоритмы, в которых ещё больше усиливается лавинный эффект. В этом случае данные сначала повторяются, а потом расширяются до необходимых размеров.

    Сжимающая функция на основе симметричного блочного алгоритма

    В качестве сжимающей функции можно использовать симметричный блочный алгоритм шифрования. Для обеспечения большей безопасности можно использовать в качестве ключа блок данных, предназначенный к хешированию на данной итерации, а результат предыдущей сжимающей функции - в качестве входа. Тогда результатом последней итерации будет выход алгоритма. В таком случае безопасность хеш-функции базируется на безопасности используемого алгоритма.

    Обычно при построении хеш-функции используют более сложную систему. Обобщённая схема симметричного блочного алгоритма шифрования изображена на рис. 2.

    Таким образом, мы получаем 64 варианта построения сжимающей функции. Большинство из них являются либо тривиальными, либо небезопасными. Ниже изображены четыре наиболее безопасные схемы при всех видах атак.

    Применения

    Электронная подпись

    Пусть некий клиент, с именем name , производит аутентификацию по парольной фразе, pass , на некоем сервере. На сервере хранится значение хеш-функции H (pass , R 2) , где R 2 - псевдослучайное, заранее выбранное число. Клиент посылает запрос (name , R 1 ), где R 1 - псевдослучайное, каждый раз новое число. В ответ сервер посылает значение R 2 . Клиент вычисляет значение хеш-функции H (R 1 , H (pass , R 2)) и посылает его на сервер. Сервер также вычисляет значение H (R 1 , H (pass , R 2)) и сверяет его с полученным. Если значения совпадают - аутентификация верна.

    Хеширование - это специальный метод адресации данных (некоторый алгоритм расстановки) по их уникальным ключам ( key ) для быстрого поиска нужной информации..

    Базовые понятия

    Хеш-таблица

    Хеш-таблица представляет собой обычный массив со специальной адресацией, задаваемой некоторой функцией (Хеш-функция).

    Хеш-функция

    Функция, которая преобразует ключ элемента данных в некоторый индекс в таблице (хеш-таблица ), называетсяфункцией хеширования илихеш-функцией :

    i = h (key );

    где key - преобразуемый ключ,i - получаемый индекс таблицы, т.е. ключ отображается во множестве, например, целых чисел (хеш-адреса ), которые впоследствии используются для доступа к данным.

    Хеширование таким образом – это способ, который подразумевает использование значения ключа для определения его позиции в специальной таблице..

    Однако функция расстановки может для нескольких уникальных значений ключа давать одинаковое значение позицииi в хеш-таблице. Ситуация, при которой два или более ключа получают один и тот же индекс (хеш-адрес) называетсяколлизией (конфликтом) при хешировании.. Поэтому схема хеширования должна включатьалгоритм разрешения конфликтов , определяющий порядок действий, если позицияi =h (key ) оказывается уже занятой записью с другим ключом.

    Имеется множество схем хеширования, различающихся и используемой хешфункцией h (key ) и алгоритмами разрешения конфликтов.

    Наиболее распространенный метод задания хеш-функции: Метод деления.

    Исходными данными являются: - некоторый целый ключ key и размер таблицыm . Результатом данной функции является остаток от деления этого ключа на размер таблицы. Общий вид такой функции на языке программирования С/С++:

    int h (int key , int m ) {

    Для m = 10 хеш-функция возвращает младшую цифру ключа.

    Для m= 100 хеш-функция возвращает две младших цифры ключа.

    В рассмотренных примерах хеш-функция i =h (key ) только определяет позицию, начиная с которой нужно искать (или первоначально - поместить в таблицу) запись с ключомkey . Далее необходимо воспользоваться какой – либо схемой (алгоритмом) хеширования.

    Схемы хеширования

    В большинстве задач два и более ключей хешируются одинаково, но они не могут занимать в хеш-таблице одну и ту же ячейку. Существуют два возможных варианта: либо найти для нового ключа другую позицию, либо создать для каждого индекса хеш-таблицы отдельный список, в который помещаются все ключи, отображающиеся в этот индекс.

    Эти варианты и представляют собой две классические схемы хеширования:

      хеширование методом открытой адресацией с линейным опробыванием - linear probe open addressing .

      хеширование методом цепочек (со списками), или так называемое, многомерное хеширование - chaining with separate lists ;

    Метод открытой адресацией с линейным опробыванием . Изначально все ячейки хеш-таблицы, которая является обычным одномерным массивом, помечены как не занятые. Поэтому при добавлении нового ключа проверяется, занята ли данная ячейка. Если ячейка занята, то алгоритм осуществляет осмотр по кругу до тех пор, пока не найдется свободное место («открытый адрес»).

    Т.е. элементы с однородными ключами размещают вблизи полученного индекса.

    В дальнейшем, осуществляя поиск, сначала находят по ключу позицию i в таблице, и, если ключ не совпадает, то последующий поиск осуществляется в соответствии с алгоритмом разрешения конфликтов, начиная с позицииi . .

    Метод цепочек является доминирующей стратегией. В этом случаеi , полученной из выбранной хеш-функциейh (key )=i , трактуется как индекс в хеш-таблице списков, т.е. сначала ключkey очередной записи отображается на позициюi = h (key ) таблицы. Если позиция свободна, то в нее размещается элемент с ключомkey , если же она занята, то отрабатывается алгоритм разрешения конфликтов, в результате которого такие ключи помещаются в список, начинающийся вi -той ячейке хеш-таблицы. Например

    В итоге имеем таблицу массива связных списков или деревьев.

    Процесс заполнения (считывания) хеш-таблицы прост, но доступ к элементам требует выполнения следующих операций:

    Вычисление индекса i ;

    Поиск в соответствующей цепочке.

    Для улучшения поиска при добавлении нового элемента можно использовать алгоритма вставки не в конец списка, а - с упорядочиванием, т.е. добавлять элемент в нужное место.

    Пример реализации метода прямой адресации с линейным опробыванием . Исходными данными являются 7 записей (для простоты информационная часть состоит только из целочисленных данных), объявленного структурного типа:

    int key; // Ключ

    int info; // Информация

    {59,1}, {70,3}, {96,5}, {81,7}, {13,8}, {41,2}, {79,9}; размер хеш-таблицы m=10.

    Хеш-функцияi =h (data ) =data .key %10; т.е. остаток от деления на 10 -i .

    На основании исходных данных последовательно заполняем хеш-таблицу.

    Хеширование первых пяти ключей дает различные индексы (хеш-адреса):

    Первая коллизия возникает между ключами 81 и 41 - место с индексом 1 занято. Поэтому просматриваем хеш-таблицу с целью поиска ближайшего свободного места, в данном случае - это i = 2.

    Следующий ключ 79 также порождает коллизию: позиция 9 уже занята. Эффективность алгоритма резко падает, т.к. для поиска свободного места понадобилось 6 проб (сравнений), свободным оказался индекс i = 4.

    Общее число проб такого метода от1 до n-1 пробы на элемент, гдеn- размер хеш-таблицы..

    Реализация метода цепочек для предыдущего примера. Объявляем структурный тип для элемента списка (однонаправленного):

    int key; // Ключ

    int info; // Информация

    zap*Next; // Указатель на следующий элемент в списке

    На основании исходных данных последовательно заполняем хеш-таблицу, добавляя новый элемент в конец списка, если место уже занято.

    Хеширование первых пяти ключей, как и в предыдущем случае, дает различные индексы (хеш-адреса): 9, 0, 6, 1, и 3.

    При возникновении коллизии, новый элемент добавляется в конец списка. Поэтому элемент с ключом 41, помещается после элемента с ключом 81, а элемент с ключом 79 - после элемента с ключом 59.

    Индивидуальные задания

    1. Бинарные деревья. Используя программу датчик случайных чисел получить 10 значений от 1 до 99 и построить бинарное дерево.

    Сделать обход:

    1.а Обход слева направо: Left-Root-Right: сначала посещаем левое поддерево, затем - корень и, наконец, правое поддерево.

    (Или наоборот, справа налево: Right -Root- Left)

    1.б Обход сверху вниз: Root-Left-Right: посещаем корень до поддеревьев.

    1.в Обход снизу вверх: Left-Right-Root: посещаем корень после поддеревьев

    Например, мы можем подать на вход 128-битной хеш-функции роман Льва Толстого в шестнадцатеричном виде или число 1. В результате на выходе мы в обоих случаях получим разные наборы псевдослучайных шестнадцатеричных цифр вида: «c4ca4238a0b923820dcc509a6f75849b».

    При изменении исходного текста даже на один знак результат хеш-функции полностью меняется.

    Это свойство хеш-функций позволяет применять их в следующих случаях:

    • при построении ассоциативных массивов ;
    • при поиске дубликатов в сериях наборов данных;
    • при построении уникальных идентификаторов для наборов данных;
    • при вычислении контрольных сумм от данных (сигнала) для последующего обнаружения в них ошибок (возникших случайно или внесённых намеренно), возникающих при хранении и/или передаче данных;
    • при сохранении паролей в системах защиты в виде хеш-кода (для восстановления пароля по хеш-коду требуется функция, являющаяся обратной по отношению к использованной хеш-функции);
    • при выработке электронной подписи (на практике часто подписывается не само сообщение, а его «хеш-образ»);
    • и др.

    Виды «хеш-функций»

    «Хорошая» хеш-функция должна удовлетворять двум свойствам :

    • быстрое вычисление;
    • минимальное количество «коллизий ».

    Введём обозначения:

    ∀ k ∈ (0 ; K) : h (k) < M {\displaystyle \forall k\in (0;\,K):h(k).

    В качестве примера «плохой» хеш-функции можно привести функцию с M = 1000 {\displaystyle M=1000} , которая десятизначному натуральному числу K {\displaystyle K} сопоставляет три цифры, выбранные из середины двадцатизначного квадрата числа K {\displaystyle K} . Казалось бы, значения «хеш-кодов» должны равномерно распределяться между «000 » и «999 », но для «реальных » данных это справедливо лишь в том случае, если «ключи » не имеют «большого» количества нулей слева или справа .

    Рассмотрим несколько простых и надёжных реализаций «хеш-функций».

    «Хеш-функции», основанные на делении

    1. «Хеш-код» как остаток от деления на число всех возможных «хешей»

    Хеш-функция может вычислять «хеш» как остаток от деления входных данных на M {\displaystyle M} :

    h (k) = k mod M {\displaystyle h(k)=k\mod M} ,

    где M {\displaystyle M} - количество всех возможных «хешей» (выходных данных).

    При этом очевидно, что при чётном M {\displaystyle M} значение функции будет чётным при чётном k {\displaystyle k} и нечётным - при нечётном k {\displaystyle k} . Также не следует использовать в качестве M {\displaystyle M} степень основания системы счисления компьютера , так как «хеш-код» будет зависеть только от нескольких цифр числа k {\displaystyle k} , расположенных справа, что приведёт к большому количеству коллизий . На практике обычно выбирают простое M {\displaystyle M} ; в большинстве случаев этот выбор вполне удовлетворителен.

    2. «Хеш-код» как набор коэффициентов получаемого полинома

    Хеш-функция может выполнять деление входных данных на полином по модулю два. В данном методе M {\displaystyle M} должна являться степенью двойки, а бинарные ключи ( K = k n − 1 k n − 2 . . . k 0 {\displaystyle K=k_{n-1}k_{n-2}...k_{0}} ) представляются в виде полиномов , в качестве «хеш-кода» «берутся» значения коэффициентов полинома , полученного как остаток от деления входных данных K {\displaystyle K} на заранее выбранный полином P {\displaystyle P} степени m {\displaystyle m} :

    K (x) mod P (x) = h m − 1 x m − 1 + ⋯ + h 1 x + h 0 {\displaystyle K(x)\mod P(x)=h_{m-1}x^{m-1}+\dots +h_{1}x+h_{0}} h (x) = h m − 1 . . . h 1 h 0 {\displaystyle h(x)=h_{m-1}...h_{1}h_{0}}

    При правильном выборе P (x) {\displaystyle P(x)} гарантируется отсутствие коллизий между почти одинаковыми ключами .

    «Хеш-функции», основанные на умножении

    Обозначим символом w {\displaystyle w} количество чисел, представимых машинным словом . Например, для 32-разрядных компьютеров, совместимых с IBM PC , w = 2 32 {\displaystyle w=2^{32}} .

    Выберем некую константу A {\displaystyle A} так, чтобы A {\displaystyle A} была взаимно простой с w {\displaystyle w} . Тогда хеш-функция, использующая умножение, может иметь следующий вид:

    h (K) = [ M ⌊ A w ∗ K ⌋ ] {\displaystyle h(K)=\left}

    В этом случае на компьютере с двоичной системой счисления M {\displaystyle M} является степенью двойки, и h (K) {\displaystyle h(K)} будет состоять из старших битов правой половины произведения A ∗ K {\displaystyle A*K} .

    Среди преимуществ хеш-функций, основанных на делении и умножении, стоит отметить выгодное использование неслучайности реальных ключей. Например, если ключи представляют собой арифметическую прогрессию (например, последовательность имён «Имя 1», «Имя 2», «Имя 3»), хеш-функция, использующая умножение, отобразит арифметическую прогрессию в приближенно арифметическую прогрессию различных хеш-значений, что уменьшит количество коллизий по сравнению со случайной ситуацией .

    Одной из хеш-функций, использующих умножение, является хеш-функция, использующая хеширование Фибоначчи . Хеширование Фибоначчи основано на свойствах золотого сечения . В качестве константы A {\displaystyle A} здесь выбирается целое число, ближайшее к φ − 1 ∗ w {\displaystyle \varphi ^{-1}*w} и взаимно простое с w {\displaystyle w} , где φ {\displaystyle \varphi } - это золотое сечение .

    Хеширование строк переменной длины

    Вышеизложенные методы применимы и в том случае, если необходимо рассматривать ключи, состоящие из нескольких слов, или ключи переменной длины.

    Например, можно скомбинировать слова в одно при помощи сложения по модулю w {\displaystyle w} или операции «исключающее или ». Одним из алгоритмов, работающих по такому принципу, является хеш-функция Пирсона.

    Универсальное хеширование

    Методы борьбы с коллизиями

    Коллизией (иногда конфликтом или столкновением) называется случай, при котором одна хеш-функция для разных входных блоков возвращает одинаковые хеш-коды.

    Методы борьбы с коллизиями в хеш-таблицах

    Большинство первых работ, описывающих хеширование, посвящено методам борьбы с коллизиями в хеш-таблицах. Тогда хеш-функции применялись при поиске текста в файлах большого размера. Существует два основных метода борьбы с коллизиями в хеш-таблицах:

    1. метод цепочек (метод прямого связывания);
    2. метод открытой адресации.

    При использовании метода цепочек в хеш-таблице хранятся пары «связный список ключей» - «хеш-код». Для каждого ключа хеш-функцией вычисляется хеш-код; если хеш-код был получен ранее (для другого ключа), ключ добавляется в существующий список ключей, парный хеш-коду; иначе создаётся новая пара «список ключей» - «хеш-код», и ключ добавляется в созданный список. В общем случае, если имеется N {\displaystyle N} ключей и M {\displaystyle M} списков, средний размер хеш-таблицы составит N M {\displaystyle {\frac {N}{M}}} . В этом случае при поиске по таблице по сравнению со случаем, в котором поиск выполняется последовательно, средний объём работ уменьшится примерно в M {\displaystyle M} раз.

    При использовании метода открытой адресации в хеш-таблице хранятся пары «ключ» - «хеш-код». Для каждого ключа хеш-функцией вычисляется хеш-код; пара «ключ» - «хеш-код» сохраняется в таблице. В этом случае при поиске по таблице по сравнению со случаем, в котором используются связные списки, ссылки не используются, выполняется последовательный перебор пар «ключ» - «хеш-код», перебор прекращается после обнаружения нужного ключа. Последовательность, в которой просматриваются ячейки таблицы, называется последовательностью проб .

    Криптографическая соль

    Применение хеш-функций

    Хеш-функции широко используются в криптографии.

    Хеш используется как ключ во многих структурах данных - хеш-таблицаx , фильтрах Блума и декартовых деревьях .

    Криптографические хеш-функции

    Среди множества существующих хеш-функций принято выделять криптографически стойкие , применяемые в криптографии , так как на них накладываются дополнительные требования. Для того, чтобы хеш-функция H {\displaystyle H} считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

    Данные требования не являются независимыми.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!